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ON CONVERGENCE SPACES AND GROUPS 

ROMAN FRlC 

In literature two types of convergence spaces and convergence groups can be 
found. While in one of them the convergence is defined by means of filters (see [2], 
[3], [4], [5]), in the other this is done by means of sequences (see [6]). The purpose 
of the present paper is to study their mutual relations. The first two sections of this 
paper are devoted to convergence spaces. In the third section it is shown that to 
each sequential convergence group there corresponds a filter convergence group 
with the same closure operator. Using an example constructed by J. Novak in [6], 
three problems given by B. V. Hearsy in [3] are solved. 

0. 

In order to avoid misunderstandings and to make the paper more self-contained 
we recall in this section the definitions of both types of convergence spaces and 
groups and state some of their basic properties (cf. [3], [6]). 

Let S be a non-empty set, let F(S) be the set of all filters on S, and let expS be 
the power set of S. A mapping g:F(S) -»expS is called a (filter) convergence 
structure for S if the following conditions are satisfied: 

(a) x eq(x) for each x e S , where x = {A CZS|JC e A . 
(b) If xeq(SF), then ^ = > ^ implies xeq(^). 
(c) If xeq(&), then xeq(SFnx). 

If, moreover, 
(d) xeq(3<) and xeq(^) imply x eq^n^) holds true, then q is said to be 

a Limitierung. 
Let q be a convergence structure for S. Denote by N(x) the intersection filter of 

all filters 3*eF(S) such that xeq(S^). If q satisfies the following condition: 
(e) xeq(N(x)) for each xeS, then q is called a pre topology. 
A pair (S, q), where q is a convergence structure for S, is called a (filter) 

convergence space and if x eq(&), then we say that 3* q -converges to x. The set of 
all convergence structures for S is denoted by C(S). 

Let L be a non-empty set. Then a multivalued (sequential) convergence for L is 
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usually defined as a set ii cz LN x L of pairs ((x„ ), x) which satisfies the following 
conditions: 

(if,) Constant sequences converge, i.e. ( (x ), x)eii for each xeL. 
(!£2) Subsequences of a converging sequence converge, i.e. ( (xn ), x) e ii implies 

((*„'), x) e ii for each subsequence (*„') of (xn). 
The set of all multivalued convergences for L is denoted by S(L). A multivalued 
convergence is called one-valued, or briefly a convergence, if the additional 
condition 

(S£u) A sequence has at most one limit, i.e. ((xn),x)ett and ((xn),y)eii imply 
x =y, holds true. 

From q, resp. ii, a closure operator k„, resp. A, (a closure operator u for X has all 
the properties of a topological closure operator except that it is not necessarily 
idempotent, i.e. u: expX—>expX, 0 = u0, AczuA and u(AuB) = uAuuB for 
each A, BaX) can be derived in a natural way: 

(1) For A cz5 we put kqA = { x e S | A e&, xeq(&)}. 
(2) For A c L we put XA ={x eL\ ((xn), x)eii, U ( J C „ ) C A } . 
If ii is a convergence for L, then (L, ii, A), or simply (L,A), is called 

a (sequential) convergence space. 
Let (X, u) be a closure space (i.e. w is a closure operator for X). Then C/czX is 

called a neighborhood o f x e X if x e X — u(X— U). Denote by N(x) the filter of 
all neighborhoods of x and define a mapping q: F(X)—>expX as follows: 

(3) If &ZDJ{(X), then xeq(^). 
Then q is a pretopology and kq=u. Thus we shall make no distinction between 
a pretopology and the corresponding closure operator. 

Both C(S) and S(L) are endowed by a partial order: 
(4) qx^q2 if for each &eF(S) we have qx(&)^>q2(?F), 
(5) y ,^ i> 2 i f y,czy2 , 

and by an equivalence relation: 
(6) qx~q2\\ kq=kq2, 
(7) y , ~ y 2 i f A,=A2. 
If [g], resp. [ii], is the equivalence class containing g, resp. ii, then kq is the least 

element of [q] and [ii] possesses the greatest element ii* which is characterized by 
the following property (sometimes called the Frechet-Urysohn axiom): 

(cS?3) If each subsequence (xn ) of a sequence (xn ) contains a subsequence (xn ) 
such that ((xn ), x) e ii, then ((xn ), JC) e ii*. 

Thus there is a one-to-one correspondence between pretopologies, resp. mul
tivalued convergences satisfying (i?3), and equivalence classes of convergence 
structures, resp. equivalence classes of multivalued convergences. 

