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ON CONVERGENCE SPACES AND GROUPS

ROMAN FRIC

In literature two types of convergence spaces and convergence groups can be
found. While in one of them the convergence is defined by means of filters (see [2],
[3], [4], [5]), in the other this is done by means of sequences (see [6]). The purpose
of the present paper is to study their mutual relations. The first two sections of this
paper are devoted to convergence spaces. In the third section it is shown that to
each sequential convergence group there corresponds a filter convergence group
with the same closure operator. Using an example constructed by J. Novdk in [6],
three problems given by B. V. Hearsy in [3] are solved.

0.

In order to avoid misunderstandings and to make the paper more self-contained
we recall in this section the definitions of both types of convergence spaces and
groups and state some of their basic properties (cf. [3], [6]).

Let S be a non-empty set, let F(S) be the set of all filters on S, and let exp S be
the power set of S. A mapping q: F(S)—expS is called a (filter) convergence
structure for S if the following conditions are satisfied :

(a) xeq(x) for each x €S, where x={AcS|xeA .

(b) If xeq(%¥), then ¥ o % implies x € q(9).

(c) If x eq(F), then x € q(Fnx).

If, moreover,

(d) xeq(%¥) and x € q(%) imply x € q(Fn9) holds true, then q is said to be
a Limitierung.

Let g be a convergence structure for S. Denote by /' (x) the intersection filter of
all filters % € F(S) such that x € q(¥). If q satisfies the following condition:

(e) xeq(N(x)) for each x €S, then q is called a pretopology.

A pair (S, q), where q is a convergence structure for S, is called a (filter)
convergence space and if x € g(%), then we say that ¥ q-converges to x. The set of
all convergence structures for S is denoted by C(S).

Let L be a non-empty set. Then a multivalued (sequential) convergence for L is

323



usually defined as a set Y= L™ x L of pairs ({x, ), x) which satisfies the following
conditions :

(¥,) Constant sequences converge, i.e. ({x ), x)e ¥ for each x e L.

(¥,) Subsequences of a converging sequence converge, i.e. ({x, ), x) € € implies

((x.), x)e ¥ for each subsequence (x, ) of (x,).
The set of all multivalued convergences for L is denoted by S(L). A multivalued
convergence is called one-valued, or briefly a convergence, if the additional
condition ,
(%.) A sequence has at most one limit, i.e. ({(x,), x) € ¢ and ({x,), y) € ¥ imply
x =y, holds true. v 4

From q, resp. ¥, a closure operator k,, resp. A, (a closure operator u for X has all
the properties of a topological closure operator except that it is not necessarily
idempotent, i.e. u: expX—expX, d=uf), AcuA and u(AuB)=uAuvuB for
each A, B c X) can be derived in a natural way:

(1) For AcS we put k,A={xeS|Ae%Z, xeq(%F)}.

(2) For AcL we put A A={xeL|({(x.),x)e¥, u(x,)cA}.

If ¥ is a convergence for L, then (L, ¥, A), or simply (L, 1), is called
a (sequential) convergence space.

Let (X, u) be a closure space (i.e. u is a closure operator for X). Then Uc X is
called a neighborhood of x € X if x € X —u(X — U). Denote by N (x) the filter of
all neighborhoods of x and define a mapping ¢: F(X)—exp X as follows:

(3) If FoN(x), then x € q(F).

Then g is a pretopology and k, =u. Thus we shall make no distinction between
a pretopology and the corresponding closure operator.

Both C(S) and S(L) are endowed by a partial order:

(4) q.=q; if for each ¥ € F(S) we have q,(¥) > q.(%),

(5) ¥\, =% if L ey,
and by an equivalence relation:

(6) 9.~q. if k, =k,

(7) &~ if A, =4,.

If [q], resp. [¥], is the equivalence class containing g, resp. ¥, then k,, is the least
element of [q] and [{] possesses the greatest element ¥* which is characterized by
the following property (sometimes called the Fréchet-Urysohn axiom):

(¥5) If each subsequence (x, ) of a sequence (x, ) contains a subsequence (x)

such that ((x;), x)e ¥, then ((x, ), x) e ¥*.
Thus there is a one-to-one correspondence between pretopologies, resp. mul-
tivalued convergences satisfying (%), and equivalence classes of convergence
structures, resp. equivalence classes of multivalued convergences.

For our purpose we introduce another axiom for a sequential convergence ¥,
which is obviously weaker than (%,):

(MF) Mixed sequences converge, i.e. ({x.), x)e¥ and ((y.),x)e¥ imply
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({z.), x)eq, where z,=x,, 2=y, Z3=X2, Za=Y2, ....

