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ON THE MAXIMAL DEDEKIND COMPLETION
OF A LATTICE ORDERED GROUP

STEFA_N CERNAK

Let G be a partially ordered group. The group operation will be written
additively. We denote by M;(G) the set of all Dedekind cuts of the partially
ordered set (G, <). The set G can be considered as a subset of M;(G) under the
canonical embedding. The set M;(G) is partially ordered under the set-inclusion. It
is possible to define the operation + on M;(G) such that M,(G) turns out to be
a partially ordered semigroup having the property that G is a subgroup of the
semigroup M;(G). Denote by M(G) the set of all elements of M;(G) possesing
inverses in M;(G). Then M(G) is the greatest subgroup of the semigroup M,(G)
(cf. Fuchs [6]). If G is an Abelian group, then M,(G) is a commutative semigroup
and so M(G) is an Abelian group.

C. J. Everett [5] has proved the following theorem:

(A) Let G be a commutative lattice ordered group. Then M(G) is a lattice
ordered group.

In this note it will be shown that the assertion (A) holds true for all lattice
ordered groups (without supposing the commutativity).

Let G be an I-group and suppose that G can be expressed as a mixed product
QA; (i €I) of linearly ordered groups A;. We denote by K the set of all maximal
elements of I. It will be proved that M(G) is (up to isomorhisms) the mixed
product 2B; (i eI), where Bi.=M(A;) if ieK and B;=A, if ieI — K. A similar
result has been proved by J. Jakubik [8] for the maximal Dedekind completion of
an Abelian /-group which is the direct product of /-groups. Analogous results
concerning the Cantor extension are obtained in [3] and [4].

1. The maximal Dedekind completion M (G) of a lattice
ordered group G

In this paragraph there will be constructed the maximal Dedekind completion
M(G) of an arbitrary lattice ordered group G.
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Let G be a lattice ordered group. Let us denote by X“(X') the set of all upper
(lower) bounds of a subset X <G in G. Let G* be the system of all ideals in G of
the form (X"“)', where X is a nonempty and upper bounded subset of G. The
system G* is partially ordered under the set-inclusion. Then G* is a conditionally
complete lattice. The lattice operations in G* will be denoted by A, v.If a system
of sets {Z:}rcac G " has an upper (lower) bound in G¥, then

vZiAeA)=((VU)Y(AZi(heA)=nZi(LeA).

The mapping ¢: G—G" defined by ¢(a)=({a}") is one-to-one and it
preserves all intersections and joins existing in G. In the next we shall identify a
and @ (a). Then G is a sublattice of G* and the following conditions are satisfied :

(i) Every nonempty subset of G bounded from above (below) has the least
upper bound (greatest lower bound) in G*.

(ii) For eachelementz e G* there exist nonempty subsets M, M, of G such that
M, is bounded from above in G, M, is bounded from below in G and sup M, =z =
inf M, in the partially ordered set G*.

For an element z € G* we denote

U(z)={heG:h=z}, L(z)={geG:g=<z).

Let z,, z.e G*. From (ii) it follows that the sets L(z:) and L(z.) are nonempty
and bounded from above in G. Then also the set Z={g,+g.:g:€L(z1),
g2€ L(z2)} is nonempty and bounded from above in G. By (i) there exists sup Z in
G*. Define the operation + in G* by putting z,+z,=sup Z. Then G* is
a semigroup (cf. Fuchs [6]). For each z € G* we have

€Y ifzi<z., then zy+z<z,+z, z+21S 2+ 2.

If z,, z. € G, then the operation z, + 2, in G* coincides with the operation z, + 2,
in G. Thus G is an /-subgroup of G*. It should be observed that G*isnota group
in general (cf. [5]).

Let M(G) be the set of all elements of G* that have an inverse in G*. Then
M(G) is a group ; M(G) is a maximal subgroup of the semigroup G*. With respect
to (1) M(G) is a patially ordered group. In the following will be shown that M(G)
is an /-group.

Let X\, X: be subsets of G such that z; =sup X. z, =sup X,. In a similar manner
as above we get thattheset Z'={gi+g::91€ X1, g: € X} is nonvoid and bounded
from above in G. Hence by (i) there exists z' =sup Z' in G*. We intend to show
that sup Z =sup Z’, i. e. that the following statement is true:

1.1. 2.+ z,=2".

