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Math. Slovaca 29,1979, No. 3 

ON THE MAXIMAL DEDEKIND COMPLETION 
OF A LATTICE ORDERED GROUP 

STEFAN CERNAK 

Let G be a partially ordered group. The group operation will be written 
additively. We denote by Mi(G) the set of all Dedekind cuts of the partially 
ordered set (G, =^). The set G can be considered as a subset of Mi(G) under the 
canonical embedding. The set MX(G) is partially ordered under the set-inclusion. It 
is possible to define the operation + on Mi(G) such that Mi(G) turns out to be 
a partially ordered semigroup having the property that G is a subgroup of the 
semigroup MX(G). Denote by M(G) the set of all elements of Mi(G) possesing 
inverses in Mi(G). Then M ( G ) is the greatest subgroup of the semigroup Mi(G) 
(cf. Fuchs [6]). If G is an Abelian group, then Mi(G) is a commutative semigroup 
and so M(G) is an Abelian group. 

C. J. E v e r e t t [5] has proved the following theorem: 
(A) Let G be a commutative lattice ordered group. Then M(G) is a lattice 

ordered group. 
In this note it will be shown that the assertion (A) holds true for all lattice 

ordered groups (without supposing the commutativity). 
Let G be an /-group and suppose that G can be expressed as a mixed product 

QAi (i e I) of linearly ordered groups A,-. We denote by K the set of all maximal 
elements of J. It will be proved that M(G) is (up to isomorhisms) the mixed 
product QBi (i el), where Bt =M(At) if i eK and Bt = A, if iel — K. A similar 
result has been proved by J. J a k u b i k [8] for the maximal Dedekind completion of 
an Abelian /-group which is the direct product of /-groups. Analogous results 
concerning the Cantor extension are obtained in [3] and [4]. 

1. The maximal Dedekind completion M(G ) of a lattice 
ordered group G 

In this paragraph there will be constructed the maximal Dedekind completion 
M(G) of an arbitrary lattice ordered group G. 
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Let G be a lattice ordered group. Let us denote by X"(X*) the set of all upper 
(lower) bounds of a subset X cz G in G. Let G # be the system of all ideals in G of 
the form (Xu)1, where X is a nonempty and upper bounded subset of G. The 
system G # is partially ordered under the set-inclusion. Then G # is a conditionally 
complete lattice. The lattice operations in G # will be denoted by A, v . If a system 
of sets { Z A } A G A ^ G # has an upper (lower) bound in G # , then 

v Z , ( A e A ) = ( (u [ / A ) u / (AZ, (AeA) = n Z A ( A e A ) . 

The mapping q: G—>G* defined by (p(a) = ({a}u)1 is one-to-one and it 
preserves all intersections and joins existing in G. In the next we shall identify a 
and cp(a). Then G is a sublattice of G # and the following conditions are satisfied: 

(i) Every nonempty subset of G bounded from above (below) has the least 
upper bound (greatest lower bound) in G # . 

(ii) For each element zeG* there exist nonempty subsets Mu M2 of G such that 
Mi is bounded from above in G, M2 is bounded from below in G and sup M, = z = 
inf M2 in the partially ordered set G # . 

For an element zeG* we denote 

U(z)={heG:h^z}, L(z)= [g e G:g ^z}. 

Let Zi, z2e G # . From (ii) it follows that the sets L(zi) and L(z2) are nonempty 
and bounded from above in G. Then also the set Z = {g\ + g2:g\ eL(zi) , 
g2 eL(z2)} is nonempty and bounded from above in G. By (i) there exists sup Z in 
G # . Define the operation + in G # by putting Zi + z2 = s u p Z . Then G # is 
a semigroup (cf. Fuchs [6]). For each zeG^ we have 

(1) i f z i^z 2 , then Z i + z ^ z 2 + z, z + Z i ^ z + z 2 . 

If Zi, z2 e G, then the operation zi + z2 in G # coincides with the operation Z\ + z2 

in G. Thus G is an /-subgroup of G # . It should be observed that G # is not a group 
in general (cf. [5]). 

Let M(G) be the set of all elements of G # that have an inverse in G # . Then 
M(G) is a group; M(G) is a maximal subgroup of the semigroup G # . With respect 
to (1) M(G) is a patially ordered group. In the following will be shown that M(G) 
is an /-group. 