Let (G, +) be a group, let g be a convergence structure for G, let ¥ be
a convergence for G, and let A be the corresponding closure operator. Then both
(G, q, +) and (G, ¥, A, +) are called convergence groups (cf. [5], [6]) if the
“operation —”’ is correspondingly continuous, i.e. if the following conditions are
correspondingly satisfied :

(FG) lf xeq(%¥) and y €q (%), then (x —y)eq(F — %)

(SG) If ({x,), x)eLand ({y. ), y) €L, then there is a subsequence (n, ) of (n )

such that ({(x, —y.), x—y)e¥, or equivalently, ((x ), x)e¥ and .
((y ), y) e imply ( x, —y. ), x —y)eL*.
From the context it will be always clear what type of convergence group is in
question.

Notice that if (G, q) is a convergence group such that q is a pretopology, then it

follows from [1, 19B.4] that (G, q) is a topological group.

1.
Let L be a non-empty set. For a =((x, ), x)e L™ x L denote by %(a) the filter
of sections of @, i.e. #(a)={Fc L| x €F, x, € F for all but finitely many n}. Let ¥
be a multivalued convergence for L. We defme a mapping q(¥): F(L)—expL in

the following way:
8) xeq(F) if Fo F(a) for some a=({(x, ), x)eX.

Proposition 1.1. q(%) is convergence structure for L. If { satisfies (£.,), then
each filter ¥ € F(L) q(¥)-converges to at most one x € L. If ¥ satisfies (MZL), then
q(R) is a Limitierung.

The easy proof is omitted.

Proposition 1.2. Let (L, ¥, A) be a convergence space. Then k,q,=A.

Proof. Let AcL. If x € k,yA, then, according to (1), there is # € F(L) such
that A € ¥ and x € q(¥). From (8) it follows that ¥ > #(a) for some a € ¥. Since
ANF#+0foreach Fe %, we have either x e A or u(x,) = A for some subsequence
(x.)of (x,)and hence x e AA. Consequently, k,,A = AA . The converse inclusion
is trivial. :

Example 1.3. The real line is a sequential convergence space such that ¥
satisfies (&) and q(¥)-is not a pretopology.

Proposition 1.4. Let ¥,, ¥, be multivalued convergences for a non- empty set L.
Then the following statements hold :

(i) If { =%, then q(R)=q(L).

(i) q()~q(,) iff 8, ~4,.

Proof. (i) is trivial. (ii) follows from Proposmon 1.2.

Example 1.5. Let L={1,1/2,1/3, ..., 1/n, ..., 0} and let ¥ be a convergence
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for L defined as follows: ({x ), x)e¥ for each x e L and ({x. ), 0)e L if (x, ) is

a subsequence of the sequence  1/n );_, such that > x, < + ~.Itis easy to see that

n=1

¥* is the usual convergence for real numbers (restricted to L). Denote by A the
closure operator derived from ¥. Then q (%) # q(¥*). For, if we puta =( 1/n ), 0),
then 0 e q(¥*)(F(a)) but q(¥)(F(a))=0. Since L satisfies (ML), it follows from
Proposition 1.1 that q(¥) is a Limitierung. g(¥) is not a pretopology. Really, from
Proposition 1.2 it follows that k,.,= k.- =A, and hence q(2)~q(L*)~A. Ac-
cording to Proposition 1.4 we have q(¥) = q(¥*). Since A is the unique pretopology
in [q(¥)] and q(¥)# q(¥*)=A4, it follows that q(¥) cannot be a pretopology.

2.

Let (S, g) be a convergence space. Denote by ¥(q) a subset of S™ X S defined as
follows: )

(9) a=({x.),x)e¥(q) if xeq(F(a)).
Notice that if g is a pretopology, then (9) is equivalent to the usual definition of the
convergence of sequences in a closure space (cf. [1]). For, if & (x) is the
neighborhood filter of x and @ = ((x, ), x), then x € q(F(a)) iff F(a) >N (x). But
F(a) > N(x) holds iff for each O € /' (x) we have x, € O for all but finitely many n.

Proposition 2.1. ¥(q) is a multivalued convergence for S. If each filter F € F(S)
q-converges to at most one point x €S, then %(q) satisfies (L,). If q is
a pretopology, then ¥(q) satisfies (<£). If q, and q, are convergences for S and
q:Zq., then ¥(q,)=%(q.). ' :

The easy proof is omitted.

Example 2.2. Let (P, u) be a topological non Fréchet space and let A be the
closure operator derived from ¥(u). Then A #u.

Example 2.3. Let (P, u) be the Cech-Stone compactification of N (the space of
natural numbers) and let v be the discrete topology for P. Then u#wv, but
Y(u)=%v).