Proof. The relations Xi =L (z1), X< L(z,) imply Z' = Z and so z'< 71+ z,. It
remains to prove that z, +z.< z’,i.e., U(z')cU(z1+z,). fu e U(z'), thenu € G,
u=z'zgi+g;sforevery gi€Xi, g€ X,. Hence —gj{+u=g5and thus —gi+u=
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22=g, for each g, € L(z2). From u —g,=gi we get u —g,=z,=¢,, u =g, + g, for
each g,e€L(z1), g2€ L(z2). Therefore u=z,+ z,. Then u e U(z1 + 22).

Jakubik [7] introduced the notion of a generalized completion D,(G) of an
I-group G. For the operation + on D,(G) a relation analogous to 1.1. is valid ([7],
Lemma 2.1). Observe that if G is an Abelian /-group, then D,(G) is an /-subgroup
of M(G) (see [8]).

For HcG denote —H={—-geG:geH)}. If ze G*, then by (ii) there exist
nonvoid subsets X, Y of G with the property

(2) z=sup X =inf Y.

1.2. Letze G* andlet X, Y be as in ). If A(y—x;xeX,yeY)=0inG, then
z has a rightinverse in G*.

Proof. From (2) it follows that —Y is a nonvoid and bounded from above in G.
According to (i) there is z'€ G*, z’=sup (=Y). We shall show that z’ is
a rightinverse to z.

By 1.1. we obtain z+z'=sup {x+y:xeX, ye—-Y} = sup{x—y:xeX,
yeY)} in G*. Since O=inf {y—x} = —sup{x—y} in G, we conclude _that
sup {x —y} =0 in G* Hence z +z'=0.

Remark 1. In an analogical way we obtain that z’ =sup (—Y) is a left-inverse
to z whenever A(—x+y; x€X, yeY)=0 holds in G.

1.3. Let ze G* and let (2) be fulfilled. Then z e M(G) if and only if the
following conditions are satisfied in G:

(@) Ay—x;xeX,yeY)=0,

b) A(—x+y;xeX,yeY)=0.

Proof. If z e G* and if both conditions (a) and (b) are fulfilled, then 1.2 and
Remark 1 imply that z’' =sup (—Y) is an inverse to z, hence z e M(G). Converse-
ly, let z e M(G). We shall show that (a) holds true. The assumption implies that
Osy—xforeachxeX,yeY. Let geG, 0<gsy—x foreveryxeX, yeY.
Hence g + x< y. From (2) it follows g + x< z and by (1) we get x< —g + z. Then
Z< —g + z because of (2). From the hypothesis z € M(G) we conclude that there
exists an inverse to z in G*. Hence by (1) we have 0< —g, a contradiction. The
proof of (b) is analogous.

The question of the independence of the conditions (a) and (b) remains open.

Everett [S] proved the assertion 1.3 under the assumption that (i) G is
commutative and (ii) X =L(z), Y=U(z).

1.4. If ze M(G), then zA0e M(G) (the opemtxon A being considered with
respect to G%).

Proof. Suppose that z e M(G) and let X, Y be is in (2). Since G* is a lattice,
zA0€e G*. First we prove that A(yAO—xA0; xeX, yeY)=0in G. Using 1.3
and the assumption we get A(y—x; x€eX, yeY)=0 in G. It is clear that
0< yAO—x AQ. Let there exist g € G.such that 0<g< yAO—xAOforeachx e X,
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y € Y. Applying the result from [1] (p. 296) we get 0<gs y A0 — xAl0sy — x
for each x € X, y € Y, a contradiction. Thus A(yAO—xA0)=0 in G. Then from
the relations zAO=sup L(zA0) = inf U(zA0), {xAO}xcx = L(zA0), {yAO},cv
c U(z A0) it follows A(y;—x;;x1€L(zA0), y1€ U(zA0))=0 in G. In a similar
way it can be proved that A(—x,+y,; x;e L(zA0), y1e U(zA0))=0in G. Then
1.3 completes the proof.