Let Xi, X2 be subsets of G such that Zi = sup Xi, z2 = sup X2. In a similar manner 
as above we get that the s e t Z ' = {g\ + g2:g\eXu g2eX2} is nonvoid and bounded 
from above in G. Hence by (i) there exists z' = sup Z ' in G # . We intend to show 
that sup Z = sup Z ' , i. e. that the following statement is true: 

1.1. Zi + Z2 = z ' . 
Proof. The relations Xi czL(zi), X2czL(z2) imply Z ' c Z and so z ' ^ Zi+ z2. It 

remains to prove that Zi + z2^ z ' , i . e., C/(z')cz L7(zi +z 2) . If u e l / (z ' ) , then ueG, 
u^z'^g\ + g2 for every g\eXu g2eX2. Hence ~g\ + u^g2 and thus -g\ + u ^ 
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z2^g2 for each g2eL(z2). From u -g2^g\ we get u -g2^Z\^gu u ^g\ + g2 for 
each gxeL(z\), g2eL(z2). Therefore u^Z\ + z2. Then ueU(z\ + z2). 

Jakub ik [7] introduced the notion of a generalized completion L>i(G) of an 
/-group G. For the operation + on Di(G) a relation analogous to 1.1. is valid ([7], 
Lemma 2.1). Observe that if G is an Abelian /-group, then Di(G) is an /-subgroup 
of M(G) (see [8]). 

For HczG denote -H= {-g e G:g eH}. If z e G # , then by (ii) there exist 
nonvoid subsets X, Y of G with the property 

(2) z = s u p X = infY. 

1.2. Let z e G # and let X, Ybe as in (2). If A (y - x ; x e X, y e Y) = 0 in G, then 
z has a rightinverse in G # . 

Proof. From (2) it follows that — Y is a nonvoid and bounded from above in G. 
According to (i) there is z ' e G # , z ' = sup(— Y). We shall show that z' is 
a rightinverse to z. 

By 1.1. we obtain z + z' = sup {x +y:x eX, ye — Y} = sup {x — y:x eX, 
y e Y} in G # . Since 0 = inf {y — x} = —sup{x—y} in G, we concludejthat 
sup { jc-y} = 0 in G # . Hence z+z' = 0. 

R e m a r k 1. In an analogical way we obtain that z' = sup (— Y) is a left-inverse 
to z whenever A(—X + y ; x eX, y e Y ) = 0 holds in G. 

1.3. Let zeG* and let (2) be fulfilled. Then zeM(G) if and only if the 
following conditions are satisfied in G: 

(a) A(y-x;xeX,yeY) = 0, 
(b) A(-x+y;xeX, ye Y) = 0. 
Proof. If z e G # and if both conditions (a) and (b) are fulfilled, then 1.2 and 

Remark 1 imply that z' = sup (— Y) is an inverse to z, hence z eM(G). Converse­
ly, let z eM(G). We shall show that (a) holds true. The assumption implies that 
0^ y — x for each x eX, y eY. Let g eG, 0<g^ y — x for every x eX, y eY. 
Hence g + x ^ y. From (2) it follows g + x ^ z and by (1) we get x ^ —g+z. Then 
z ^ —g +z because of (2). From the hypothesis z eM(G) we conclude that there 
exists an inverse to z in G # . Hence by (1) we have 0^ —g, a contradiction. The 
proof of (b) is analogous. 

The question of the independence of the conditions (a) and (b) remains open. 
E v e r e t t [5] proved the assertion 1.3 under the assumption that (i) G is 

commutative and (ii) X = L(z), Y = U(z). 
1.4. If zeM(G), then zAOeM(G) (the operation A being considered with 

respect to G # ) . 
Proof. Suppose that z eM(G) and let X, Y be is in (2). Since G # is a lattice, 

Z A 0 e G # . First we prove that A ( y A 0 - j t A 0 ; j c e X , y e Y) = 0 in G. Using 1.3 
and the assumption we get A(y—x; xeX, y e Y ) = 0 in G. It is clear that 
0^ y A 0 — x A 0 . Let there exists eG. such that 0<g^ y A 0 — X AOfor each x eX, 
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yeY. Applying the result from [1] (p. 296) we get O < 0 ^ y AO - x A 0 < y - X 
for each x eX, y e Y, a contradiction. Thus A(V A O - X A 0 ) = 0 in G . Then from 
the relations ZAO = sup L ( Z A O ) = inf U(z A0), {x A0}* e X c L(z A0), {y A 0 } y e Y 

cz L / ( Z A 0 ) it follows A(yx-xx; xxeL(z A0), yxe U(z A 0 ) ) = 0 in G . In a similar 
way it can be proved that A(—JCi + yi ; Jti G L ( Z A 0 ) , yx e U(z A 0 ) ) = 0 in G . Then 
1.3 completes the proof. 