Example 2.4. Let (Nu(~), u) be the topological space of all ordinals less or
equal than w, with the usual order topology. Let g be a convergence structure for
Nu(~) defined as follows: x € g(x) for each x e Nu(®), ~ € g(%) if either F is
a free ultrafilter for N, or ¥ = (¥'n ), where ' is a free ultrafilter for N. Then
u=k,, but, since ({(n-, ©)e(u) and (n) is totally ¥(q)-divergent, ¥(q) and
¥(u) are not equivalent.

Proposition 2.5. Let (S, q) be a convergence space. Then the following
statements hold:
(i) If (x,)eS™ and ({x...), x)e¥(q), then ({(x,), x)€¥(q).
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(i) If ({x,), x)€%(q) and f: N— N is one-to-one and onto, then ({x;.,),x)
€X(q).

(i) If q is a Limitierung, then £(q) satisfies (MZ).

The easy proof is omitted.

Proposition 2.6. Let (L, ¥, A) be a convergence space. Then we have

L=2L(q(Q))=¢*, and hence ¥~2(q(¥)). '

" Proof. Since we have kooy=4,*=2(4), and q(¥) =k, it follows from the last
statement of Proposition 2.1 that ¥(q(¥))c=¥*. The inclusion c¥(q(¥)) is
trivial. ' '

Example 2.7. Let (L, £, 1) be the convergence space from Example 1.5. Then

L+ 2(q(RQ)) # L*. This follows from the fact that ({1/n°);_,, 0) € L(q(¥))— ¥ and

((1/n )71, 0) e &% = L(q (V).

Proposition 2.8. Let (S, q) be a convergence space. Then q(¥(q))=gq.

The easy proof is omitted.

Example 2.9. Let (Nu(~), u) be the topological space from Example 2.4.
Then it can be easily proved that u# k), and hence u and q(¢(u)) are not
equivalent. '

3.

Throughout this section we shall use the following notation. If (G, +) is a group,
then for each x € G the symbol *+ 1x means the same as *x. Let (G, ¥, A, +) be
a convergence group. We define a mapping q: F(G)—exp G as follows:

(10) x € q(%) if there exist a natural number m, sequences a;, = ( (X ), x,) € ¥

and numbers g, =*1, k=1, 2, ..., m, such that Zakxk =x, o

k=1
m

> aF(av), where the filter > a,%(a,) is generated by the sets of the form
k=1

k=1

afi+aF,+...+a,F,, F.e¥(a).

Proposition 3.1. (G, q, +) is a convergence group.
The straightforward proof is omitted.

Proposition 3.2. If x € q(¥), then x € AF for each Fe %.

Proof. Let x € (%). Then, according to (10), there are a natural number m,
sequences Qx =({X. ), x,)€L and numbers a, = *1, k=1, ..., m, such that
Sax.=x, Fo> > aF(a). We shall prove that in each set FeZ there is
k=1 k=1
a sequence (y; ) such that ({y; ), x) €%, and hence x € AF.

Consider the sets N*=Nu(~), '={g: {1, ..., m}—>N*}, @={f: {1, ..,
m}— N} c T, which are ordered in the natural way, i.e. n < ~ for each neN,
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9:<g, if g,(k)<g.(k) for each ke {1, ..., m}. If we define x..=x,, then the
following statement holds true:

(11) Vv V Zakxk,,(k,eF
This fol;oe“:s ’fsr;rr: il:eq;;c::that the negation of (11) contradicts the statements:
( L (Zakxkq(k,)) € kila,f/;(ak) and ¥ o Zakf(ak) Now, let F € %. To reach our

q>fq
final goal we shall construct by inductlon a sequence (g, ), g. €I, as follows.
According to (11), for fie @, fi(i)=1,i=1, ..., m, we can choose g, € I" such that
fi<g,and Eakxk,,,(k, € F. Suppose that we have already constructed g,, ..., g, €I

k=1
Denote by I, ={k€{1, ..., m}, g.(k)e N} and put g.., =g, if I, =0. Otherwise
put f,.,=sup{g.(k), kel,} and choose g,.,el such that g¢,,,>f.., and
Eakxk‘,m(k,e F. This defines the sequence (g, ). Now, there are two possibilities :
k=1 .

a) g.(1)= ~ for infinitely many n. Then let (g ) be a subsequence of (g, ) such -
that g,(1)= .

b) There exists a natural number n, such that for each n>n, we have
g.(1)<g,.,(1). Then let (g.) be a subsequence of (g, ) such that g.=g, ... In
a similar way we construct a subsequence (g**'n )of (g»), k=1, ..., m, and finally
werobtain a subsequence (g7 ) of (g, ) which is for each fixed k € {1, ..., m} either
constant and gf(k)= ~, or increasing and limg]'(k)= ~. Put h,,—q,,. Since
(X ) X )€X, k=1, ..., m, it follows from (SG) that there is a subsequence

(h;) of (h, ) such that (<Za‘kxk,,.n(k,>, Zakxk) € ¥. From y, = > aX.,« € F and
k=1 k=1 - k=1

> awx, = x it follows that x e A(U(y.)) € AF. This completes the proof.

k 1 i

Proposition 3.3. k, = 4.