From 1.4 we infer that the partially ordered group M (G) is an [ -subgroup of G *
Hence G is an [-subgroup of M(G). The [-group M (G) will be called the maximal
Dedekind completion of G.

2. The maximal Dedekind completion of the mixed product
of linearly ordered groups

Jakubik [8] studied the maximal Dedekind completion of an Abelian /-group
G, which is a direct product of /-groups. In this section there will be investigated
the maximal Dedekind completion of an [-group (without assuming com-
mutativity) that is a mixed product of linearly ordered groups.

The concept of the mixed product of partially ordered groups is a common
generalization of the concepts of the complete direct product and the lexicographic
product (see Fuchs [6], Conrad [2]). Let us recall the definition of the mixed
product.

Let I+ @ be a partially ordered set and let A, be a partially ordered group for
each i e I. Form the system H of all mappings f:I— UA; (i € I) such that f(i) e A,
for each ieI. We denote by G the set of all fe H such that the set o(f)=
= {i e I:f (i) #+ 0} fulfils the descending chain condition. If for each f, g € G and each
iel we put (f+g) (i) = f(i)+g(i), then G is a group. The set of all minimal
elements of the partially ordered set o(f, g) = {iel:f(i)# g(i)} will be denoted
by min o(f, g). Further, we denote o(f) =0o(f, 0). We put f<g if and only if
f(i)<g (i) for each i e min o(f, g); then G is a partially ordered group. It is said to
be the mixed product of partially ordered groups A; and it is denoted by G = QA,
(iel).

If I is a trivially ordered set, then the mixed product is the direct product of
partially ordered groups A;. If I = {1, 2}, then for the direct product we shall use
the symbol G =A, X A..

2.1. If G is a linearly ordered group, zi, z.€ G*, 7, <z, then there exists g € G
with the property z;<g< z,.

Proof. Let G be a linearly ordered group. From the relation z, =sup L(z.),
Zz=sup L(z2), 21 <z, it follows that L(z;) is a proper subset of L(z2). Hence there
exists g € L(z;), g é L(z:). Linearity of G implies z; <g< z,.

If G is an [-group, the assertion 2.1 need not hold.
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Example. Let C, Q and R be additive groups of all integers, rational and real
numbers (with the natural order), respectively. If G = C X Q, then in view of [8]
(Theorem 2.7) and [5] (Theorem 7) we obtain M(G)=M(C) x M(Q)

= C*x Q"% = CxR. It suffices to set z:=(0, \/5), z.=(1, \/5).
Let I be a partially ordered set and let A; be a linearly ordered group for each
iel, A;#{0}. Suppose that G is an /-group such that

G=QA; (iel).

2.2. Letivel, {x;}rcac G, Ax, =0. Then there exists A € A with the property
x,(i)=0 for each i eI, i <i,.

Proof. Assume that for each A € A there exists i € I, i <i, such that x, (i) #0.
Then io é min o(x,). There are a € A, a >0 and g € G such that g(io)=a, g()=0
for each jel, j#io. Therefore 0<g< x, for each A € A, contrary to Ax; =0.

From 2.2 it follows that the set A (i) ={A € A:xx(i)=0 for each i e I, i <io} is
nonempty.

Denote by K the set of all maximal elements of I. -

23. Let iveK, {x,}reacG, Axx(AeA)=0. Then Axi(io) (A € A(io))=0.

Proof. The assumption implies that x, =0 for each A e A. We have either
x, (i) =0 or ipe min o (x,) for each A € A (io). Hence 0< x, (io) for each A € A (io). If
there exists A € A (ip) such that x; (io) = 0 the statement is evident. Let there exist
a € A, such that 0<a< x,(io) for each A € A (io). If g is as in 2.2, in the same way as
in 2.2 we arrive at a contradiction with Ax,(A e A)=0.

24. LetjeI—K,ze M(G). Then foreachi € I, i< j there exists a; € A; with the
following properties :

(a) There exist elements g € L(z), h € U(z) such that g(i)=h(i)=a; for each
iel,i<j.

(b) If g1eL(z), hie U(z), g:(i)=h.(i) for each i €I, i< j, then g,(i) =a; for
each iel, i<j.