From 1.4 we infer that the partially ordered group M(G) is an /-subgroup of G . 
Hence G is an /-subgroup of M(G). The /-group M(G) will be called the maximal 
Dedekind completion of G . 

2. The maximal Dedekind completion of the mixed product 
of linearly ordered groups 

J a k u b i k [8] studied the maximal Dedekind completion of an Abelian /-group 
G, which is a direct product of /-groups. In this section there will be investigated 
the maximal Dedekind completion of an /-group (without assuming com-
mutativity) that is a mixed product of linearly ordered groups. 

The concept of the mixed product of partially ordered groups is a common 
generalization of the concepts of the complete direct product and the lexicographic 
product (see Fuchs [6], C o n r a d [2]). Let us recall the definition of the mixed 
product. 

Let /T--0 be a partially ordered set and let A, be a partially ordered group for 
each / e I. Form the system H of all mappings / : /—> uA,- (/ e I) such that / ( / ) e A, 
for each iel. We denote by G the set of all feH such that the set a(f) = 
= {i e / : / ( / ) =£0} fulfils the descending chain condition. If for each f,g eG and each 
iel we put (f + g) (/) = f(i) + g(i), then G is a group. The set of all minimal 
elements of the partially ordered set a(f, g) = {i el:f(i)£ g(i)} will be denoted 
by mina(f, g). Further, we denote a(f) = a(f,0). We put f<g if and only if 
/ ( / ) <g(i) for each / e min a(f, g); then G is a partially ordered group. It is said to 
be the mixed product of partially ordered groups A,- and it is denoted by G = QAt 

(iel). 
If I is a trivially ordered set, then the mixed product is the direct product of 

partially ordered groups A,. If 1= {1, 2}, then for the direct product we shall use 
the symbol G = A i X A 2 . 

2 .1. / / G is a linearly ordered group, zx, z2 e G # , Zi <Zz, then there exists g eG 
with the property zi < g ^ Z2. 

Proof. Let G be a linearly ordered group. From the relation Zi = supL(zO, 
z2 = sup L(z2), Zi <Z2 it follows that L(zi) is a proper subset of L(z2). Hence there 
exists g eL^), g eL(zx). Linearity of G implies zx<g^ z^. 

If G is an /-group, the assertion 2.1 need not hold. 
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E x a m p l e . Let C , Q and I? be additive groups of all integers, rational and real 
numbers (with the natural order), respectively. If G = CxQ, then in view of [8] 
(Theorem 2.7) and [5] (Theorem 7 ) we obtain M(G) = M(C) X M(Q) 

= C*xQ* = CxR. It suffices to set zi = (0 , V2) , z2 = ( l , V 2 ) . 
Let J be a partially ordered set and let A, be a linearly ordered group for each 

i el, Ai^h {0} . Suppose that G is an /-group such that 

G = QAi (iel). 

2.2. Let i0el, {xk}keA = G, AJCA = 0 . Then there exists A e A with the property 

JCA(i) = 0 for each i el, i<i0. 
Proo f . Assume that for each A e A there exists i el, i<i0 such that J C A ( / ) ^ 0 . 

Then i0£ min a(jcA). There are a e Aio, a>0 and g e G such that g(i0) = a, g(J') = 0 
for each j el, j£i0. Therefore 0<g^ JCA for each A eA, contrary to AJCA = 0 . 

From 2.2 it follows that the set A(i0)= {A e A :JC A ( / ) = 0 for each i el, i<i0) is 

nonempty. 
Denote by K the set of all maximal elements of I. 
2.3. Let i0eK, {JCA}AGA = G , A J C A ( A G A ) = 0 . Then AJCA(/0) ( A e A ( / o ) ) = 0. 

Proo f . The assumption implies that JCA5?0 for each A e A . We have either 
xx (i0) = 0 or i0 e min a(jcA) for each A e A (i0). Hence 0 ^ JCA (/0) for each X eA (i0). If 
there exists A e A (i0) such that JCA (i0) = 0 the statement is evident. Let there exist 
a e Aio such that 0 < a ̂  JCA (i0) for each A e A (i0). If g is as in 2.2, in the same way as 

in 2.2 we arrive at a contradiction with AJCA(A e A ) = 0. 
2.4. Let] eI — K,ze M(G). Then for each i el,i^ j there exists at e A, with the 

following properties: 

(a) There exist elements g eL(z), h e U(z) such that g(i) = h(i) = a( for each 

iel, i^ j . 

