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INTEGRALS ON LATTICE-ORDERED GROUPS

JAN S1POS

The notion of an upper integral was introduced for a real valued function by
Bourbaki [2] and Topsoe [6]. Integrability with respect to an upper integral was
introduced there as well. These methods resemble the measurability of sets with
respect to an outer measure. Neither Bourbaki’s nor Topsoe’s definition of an
upper integral is axiomatic. Both utilize the properties which follow from the
special methods of constructing the integral. The aim of this paper is to introduce
the notion of integrability which will be defined axiomatically. The family of all real
functions on any space is an 1-group. So we shall build up an integration theory on
an l-group.

Integration

We shall be concerned below with lattice ordered groups, or I-groups, in the
following sense.

Definition 1. An I-group S is (i) a lattice, (ii) a commutative group, in which (iii)
the inclusion relation = induced by the lattice structure is invariant under all
group-translations x+—a +x, i.e. if a, b, xe€S and a=b, then a+x=b +x.

An element a of an l-group S is called positive iff a =0, where 0 is a neutral
element of the additive group S. The set of all positive elements of S will be
denoted by S*.

Definition 2. An upper integral is a function u: S*— (0, ) satisfying the
following conditions :
(i) wu(0)=0,
(i) if x=y, then u(x)=u(y) (monotonity),
(iii) for every x, yeS*
p(x+y)=ux)+u(y)

(subadditivity),
431



(iv) ifx,/x (ie if x= \7&. and x, =x,+1), then

limpu(x,) =),

(continuity from below).
Example 1. Let
' S*={f; f: (0,1)—> (0, )},
and let
u(f)=sup {f(x); x€(0,1)},
then p is an upper integral. The proofs of (i), (ii), (iii) and (iv) from Definition 2

are trivial.
Example 2. Let X be a locally compact topological space. By % (X) we denote

the space of all real valued continuous functions on X with compact support, and
by #*(X) we denote the space of all real valued, nonnegative lower semi-continuo-

us functions.
Let 4 be a positive Radon measure on #(X). We define a map u*: " —

(0, ), where F*={f; f: X-— (0, ®)}. If fe $*(X) we put
p*(f)=sup {u(g); g ¥ (X), g=f}.

If feF*, we put
u*(f)=inf {u*(h); he $*(X), hZf}.
We propose that u* is an upper integral on %*. For the proof see [2].
We note that if we put 0. © =0, then in examples 1 and 2 u(af)=au(f),
u*(af)=au*(f) for every positive a.
Definition 3. x € S* is said (u, +)-integrable iff
p(@)=p(xra)+u(a—(xna))

for every aeS™.
By S, we denote the set of all (u, +)-integrable elements in S*. Instead of
saying that x is (u, + )-integrable we shall sometimes use only that x is integrable.

It is easy to prove that O is always integrable.

Lemma 1. In any I-group we have

(i) xAna+(@a—xnra)ay=(x+y)Aa,

(i) a—xAra—(a—xnra)Ay=a—(x+y)Aa for every a, x, yeS".

Proof. Since it is clear that the assumption (i) implies (ii), there remains only (i)
to be proved. Since the ordering in the l-group is invariant under all group-translat-

ions (see Definition 1), it follows

(1) (U+w)A@W+w)=w+(uAv).
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If we replace in (1) u by (a —xAa), v by y and w by (x Aa), we get .
an(xaa+y)=(xnra)+(@a—(xna))ry.
Applying (1) to the first bracket we get
(xaa)+(@a—(xna)ay=an((x+y)a(a+y))=an(x+y).

Proposition 1.

(i) IfxandyareinS;, thenx+yisin S;.

(ii) ifxisinS;, then u(x +a)=u(x)+u(a) for all a in S™.

Proof. (i) If x and y are in S, and a €S", then

(3) wu(@)=pu(xna)+u(a—xna),

@) pu(@a—xnra)=u((@a—xnra)ary)+u((a—xnra)—(a—xna)ry).
Substituting (4) in (3) we obtain

u@)=u(xnra)+pu((@a—xna)ay)+
u((@a—xna)—(a—xna)ry)
Zu(xra+(a—xra)ry)+u(a—(x+y)aa)
Zu((x +y)ra)+u(a—(x+y)ra)=u(a).