For our purpose we introduce another axiom for a sequential convergence ii, 
which is obviously weaker than (i?-,): 

(MX) Mixed sequences converge, i.e. ((xn), x)ei .i and ((y„), x)eii imply 
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((zn ) ,*)eif , where * , = * „ z2 = y,, z3 = x2, z4 = y2, .... 
Let (G, + ) be a group, let q be a convergence structure for G, let if be 

a convergence for G, and let A be the corresponding closure operator. Then both 
(G,q, + ) and (G, i?, A, + ) are called convergence groups (cf. [5], [6]) if the 
"operation —" is correspondingly continuous, i.e. if the following conditions are 
correspondingly satisfied: 

(FG) If xeq(&) and yeq(<$), then (x-y)eq(3F-%). 
(SG) If ((x n) , x) e if and ((yn), y) e if, then there is a subsequence (n{) of (n) 

such that ((xn. - y„.), x - y) e if, or equivalently, ((xn ), x) e if and 
( (y„ ) ,y )e i ? imply ( xn-yn ), x-y)eif*. 

From the context it will be always clear what type of convergence group is in 
question. 

Notice that if (G, q) is a convergence group such that a is a pretopology, then it 
follows from [1, 19B.4] that (G, q) is a topological group. 

1. 

Let L be a non-empty set. For a = ((xn ) , x) e LN x L denote by ^ ( a ) the filter 
of sections of a , i.e. 2F(a) = {FczL| x eF, xn eF for all but finitely many n). Let if 
be a multivalued convergence for L. We define a mapping g(if): F(L)—>expL in 
the following way: 

(8) xeq(^) if 3F=>&(a) for some a=((xn ) , x)eif. 

Proposition 1.1. a (if) is convergence structure for L. If if satisfies (J£(>), f/ien 
eac/i /7/ter ^ e F(L) q(if)-converges to at most one x e L. If if satisfies (M££), then 
q(if) is a Limitierung. 

The easy proof is omitted. 

Proposition 1.2. Let (L, if, A) be a convergence space. Then kq(w, = A. 
Proof. Let A ciL. If x e ^ ^ A , then, according to (1), there is SFeF(L) such 

that A e : J and x eq(ZF). From (8) it follows that cFzD^F(a) for some a eif. Since 
A nFj=0 for each FeSF, we have either JC e A or u(x„')cz A for some subsequence 
(xn ) of (xn ) and hence x e XA. Consequently, kqCJ)A cz AA. The converse inclusion 
is trivial. 

E x a m p l e 1.3. The real line is a sequential convergence space such that if 
satisfies (i^,) and g(if) is not a pretopology. 

Proposition 1.4. Let if,, if2 be multivalued convergences for a non-empty set L. 
Then the following statements hold: 

(i) I/i?,^if2, f/7ena(if,)i^(i!2). 
(ii) q(^)~q(X2)iff ii,~if2. 
Proof, (i) is trivial, (ii) follows from Proposition 1.2. 
E x a m p l e 1.5. Let L = {1, 1/2, 1/3, ..., \ln, ..., 0} and let if be a convergence 
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for L defined as follows: ((x)9x)ell for each x e L and ((x„ ), 0) € il if (x„ ) is 

a subsequence of the sequence (l/n ) n = 2 such that ^xn < + <N> . It is easy to see that 

y* is the usual convergence for real numbers (restricted to L). Denote by A the 
closure operator derived from il. Then q(tt)=f=q(#*). For, if we put a ==( \/n ), 0), 
then 0eq(X*)(&(a)) but ^(5.i)(^(a)) = 0. Since i> satisfies (MiE), it follows from 
Proposition 1.1 that q(tt) is a Limitierung. <j(ii) is not a pretopology. Really, from 
Proposition 1.2 it follows that kq(V) = kqiv*,= A, and hence a(#)~g(i**)~A. Ac
cording to Proposition 1.4 we have a(ii) = q(Si*). Since A is the unique pretopology 
in [q(tt)] and q(tt)i^ q(tt*)^X, it follows that q(tt) cannot be a pretopology. 

Let (S, q) be a convergence space. Denote by tt(q) a subset of 5 N x 5 defined as 
follows: 

(9) a = ((xn),x)ett(q) if xeq(9(a)). 
Notice that if q is a pretopology, then (9) is equivalent to the usual definition of the 
convergence of sequences in a closure space (cf. [1]). For, if N(x) is the 
neighborhood filter of x and a =((xn ) , x), then* eq(?F(a)) iff SF(a)^Jf(x). But 
&*(a) => M(x) holds iff for each O e Jf(x) we have xneO for all but finitely many n. 

Proposition 2.1. tt(q) is a multivalued convergence for S. If each filter 2F e F(S) 
q-converges to at most one point xeS, then i?(a) satisfies (5i0). If q is 
a pretopology, then tt(q) satisfies (££*). If qx and q2 are convergences for S and 
q^q2,then tt(qx)^«(q2). 