(b) If gxeL(z), hxeU(z), gi(i) = hl(i) for each iel, i^j, then gi(i) = at for 

each i el, i^ j . 

Proo f . From z eM(G) and from 1.3 we get /\(h— g\he U(z), g eL(z)) = 0. 
There exists / ' el, j ' > / . According to 2.2 there are h e U(z), g eL(z) such that 
(h— g) ( 0 = 0 and so g(i) = h(i) for each iel, / ^ /'. For the elements g, h with the 

mentioned property and for each i^ j denote a, =g(i) = h(i). Thus (a) is valid. Let 

#1 and hi fulfil the assumption of the condition (b). Suppose that there exist V el, 
i'^j such that gx(V)-kav. Hence g(i') = h(i')±gt(i') = hx(i').Leti0eI,i0^i', 
i0emmo(gi,h). Then /0emin o(g, hi). Since gi^h, g^hi, we have gi(i0)< 
h(i0) = g(i0), g(i0)<hi(i0) = gl(i0), a contradiction. 

From (b ) it follows that for each iel — K the element a, is uniquely determined 

by z eM(G) (it does not depend on j el). 
Let z eM(G), i0el and suppose that i0 is not minimal in I. Deno te 
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Li°(z)={geL(z):g(i) = ai for each/ el, i<i0}, U\z) = {h eU(z):h(i) = a> 
for each i el, i<i0}. 

Now let i0 be a minimal element of I. We define 
Lio(z)={geL(z):g(i0) = aio, Uio(z) = {heU(z):h(i0) = aio} 

if i"o is not maximal in I and 
Lio(z) = L(z), Uio(z)=U(z) 

if i0 is a maximal element of I. Further, for any i0 e I denote 
Lio(z)(io) = {ueAio: there exists geU°(z), g(i0) = u}, Ul°(z) (io) = {veAio: 

there exists h e Ul°(z), h(i0) = v}. 
From 2.4 we infer that U°(z) 4- 0, Ul°(z) * 0 and so U°(z) (io) * 0, Ul°(z) (io) ¥= 0. 

Because of u^ v for each u eU°(z) (io), v e Ul°(z) (io), we have that U°(z) (io) 
(Ul°(z) (io)) is a set bounded from above (below). Hence there exist c e A?0 and 
d e A?0, c =sup Lio(z) (io), d = inf Ul°(z) (io) in Af0. Clearly c^ d. According to 
1.3 we obtain A(/Z — g ; g eL(z), h e U(z)) = 0. 

Let io be a maximal element of / . Using the definition of the sets U°(z) and 
Ul°(z) we obtain that the equality (h — g) (i) = 0 is valid for each i e I, i<i0 and for 
each g eU°(z), h e Uio(z). We conclude from 2.3 that A(h(i0) - g(io); g eU°(z), 
h e Uio(z)) = 0. Similarly we get A ( - g(i0) +h(i0);g eU°(z),h e Ul°(z)) = 0.Using 
1.3 it is easily verified that ceM(Aio). Analogously it can be proved that 
d eM(Aio). We intend to show that c = d. If c <d, i. e., d - c > 0 , then by 2.1 there 
exists aeAin, 0<a^d -c ^h(i0) — g(i0) for each g^U°(z), heUl°(z), a 
contradiction. Let us denote a*0=c = d. The definition of a*0 implies that 
a*0eM(Ai0), 

(3) fl*0 = sup Lio(z) (i0) = inf Ul°(z) (i0). 

From (3) we conclude that for each i0eK the elements a*0 are uniquely 
determined by z eM(G). 

2.4'. Let jel-K, zeM(G) and let X, Y be as in (2). Then the following 
conditions are valid. 

(a') There exist elements x eX,y e Ysuch that x (i) = y (i) = at for each /-$ / . 
(b') If XieX, yi e Y, Xi(i) = yi(i) for each i^ j , then xi(i) = at for each i^ j . 
The proof of this assertion is analogous to that of 2.4. 
If the symbols Xl°, Yl°, Xl°(i0), Yl°(i0) have an analogical meaning with U°(z), 

Ul°(z), U°(z) (i0), Ul°(z) (i0), in the same way as above we get the following 
statemant. 