Here we have used twice the subadditivity of u and Lemma 1.
(i) If x isin S and a €S”, then
(5) wu(@a)=p(xra)+u(a—xna).

If in the equality (5) we replace a by a +x, we get

pula+x)=puxa(a+x))+u(a+x—(xa(a+x)))
=u(x)+p(a).

Proposition 2. If x and y are in S,;, then x Ay is in S, too.
Proof. If x and y are in S; and a€S"”, then
(6) wu(a)=p(xra)+pu(a—xna),
and
(7) u(xna)=u@xrany)+u(xana—xnaany).
Substituting (7) in (6) we obtdin

pul@)y=u(xnrany)+u(xra—xnrany)+u(a—xna)
Zu(xrany+xna—(xnrnany)+a—xna)=u(a).

Here we used the subadditivity of u.

Lemma 2. In any l-group S we have

(i) (@+y)ax=an(x-y)+y,

(i) a+y—(a+y)ax=a—an(x-y),
for every a, x, y €S.

Proof. If, similarly as in Lemma 1, we replace in the equality (1) u by a, v by
x—y and w by y, we get
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(a+y)ax=an(x—y)+y.
(ii) is a simple consequence of (i).

Proposition 3. If x and y are in S;, xZy and p(y)<w, then x —y is in S;.
Proof.Letx and y bein S, x =y and u(y)< «. From the (4, + )-integrability
of x we have (for aeS™)

u(a+y)=u((@a+y)ax)+u@a+y—(a+y)ax).
Using (ii) from Proposition 1 and Lemma 2 we have
p@)+u(y)=p(@nr(x-y)+u@)+u@-an(ix—y)).
Since u(y) <o, we get
u@@)=u(@n(x-y))+ula-an(x-y)).

Proposition 4. If x and y are in S;; and u(x Ay)<coo, then xvy is in S;.
Proof. The proof of this theorem is a simple consequence of the identity

XVy=x+y—xAy,
and the information already gained at this stage.

Proposition 5. If {x,} is an increasing sequence of elements in S, for which
V.X,=X€S, then x€S,, and

‘u(x)=lim, p(x.).

Proof. If aeS”, then for every n

u(a)=p(x, Aa)+pu(a—x,na)
and

u(a)=1lim, u(x,Aa)+lim, u((a —x,)Aa).

Since a —x,Aa=Za —xAa and x,Aa/'x Aa, using continuity u from below, and
subadditivity we get :

pu@)Zu(xna)+u(a—xnra)=u(a).

The desired identity of the proposition is an immediate consequence of De-
finition 2 (iv).

Proposition 6. If {x,)} is a decreasing sequence of elements in S; (1 (x,) < for
some n) for which A.x,=x€S", then x €S and

p(x)=lim, p(x,).

Proof. If u(x..) <, then for n =Zm u(x,) = u(x.)<, and therefore u(x) < oo,
If aeS”, then for every n
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u(a)=u(x.Aa)+p(a—x,ra).
Since a —(x,Aa)/'a—(xAa) and x, Aa=x Aa, we have

u(@)Zu(xaa)+lim, u(a —x,Aa)
=u(xna)+u(a—xna)=u(a).

It follows from the integrability of x, that

(X)) = U (Xm AX) + U (X = X AXn)
and
u(x,)=lim, p(x,)+lim, p(x, —x,)
=lim, p(x,) +p(x, —x)
Zlim, p(x,)+p(x.) —u(x).
From this u(x)=1lim, u(x,). The opposite inequality is clear.
Definition 4. An element x in S is u-integrable iff there exist elements x, and x,
in S;; such that x =x,—x, and pu(x,), u(x;)<o. The number u(x,) — u(x,) is the

u-integral of x, we shall denote it by u(x).
It is clear that the definition of u is correct. We shall denote by S, the set of the

u-integrable elements in S.

Theorem 1. The integrable elements of S form an I-group S,.