The easy proof is omitted. 
E x a m p l e 2.2. Let (P, u) be a topological non Frechet space and let A be the 

closure operator derived from tt(u). Then Xi=u. 
E x a m p l e 2.3. Let (P, u) be the Cech-Stone compactification of N (the space of 

natural numbers) and let v be the discrete topology for P. Then u±v, but 
X(u) = X(v). 

E x a m p l e 2.4. Let ( N u ( ~ ) , u) be the topological space of all ordinals less or 
equal than c0„ with the usual order topology. Let a be a convergence structure for 
i V u ( ^ ) defined as follows: x eq(x) for each x eNu(<*>)9 <*> eq(3F) if either 3F is 
a free ultrafilter for N, or 3F = (SF'n &), where SF' is a free ultrafilter for N. Then 
u=kq, but, since ((n- , ~ )e i ! (w) and (n ) is totally i?(a)-divergent, \i(q) and 
\i(u) are not equivalent. 

Proposition 2.5. Let (S, q) be a convergence space. Then the following 
statements hold: 

(\)If (xn)eSN and ((xn + ]), x)eil(q), then ((xn), x)ett(q). 
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(ii)I/ ( C O , x)eii(q) and f: N-+N is one-to-one and onto, then ((xfin)),x) 

eH(q). 
(iii) If q is a Limitierung, then ii(q) satisfies (M£). 
The easy proof is omitted. 

Proposition 2.6. Let (L, X, A) be a convergence space. Then we have 
X^X(q(X))^X*, and hence X~X(q(X)). . 

Proof. Since we have kqiV) = X, X* = X(X), and q(X)^k, it follows from the last 
statement of Proposition 2.1 that H(q(X))ci>*. The inclusion X<=X(q(X)) is 
trivial. 

E x a m p l e 2.7. Let (L, ii, A) be the convergence space from Example 1.5. Then 
ii * ii(q(ii)) ± X*. This follows from the fact that ((1/n2 );= 1 , 0) eX(q(X)) - X and 
((Vn):^0)eX*-X(q(X)). 

Proposition 2.8. Let (S, q) be a convergence space. Then q(X(q))^q. 
The easy proof is omitted. 
E x a m p l e 2.9. Let (Nu(^>), u) be the topological space from Example 2.4. 

Then it can be easily proved that uJ=kqVJ(u)), and hence u and q(ii(u)) are not 
equivalent. 

Throughout this section we shall use the following notation. If (G, + ) is a group, 
then for each x eG the symbol ± Ix means the same as ±x. Let (G, X, A, + ) be 
a convergence group. We define a mapping q: F(G)—>expG as follows: 

(10) x eq(SF) if there exist a natural number m, sequences ak =((xnk ) , xk)eX 
m 

and numbers ak=±\, k = \, 2, ..., m, such that ^akxk=x, 2F^> 
k = \ 

m m 

^akSF(ak), where the filter ^ak2F(ak) is generated by the sets of the form 
k=\ k=\ 

alfl + a2F2 + ...+amFm, FkeSF(ak). 

Proposition 3.1. (G, q, +) is a convergence group. 
The straightforward proof is omitted. 

Proposition 3.2. If x eq(3>), then x e AF for each Fe &*. 
Proof. Let x eq(2F). Then, according to (10), there are a natural number m, 

sequences ak = ((xnk ), xk) eX and numbers ak=±\, k = \, .... m, such that 
m m 

^?akxk=x, ZF=>^akZF(ak). We shall prove that in each set F e f there is 
k=\ k=\ 

a sequence (yy) such that (<yy), x)eX, and hence x eXF. 
Consider the sets N* = N u ( ^ ) , r={g: {1, ..., m}-*N*}, ® = {f: {1, ..., 

m}—>N} czF, which are ordered in the natural way, i.e. n < <» for each n 6 7V, 
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g\<g2 if g\(k)<g2(k) for each ke{\, ..., m} . If we define xk^ = xk, then the 
following statement holds true: 

(11) V V 3 /. ^ x ^ e F . 
F e y / e <P u € T, y>f k = \ 

This follows from the fact that the negation of (11) contradicts the statements: 

( L ( 2a***«(*>)) e ^ak2F(ak) and SF => ^akZF(ak). Now, let F e ^ . To reach our 
q >/-„ X

 k = \ 'I k = \ k = \ 

final goal we shall construct by induction a sequence (gn ) , gneF, as follows. 
According to (11), for /, e &,f\(i) = \, i = 1, ..., m, we can choose gx eF such that 

m 

/,<.</. and ^akxkqiik)eF. Suppose that we have already constructed gx, ..., gneF. 
k = \ 

Denote by In = {k e{\, ..., m}, gn(k)eN} and put gn + l =gn if /„ = 0. Otherwise 
put fn + ] =sup{g„(k), keln} and choose gn + leF such that gn + l>fn + ] and 

m 

^akxkqn + i{k)eF. This defines the sequence (gn ). Now, there are two possibilities: 
k = \ 

a) gn(\)= °° for infinitely many n. Then let (g\) be a subsequence of (gn ) such 
that gl(\)= oo. 