2.5. a*0 = supXlo(/o) = inf Y'°(i0) for each i0eK. 
2.6. a, is the greatest (least) element of the set U(z) (i) (Ul(z) (i)) for each 

iel-K. 

Proof. Let iel — K. By 2.4 there exist elements geL(z), heU(z), g(j) = 
h(j) = aj for each jel, j^i. Since geU(z), heU'(z), we have at=g(i) e 
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V(z) (/), a{ =h(i) e Ul(z) (/). Therefore <z,--5 v for each v e Ul(z) (/), a^u for 
each ueLl(z) (/) and the proof is complete. 

Let X, y be as in (2). Since X^L(z), Yc:U(z), with respect to 2.6 the 
following assertion is valid. 

2.7. at is the greatest (least) element of the set Xl(i) (Yl(i)) for any i eI\K. 
2.8. There exists an element a eG such that a(i) = at for each iel — K. 
Proof. Let us denote A = {/ el — K'.a^O}. We have to show that each 

nonempty set I\ cz A contains a minimal element. If i0 e I\ is not minimal in I\, then 
72 = {/ e I\:i <i0} ^ 0. By 2.4 there exists g eL(z), g(i) = at for each / < i 0 and we 
have I2^o(g). From the fact g e G it follows that every nonempty subset of o(g) 
has a minimal element. Consequently, I2 contains a minimal element V. Hence V is 
a minimal element of Iu too. 

Let us form B = QBt (i eI), where Bt = A, for each i el — K and Bt = M(At) for 
each ieK. In view of 2.8 there exist elements Zi, z2eB such that Zi(/) = a,, 
z2(/) = 0, whenever iel — K and Zi(/) = 0, Z2(/) = a* whenever ieK. Hence 
Zi + z2 = z' eB, 

(4) z'(i) = at if iel-K and z'(/) = a? if ieK. 

Let X, y be as in (2). Because of A,- c M ( A , ) , we have X c B , YczB. 
2.9. z ' =sup X = inf Y in B. 
Proof. We intend to show that z ' = sup X in B. Pick out any x eX. If x =z', 

then in view of (4), 2.7 and (3) z ' is the greatest element of X and the assertion 
follows. Let x + z', i0emino(x, z'). Hence x(i) = z,(i) = ai whenever iel, i<i0. 
Since x eXl°, we get jt(/o)eX l°(/0). If i0eI-K, we infer from 2.7 that x(i0)<aio = 
z'(/o). If i0eK, by using (3) and 2.5 we obtain z'(/o) = a*0 = sup X'°(/0) and thus 
x(/o)<z'(/o). Therefore JC^ z ' . Let ueB. u^x for each j t e X and let 
ioGmin o(u, z'). If i0el — K, by 2.4' there is x eX, x(i) = at for each i-$ i0. Hence 
x eXl° and i0emin o(u, x). Then u(/0)>jc(/0) = aio = z'(/0). If i0eK, then either 
u(i0) = x(i0) or /0emin o(u, x). Thus u(i0)^x(i0). This inequality is valid for each 
x eXl°. From a*0 = sup Xl°(/0) it follows that u(i0)>a:f0 = z'(i0). Thus u^z'. The 
proof of the relation z ' = inf Y is analogous. 

Denote A = {g eG:g^ z'}. 
2.10. L(z) = A. 
Proof. Since z =sup L(z) in M(G), by 2.9 we get z ' = sup L(z) in B. Hence 

L(z)^A. Let geA. Because of z=inf U(z) in M(G), by 2.9 we obtain 
z ' = inf L^(z) in B. Thus g^ h for each h e U(z). Then g^ z, i. e. g eL(z). 

2.11. If zu z2eM(G), then z'\ + z2 = sup Zin B, where Z = {g\ +g2:g\eL(z\), 
g2eL(z2)}. 

Proof. From Zi = sup L(zi), z2 = sup L(z2) in M(G) and from 2.9, we infer that 
zi = supL(zi) , Z2 = sup L(z2) in B. Hence zi^flfi, z'2^g2 for every gieL(zi), 
g2eL(z2). Thus z[ + z'2^g\ + Qi, i .e. z\ + z'2 is an upper bound of Z in B. Let 
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b eB,b ^gi + g2 for each gx eL(zi), g2eL(z2) andle t / 0 emin o(b, z[ + z'2). For z« 
(n = 1, 2) let am and #£, have an analogous meaning as at and a* have for the 
element z . If ioeK, then by 2.4 and (4) there exists gx eL(zi), g2eL(z2) such that 
gi(i) = au = z[(i), gi(i) = a2i = z'i(i) for each i^ i0. We will show that b(i0) > 
(z! + z 2 ) ( /o) = zi(/o) + z2(io). If b(io) < z[(i)) + Zi(io) = gi(io) + g.(t'o), then 

because of i0emin o(b, gx + g2) we obtain b^gi + g2, which is imposible. Now we 
prove that b(i0) > z[(io) + z2(io) for i0eK. Suppose that b(i0) < z[(io) + Zi(i)). 
According to (4) we get zi(/0) ~ a*l() = sup L'°(zi) (/>), z'2(io) = a*.0 