Proof. It follows from the Proposition 1 that S, is a group. Let x be in S,,
X =x,—x,, where x, and x, are in S, and u(x,), u(x,)< . Since x*=x, —x,AX;
and x~=Xx,—x,AX, it follows that x* and x~ are in S,. The following identities

show that S, is a lattice
xvy=(y—-x)"+x, xay=—(-xv-y).
Theorem 2. If {x,} is a sequence of non-negative u-integrable elements for

Zxk) =c <o foreveryn, thenx = Y, x, is u-integrable if > x, exists and
k=1 k=1 k=1

which u (
W)= Suw).

Proof. Since Zxk/'x, it follows that x € S,;. On other hand

p(x)=1lim,u (kgx,‘> = lim,,‘gu(xk) = é:ly(xk).

Finally u(x*)=c and u(x~)=0, it follows that x is in S,.
Corollary. If {x,} is an increasing sequence of elements in S,, x,/x and
u(x,)=c<ow, then x €S, and
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u(x)=Ilim, u(x,).

Theorem 3. If {x,} is a sequence of u-integrable elements which converges to x
(i.e. limsup,x, = liminf,x,=x) and if y is a u-integrable element such that
|x.|=|y|, then x is u-integrable and

lim, p(x,) = p(x).

Proof. Let us denote z7' = \m/x,-, then z, is in S, and z,,"‘/'\”/x,- (m — «). Since
u(z?)=u(y)< = it follows from Corollary of Theorem 2 that z, = C/x,- is in S,.

Xi = Zn andx=<c//§x,~ =

n n=1i-n

IIA
<s

Xi

n 1

>3
<s

Similarly z, = ﬁ x; is in S,.. Further x =

t=n n

1i

I
I

N x. = z.. Finally for every n

—VELSL SEX=S2,..52,5)y.

Clearly z, /'x, z,\ux, u(z.)/ u(x), u(z.)\p(x) and x € S,. Since u(z;) = u(x.)
u(z,) hence

lIA

lim, p(x,) = p(x).
Theorem 4. If {x, } is a sequence of non-negative u-integrable elements which
converges to x and u(x,)=c <o, then x is u-integrable and u(x)=c.

Proof. Let us denote z, = /K x;. Clearly z, /x and z, =x,. It follows from the

Corollary of Theorem 2 that x €S, and u(x)=Ilim,u(z,)=c, because u(z,)=
u(x,)=c for every n.

Definition 5. We put
0. (x, y)=u(lx=yl).

Theorem 5. If S is an I-group, which is also a conditionally a-complete lattice and
if u is an upper integral on S*, then (S,, 0.) is a complete pseudometric space.

Proof. Since |x —y|=xvy—xay and 0.(x,y) = u(xvy) — u(xay), the
proof follows from [5].

Applications

This theory has sense mainly in the case when the I-group S is a linear subspace
of the set of all real functions f: X — R (where X is some space). If this is the case
and we require the positive homogenity of u i.e. u(af)=au(f), a =0 (where
-0 =()). Then the following is true.
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Proposition 7. The set of all u-integrable functions S, is a linear subspace of S,
and is also an I-group.

Proof.LetfeS,,f=fi—f. fi,f-€S, and u(f,), u(f.)<».Leta>0and heS",
clearly a 'h € S* because S is a linear space. From the (1, + )-integrability of f;, we
have (for i=1,2)

wla”h)y=u(fin(@™'h) +u(ah = (@ h)Af).

From this we get

u(h)=u(afinh)+u(h —(af)Ah),

using the homogenity of u. That means af; € S, i =1, 2 hence af € S,.. Since S, is an
l-group, af € S for every a.

It is an interesting fact that this theory may give us very poor results. In
example 1 the only integrable functions are the constants.

If X is a topological space, then it is a natural question whether the continuous
functions on X are u-integrable. However, the answer to this question is negative
even in the case when X =R and u is a Lebesgue measure-(the identity map from
R to R is not integrable). We shall therefore discuss the question whether the
non-negative continuous functions on X are (u, + )-integrable.