Proof. Let X< G. If x e AX, then there is a sequence (x, ) in X such that
a=({(x,), x)e¥. From (10) it follows that x e q(¥(a)). For #={FcG| x,eF
for all but finitely many n} we have ¥ > %(a) and X e %. From (b) and (1) it
follows that x € k,X. On the other hand if x € k,X, then there is a filter & such that
xe€q(#) and X € ¥. From Proposition 3.2 it follows that x e AX.

Proposition 3.4. Let (G, q, +) be a (filter) convergence group. Then (G, ¥(q),
A, +) is a (sequential) convergence group.

The easy proof is omitted.

In [3] B. V. Hearsey put forward the following three problems:

Problem 1. Let (G, g, +) be a convergence group. Let £(q) be the finest of all
topological closure operators coarser than k,. Is (G, t(q), + ) a topological group ?

Problem 2. Is each convergence group weakly regular?
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s+Problem 3. Is each convergence group ¢-regular?

Recall that a convergence space (G, q) is t-regular if ¢(q) is a regular topology
and (G, q) is weakly regular if for each x € G and each k,-closed set A = G such
that x ¢ A the neighborhood filters /' (x) of x and N/ (A) of A are disjoint (i.e.
UnV =0 for some UeN(x), VeN(A), where N(A)=n{N(y), yeA}).

We shall show via counterexample that the answer to all three questions is no.
Since the topology in a T, topological group is always completely regular and each
t-regular convergence space is weakly regular (cf. Theorem 3 in [3]), it is sufficient
to construct a T, convergence group (G, q, +) such that (G, q) is not weakly
regular. "

Denote by (G, £, A, +) the minimal completion of the group of rational
numbers constructed by J. Novik in [6]. (G, ¥, A, +) is a sequential convergence
group such that G is the set of all real numbers, + is the usual addition, ¥ is
a convergence for G weaker that the usual metric, and A is a Hausdorff topology.
In (G, 1) a sequence (x,) of rational numbers ¥*-converges to a real number

xeG iff lim|x, —x|=0. Denote z, =V2/n, neN, and A =uU(z,). Then no
subsequence of ¢z, )¥*-converges in G, A is closed, and 0éA. Let q be the
convergence structure for G defined by (10). According to Proposition 3.1 and
Proposition 3.3 (G, q, +) is a convergence group and k, =A =t(q). For each
U € X¥(0) there is € >0 such that the set {x| x rational, |x|<g} is contained in U.
Similarly, for each VeWN(A) and for each z, € A there is &, >0 such that the set
{x|x rational, |x —z.|<&,} is contained in V. Consequently, the filters #'(0) and
N(A) are not disjoint and (G, q) is not weakly regular. Since (G —A) e ¥/ (0) and
for each UeN(0) we have AUNA#0, it also follows directly that (G, 1) is
irregular. '
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O INMPOCTPAHCTBAX U T'PYIIITAX CXOOHUMOCTHU
Poman ®puy
Pesome

B craTbe paccMaTpMBalOTCS OTHOLIEHMS! NPOCTPAHCTB W IPYNIN CXOAMMOCTH ABYX THNOB. B nepsom
clly4ae CXOAMMOCTb 3ajaya MOCPEACTBOM MOCJENOBATENBHOCTER @ BO BTOPOM Clly4ae MOCPEACTBOM
¢unbTpoB. BBOAATCA B pacCMOTPEHHE ONEPATOPbI CONOCTABIAIOMIME KaX/AOMY NMPOCTPAHCTBY OLHOTO
THMA HEKOTOPOE MPOCTPAHCTBO THNA Apyroro. Jloka3biBaeTcs, YTO AN KaXAOH Ipynnbl CXOAUMOCTH
NepBOro THMa CYLIECTBYET rpynna CXOAMMOCTH BTOPOrO THUMA TakK, YTO 3aMbIKAHHE MHOXECTB HE
U3MeHseTCs. DTO MO3BONAET PEWMUTh HEKOTOPbIE MPOGAEMbI KIAaCCU(PUKAUMKM TPYMN CXOAMMOCTH
BTOpOTO THMA.
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