= sup Ll°(z2)(/o) in M(Al0). The definition of ths operation + in M(Al0) and 1.1 
imply b(iQ) < z[(io) + z'2(u) = sup {gx(io) + g2(i0)

 mQ\ eV'(zi), g2eLl°(z2)} in 
M(Aio). From the fact that Aio is a linearly ordered set it follows that we can find 
g;eL'°(zi)c=L(zi), g2eLl°(z2)<=;L(z2) w th b(i ) < g[(i ) + g'2(io). From 
^ J G L ' ° ( Z I ) , g2GL'°(z2) we conclude that g[(i) - au - z[(i) g'(i) = a2l = z'i(i) for 
each iel, i<i0. Then i0e mm o(b, g[ +gf). Thus b^g[ + g , a contradiction. 

Define a mapping cp:M(G)—>B by the rule cp(z) z'. With respect to 2.10 we 
have L(zi) = {g eG:g-^ z[}, L(z2) = {g eG.g^ z2}. Then z[ = z'2 if and only if 
L(zi) = L(z2). Hence cp is a one-to-one mapping. Since Zi Z2 if and only if 
L(zi) = L(z2), by 2.9 and 2.10 we obtain Zi^ Z2 if and only if z i - z2. Now we show 
that cp is a mapping M(G) onto B. Let beB, Bx = {g G.g^b}. Since 
b(i)eM(At) for each iel, the sets {a eAr.a^ b(i)}, {a e At:a^b(i)} are 
nonempty for any iel. There are elements g,heG such that g(i) = h(i) 
= b(i)eAt for iel — K and g(i) = ut, where uteAt; ut^b(i), h(i) = u ,eA, , 
vt ^b(i) for i eK. Then B^ £0, B"=/=0, since g eBu heB\. Hence by (i) there is 
zeG , z =sup Hi. Now we show that z eM(G). Denote Ui = {u e G:u(i) = b(i) 
for each iel — K and u(i)eAt, u(i)^b(i) for each ieK}, Vx 

= {v e G:v(i) = b(i) for each iel — K and v(i)eAt, v(i)^b(i) for each ieK}. 
Therefore u(i)-v(i) = 0 (u e Ui, v eVi for each lel-K. Since b(i)eM(At) for 
each ieK, according 10 1.3 we obtain A(u(i) — v(i); ueUu ve Vi) = 0. Then 
A(U-V; ueUi, v eVi) = 0. From Ui^U(z), VigzL(z), z = sup L(z) = in-
f U(z) and from 1.3 we conclude zeM(G) In view of 2.9 we obtain z ' = sup Bx = 
b =cp(z). It is easily seen that cp preserves the group operation. In fact, using 2.9 
and 2.11 from zi + Z2 = sup Z in M(G) it follows that (zi+ Z2)' = s u p Z = zi + Z2 
inH. 

We have proved that the following theorem is true. 

Theorem. Let G be a lattice ordered group that can be written as a mixed 
product G = QAt (i e I), where At is linearly ordered for each i e I. Put Bt = M(At) 
if i is maximal in I and Bt = A, otherwise. Then there exists an isomorphism cp of 
M(G) onto QBi (i el) such that cp(g) = g for each g eG. 
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МАКСИМАЛЬНОЕ ДЕДЕКИНДОВО ПОПОЛНЕНИЕ СТРУКТУРНО УПРЯДОЧЕННОЙ 

ГРУППЫ 

Штефан Черна к 

Резюме 

Эверетт доказал, что максимальное дедекиндово пополнение коммутативной структурно 
упорядоченной группы есть структурно упорядоченная группа. В этой статье результат Эверетта 
обобщается для всех структурно упорядоченных групп. Доказаны некоторы свойства максималь­
ного дедекинпового пополнения смешанного произведения линейно упорядоченных групп. 
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