Proof. From z e M(G) and from 1.3 we get A(h—g; heU(z),geL(z))=0.
There exists j' €I, j'>j. According to 2.2 there are h € U(z), g € L(z) such that
(h—g)()=0andso g(i)=h(i) foreachiel,i< j.For the elements g, h with the
mentioned property and for each i< j denote a; = g (i) = h(i). Thus (a) is valid. Let
g1 and h, fulfil the assumption of the condition (b). Suppose that there exist i’ € I,
i'< j such that g,(i') #a:-. Hence g(i') = h(i") ¥ g:1(i’) = hi(i’). Letioel, ip< i’,
loemin o(g1, h). Then icemin a(g, h,). Since g:< h, g< hi, we have g,(ip) <
h(io) = g (io), g (io) <hi(io) = g.(iv), a contradiction.

From (b) it follows that for each i e I — K the element a; is uniquely determined
by z e M(G) (it does not depend on j € I).

Let ze M(G), ioeI and suppose that i, is not minimal in I. Denote
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L(z)={geL(z):9(i)=a; for each i eI, i <io}, U(z) = {heU(z):h(i)=a
for each i €1, i <io}.

Now let i, be a minimal element of I. We define

L(z)={g e L(2):9(io) = ai,, U°(z)={h € U(z):h(io) = as}
if io is not maximal in I and

Lz)=L(z), U°z)=U(z)
if ip is a maximal element of I. Further, for any i, e I denote

L"(z) (io)={u € A,: there exists g e L°(z), g(io)=u}, U"(z) (is) = {veAy,:
there exists h € U"(z), h(io)=v}.

From 2.4 we infer that L*(z) # @, U*(z) # @ and so L"(z) (io) # 0, U(z) (io) # 9.
Because of u< v for each u e L(z) (io), v € U(z) (io), we have that L(z) (i)
(U"(z) (i) is a set bounded from above (below). Hence there exist c e A* and
deA*, c=sup L(z) (io), d =inf U"(z) (io) in A¥,. Clearly c< d. According to
1.3 we obtain A(h—g; geL(z), heU(z))=0.

Let i, be a maximal element of I. Using the definition of the sets L(z) and
U'(z) we obtain that the equality (% — g) (i) =0 is valid for each i € I, i <io and for
each g e L*(z), h € U(z). We conclude from 2.3 that A (h(io) — g (io); g € L(2),
h e U*(z))=0. Similarly we get A(— g (io) + h(io);g € L*(z),h € U(z)) = 0.Using
1.3 it is easily verified that ce M(A;). Analogously it can be proved that
d e M(A,,). We intend to show that c =d. If c <d,i. e.,d — ¢ >0, then by 2.1 there
exists a €A, 0<a<d-—-c<h(io) — g(io) for each g=L"(z), heU"(z), a
contradiction. Let us denote a¥,=c=d. The definition of a*, implies that
at,e M(Ay),

3) at,=sup L"(z) (io) = inf U(z) (o).

From (3) we conclude that for each ioe K the elements a¥, are uniquely
determined by z e M(G).

24'. Let jel —K, ze M(G) and let X, Y be as in (2). Then the following
conditions are valid.

(a') Thereexistelementsx € X,y € Ysuch thatx(i)=y(i)=a:foreachi<j.

(b') If x1eX, y1€Y, x1(i)=yi(i) for each i< j, then x,(i)=a; for each i< j.

The proof of this assertion is analogous to that of 2.4.

If the symbols X%, Y, X"(i,), Y"(io) have an analogical meaning with L"(z),
U'(z), L(z) (io), U*(z) (iv), in the same way as above we get the following
statemant.

2.5. a*,=sup X"(io)=inf Y"(io) for each ire K.

2.6. a; is the greatest (least) element of the set L'(z) (i) (U'(z) (i)) for each
iel-K.

Proof. Let ieI — K. By 2.4 there exist elements geL(z), he U(z), g(j)=
h(j)=a; for each jel, j<i. Since geL'(z), heU'(z), we have a,=g(i) €
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L'(z) (i), aa=h(i) € U'(z) (i). Therefore a;< v for each v e U'(z) (i), a; =u for
each ueL'(z) (i) and the proof is complete.