b) There exists a natural number AZ, such that for each n>nx we have 
0„(l)<0n + i(l) . Then let (g\) be a subsequence of (gn ) such that g\ = gni+n. In 
a similar way we construct a subsequence (gk + 1n)oi (gk

n) ,k = \,..., m, and finally 
we*obtain a subsequence (gn ) of (g„) which is for each fixed k e{\, ..., m] either 
constant and g*(k)=~, or increasing and \\mgn(k)= ™. Put hn=gn. Since 
((xkhn(k)), xk)ett, k = \, ..., m, it follows from (SG) that there is a subsequence 

(K )of (h„ ) such that ( ( S ^ ^ ^ ' n ^ ) / , X ^ * * ) e ^- F r o m y« = ^akxkh.n(k)eF and 

X ^ * * =x it follows that x eA(u(y„))eAF. This completes the proof. 
k i 

Proposition 3.3. kq=X. 
Proof. Let XczG. If xeAX, then there is a sequence (xn ) in X such that 

a =((xn ), x)ett. From (10) it follows that xeq(2F(a)). For ?F = {FczG| xn eF 
for all but finitely many n) we have SFzD%F(a) and Xe&*. From (b) and (1) it 
follows that x e kqX. On the other hand if x e kqX, then there is a filter SF such that 
xeq(ZF) and XeZF. From Proposition 3.2 it follows that xeAX. 

Proposition 3.4. Let (G, q, + ) be a (filter) convergence group. Then (G, il(q), 
A, + ) is a (sequential) convergence group. 

The easy proof is omitted. 
In [3] B. V. H e a r s e y put forward the following three problems: 
P rob lem 1. Let (G, q, + ) be a convergence group. Let t(q) be the finest of all 

topological closure operators coarser than k„. Is (G, t(q), + ) a topological group? 
P r o b l e m 2. Is each convergence group weakly regular? 
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• P r o b l e m 3. Is each convergence group 1-regular? 
Recall that a convergence space (G, q) is t-regular if t(q) is a regular topology 

and (G, q) is weakly regular if for each x e G and each kq-closed set A c G such 
that x £ A the neighborhood filters N(x) of JC and ^V(A) of A are disjoint (i.e. 
UnV = 0 for some (76.fV(jc), V e ^ ( A ) , where ^f(A) = n { ^ ( y ) , y e A}). 

We shall show via counterexample that the answer to all three questions is no. 
Since the topology in a T, topological group is always completely regular and each 
/-regular convergence space is weakly regular (cf. Theorem 3 in [3]), it is sufficient 
to construct a T, convergence group (G, q, + ) such that (G, q) is not weakly 
regular. 

Denote by (G, Si, A, + ) the minimal completion of the group of rational 
numbers constructed by J. N o v a k in [6]. (G, Si, A, + ) is a sequential convergence 
group such that G is the set of all real numbers, + is the usual addition, Si is 
a convergence for G weaker that the usual metric, and A is a Hausdorff topology. 
In (G, A) a sequence (xn ) of rational numbers Si*-converges to a real number 

xeG iff l i m | x n - x | = 0 . Denote z„=V2/n , neN, and A = u(z„). Then no 
subsequence of (zn )Si*-converges in G, A is closed, and O&A. Let q be the 
convergence structure for G defined by (10). According to Proposition 3.1 and 
Proposition 3.3 ( G , a , + ) is a convergence group and kq=X=t(q). For each 
L ^ e ^ O ) there is £ > 0 such that the set {x\ x rational, | x | < £ } is contained in U. 
Similarly, for each VeJf(A) and for each zn e A there is en > 0 such that the set 
{x\x rational, \x — zn\ <en} is contained in V. Consequently, the filters «/V(0) and 
N(A) are not disjoint and (G, q) is not weakly regular. Since (G — A)eN(0) and 
for each UeJf(0) we have A t / n A ^ 0 , it also follows directly that (G,A) is 
irregular. 
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О ПРОСТРАНСТВАХ И ГРУППАХ СХОДИМОСТИ 

Роман Фрич 

Р е з ю м е 

В статье рассматриваются отношения пространств и групп сходимости двух типов. В первом 

случае сходимость задача посредством последовательностей а во втором случае посредством 

фильтров. Вводятся в рассмотрение операторы сопоставляющие каждому пространству одного 

типа некоторое пространство типа другого. Доказывается, что для каждой группы сходимости 

первого типа существует группа сходимости второго типа так, что замыкание множеств не 

изменяется. Это позволяет решить некоторые проблемы классификации групп сходимости 

второго типа. 
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