Theorem 6. Let (X, ) be a topological space, let S be an I-group of all real
functions defined on the space X. Let u be an upper integral defined on S™. If the
characteristic functions of open sets are (u, + )-integrable then the non-negative
continuous functions are (u, + )-integrable too.

Proof. Let f: X— R be continuous and let ¢ <a <b be elements of R ; then

X @) =X 'e.6) ~Xf (c.a) -

On the right hand side we have the characteristic functions of open sets, and
so from Proposition 7 and from the hypothesis of this theorem about the
(u, +)-integrability it follows that x,-' (., is a u-integrable function. Since
X5 ' a.bry=0, we have x;-1 ..oh € S, . Let:

gn = 2 (k/Z")-X,-I (k72" (k+1)2") -
k=0

From the first part of the proof and from Proposition 7 it follows that the g,
are (u, +)-integrable. Clearly g, /f. From Proposition 5 we get -that g is
(u, + )-integrable. '
The reverse of this theorem is not valid, as shown by the following example.
Example3. Let (X, ) be a regular Hausdorff topological space on which every
continuous function is constant (see [4]). Let F*={f; f: X— (0, )} and let

u(f)=sup {f(x); x€X}.
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Clearly every continuous function, i.e. every constant function, is (u, +)-
-integrable, while the characteristic functions of open sets are not integrable.

In some special case (for example if (X, r) is metrizable) the reverse of
Theorem 6 is true.

Definition 6. A normal topological space (X, t) is said to be perfectly normal
([3]) iff every closed set is Gs.

Lemma 3. Let the topological space (X, t) be perfectly normal. If A =X is
closed; then there exists a sequence of continuous functions f,: X — (0, ®) such
that f,\\xa . .

Proof. If A is closed then there exists a sequence of open sets {G, } such that
A=n,G,, G,2G,,,. Let f, be a continuous function f,: X—(0,1) such that
fa(x)=1for xeA and f,(x)=0 for xe X—G,. Then f, -y, .

Theorem 7. If the topological space (X, t) is perfectly normal and the
continuous functions from X to (0, ) are (u, + )-integrable, then the characteris-
tic functions of open sets are (u, + )-intégrable.

Proof. The proposition of this theorem is a consequence of Lemma 3 and
Proposition 6.

Corollary. If (X, o) is a metric space, then from the (u, +)-integrability of
continuous functions it follows the (u, +)-integrability of the characteristic
functions of open sets.
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UHTETPAJI HA CTPYKTYPHO-YIIOPSIJOYEHHOM TI'PYIIIE
v Wunow
Pesome

B cTaTbe NOCTpOEHa aKCHOMATHUYECKask TEOPHUS MHTETPHPOBAHMS. -

IMycTb S* MHOXECTBO HEOTPHLIATENbHBIX 3JIEMEHTOB CTPYKTYPHO-YNOPANOYEHHOI rpynnbl S. PyHk-
umio u: S*— (0, © ) Ha30BeM BepXHUM MHTerpanoM, ecin (i) u(0)=0; (i) ecnux =y, To u(x)=u(y);
(iil) u(x +y)=Su(x)+u(y); (iv) ecnu x, /x, 10 p(x,)/ (x).

DneMeHT x € S*aBnsercs (4, +) — MHTErpupyeMblit eciu

u(@)=u(xra)+u(a—xna)

ans Kaxaoro a € S*. :

DneMeHT x €S SBNSETCS [ -WHTErPUPYEMbIM, €CU CYIUECTBYIOT Takue (U, + )-MHTerpupyembie
3NEMEHTDI X,, X, €S, 4TO BepHO (x,), p(x;)<®, U x =X, —x, .

B craTbe [0Ka3bIBAETCSA, YTO MHOXECTBO BCEX W -MHTErPUPYEMbIX 3JIEMEHTOB S, €CTb CTPYKTYp-
HO-ynopsifoyenHas rpynna. Ecnu S — o-nonnas, 1o (S, 0.) — MOJHOE METPUYECKOE NMPOCTPAHCTBO

“(eu(x, y)=u(lx = y)).
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