Let X, Y be as in (2). Since X<cL(z), Y < U(z), with respect to 2.6 the
following assertion is valid.

2.7. a; is the greatest (least) element of the set X' (i) (Y'(i)) for any i e I\K.

2.8. There exists an element a € G such that a(i)=a; for each ieI — K.

Proof. Let us denote A={iel—K:a,;#0}. We have to show that each
nonempty set I, ¢ A contains a minimal element. If io € I, is not minimal in I, then
L={iel,:i<io} #@. By 2.4 there exists g € L(z), g(i) = a: for each i <i, and we
have I, co(g). From the fact g € G it follows that every nonempty subset of o(g)
has a minimal element. Consequently, I, contains a minimal element i’. Hence i’ is
a minimal element of I,, too.

Let us form B = QB; (i e I), where B; = A, for eachi e  — K and B; = M(A;) for
each ie K. In view of 2.8 there exist elements zi, z;€ B such that z:(i)=a;,
z2(i)=0, whenever ieI —K and z:(i)=0, z.(i)=a*¥ whenever i e K. Hence
Z1+z.=2"€B,

4 Z'(i)=a if ieI—K and z'(i)=a¥ if ieK.

Let X, Y be as in (2). Because of A; cM(A;), we have XcB, YcB.

2.9. z'=sup X =inf Y in B.

Proof. We intend to show that z’ =sup X in B. Pick out any x e X. If x =2/,
then in view of (4), 2.7 and (3) z' is the greatest element of X and the assertion
follows. Let x#+z', ipemin a(x, z'). Hence x(i{)=z'(i) =a; whenever i eI, i <io.
Since x € X", we get x (io) € X"(io). If ioe I — K, we infer from 2.7 that x (io) <a;,, =
z'(io). If ioe K, by using (3) and 2.5 we obtain z'(io) =a%*, = sup X"(i,) and thus
x(io)<z'(io). Therefore x<z'. Let ueB. u=x for each xeX and let
ivemino(u, z'). lf ice I — K, by 2.4’ there is x € X, x(i) = a; for each i< io. Hence
x € X" and io € min o(u, x). Then u (i) >x(io) = a, = z'(io). If ive K, then either
u(io) = x(io) or ipe min o(u, x). Thus u(io) =x (iv). This inequality is valid for each
x € X', From a*,=sup X"(i,) it follows that u(io) >a*,=z'(io). Thus u=z'. The
proof of the relation z' =inf Y is analogous.

Denote A={geG:g<z'}.

2.10. L(z)=A.

Proof. Since z=sup L(z) in M(G), by 2.9 we get z’ =sup L(z) in B. Hence
L(z)cA. Let geA. Because of z=inf U(z) in M(G), by 2.9 we obtain
z'=inf U(z) in B. Thus g< h for each he U(z). Then g< z, i.e. g €L (z).

2.11. If z,, z,e M(G), then z1+ z5=sup Z in B, where Z = {g1+ g2:g1€ L(z2,),
g:2€ L(z2)}.

Proof. From z,=sup L(z1), Z2=sup L(z:) in M(G) and from 2.9, we infer that
zi=sup L(z,), z;=sup L(zz2) in B. Hence z,=g., z}=g. for every g:e L(z,),
g2€L(z;). Thus zi+z;=4g:1+9>, i. e. z1+2z2 is an upper bound of Z in B. Let
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beB,b=g,+g,foreachg,eL(z), g.eL(z.)andleticemm o(b, z1+z3). For z,
(n=1,2) let a, and a% have an analogous meaning as a, and a* have for the
element z. If i, é K, then by 2.4 and (4) there exists g, € L(z1), g- € L(z2) such that
g.1(i) = au = zi1(i), g2(i) = a.i = z5(i) for each 1< 1,. We will show that b (ip) >
(Z{'*‘Zé) (i()) = Z;(i0)+Zé(i0)- If b(l()) < Z;(l)) + Zé(l‘()) = gl(iu) + g~(l.o), then
because of ip e min o(b, g+ g,) we obtain b# g, + g,, which is imposible. Now we
prove that b (i) > z1(io) + z32(io) for 1,€ K. Suppose that b(io) < zi(io) + z:(i)).
According to (4) we get zi(io) — a%, = supL'(z) (i), z5(ia) = a%,
= sup L"(z,)(io) in M(A,)). The definition of the operation + in M(A,) and 1.1
imply b(io) < zi(io) + z2(ic) = sup {gi(t0) + g2(i0)"g1€L"(z1), g€ L"(z:)} in
M(A,). From the fact that A, is a linearly ordered set it follows that we can find
gieL"(z))cL(z:), gseL'(z.)cL(z) wth b(i) < gi(i) + g3(io). From
gieL"(z,), gbe L"(z2) we conclude that gi(1) —awn —zi(i) g'(i)=a =z5(1) for
each iel, i<i,. Then ipemina(b,gi+g’). Thus b#*gi+g , a contradiction.

Define a mapping ¢:M(G)— B by the rule ¢ (z) z'. With respect to 2.10 we
have L(z\) = {geG:g~ zi}, L(z2) = {geG.g< z5}. Then z{=7z; if and only if
L(z\)=L(z;). Hence ¢ is a one-to-one mapping. Since z, z. if and only if
L(z,)=L(z,), by 2.9 and 2.10 we obtain z,< z, if and only if z{— z;. Now we show
that ¢ is a mapping M(G) onto B. Let beB, B,={g G:g<b}. Since
b(i)e M(A,) for each 1€l, the sets {aeA,:as b(i)}, {aeA:a=b(i)} are
nonempty for any iel. There are elements g, h e G such that g(i) = h(i)
= b(i)eA,; foriel—K and g(i)=u, where u;€A,; uu<b(t), h(i) = v,eA,,
v,=b(i) for ie K. Then B, #@, B} # 0, since g € B, h € B}. Hence by (i) there is
zeG* z=sup B,. Now we show that z e M(G). Denote U, = {u € G:u(i) = b(i)
for each iel—K and u(i)eA, u()sb(i) for each ieK}, V,
= {veG:v(i)=b(i)foreachie I —K and v(i)e A,, v(i)=b (i) for each i e K'}.
Therefore u(i)—v(i)=0(ueU,,ve V,foreachiel—K. Since b(1)e M(A,) for
each i e K, according 10 1.3 we obtain A(u(t)—wv(i); ueU,, veV,)=0. Then
Au—v; uelU,, veV,)=0. From U,cU(z), VicL(z), z=sup L(z) = in-
f U(z) and from 1.3 we conclude z e M(G) In view of 2.9 we obtain z' =sup B, =
b =@(z). It is easily seen that ¢ preserves the group operation. In fact, using 2.9
and 2.11 from z,+ z;=sup Z in M(G) it follows that (z:+z,) = sup Z=2z1+2;
in B.

We have proved that the following theorem is true.

Theorem. Let G be a lattice ordered group that can be written as a mixed
product G = QA, (i e I), where A, is linearly ordered for eachi € I. Put B, = M(A,)
if i is maximal in I and B; = A; otherwise. Then there exists an isomorphism @ of
M(G) onto 2B: (i €I) such that ¢(g)=g for each geG.
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MAKCHUMAIJILHOE OENEKUHOOBO ITOIIOJJHEHUE CTPYKTYPHO YIIPSIHIOYEHHOM
TPYIIIBI
ltepan YepHak
Pesiome
OBepeTT [0Ka3al, YTO MaKCHMaJbHOE [NEAEKHHIOBO MOMOJHEHHE KOMMYTAaTHBHOH CTPYKTYPHO
YTOPSIIOYEHHOMN IPYNIIBI ECTh CTPYKTYPHO yHOpsfioueHHas rpynmna. B aToit cratee pe3ynbraT OBepeTTa

0606uiaeTcst Anst BCEX CTPYKTYPHO YHOPSHOYEHHBIX IPymii. [JOKa3aHbI HEKOTOPBI CBOHCTBA MAKCUMAallb-
HOTO [IEIeKMHIOBOIO MOMOJHEHNs CMELIAHHOTO POU3BEACHUS JIMHERHO YNOPSATOYEHHbIX TPYIII.
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