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LAWS OF LARGE NUMBERS AND THE CENTRAL
LIMIT THEOREMS ON A LOGIC

ANATOLIJ DVURECENSKIJ

In this paper the notion of the independence of observables in a state on a logic,
as it was introduced by Gudder [2], will be studied. Some generalized forms of the
weak and strong law of large numbers and the central limit theorems for
observables of a logic will be proved. The used methods are similar to those of the
conventional probability theory. '

1. Preliminary definitions and results

Let us suppose that L be a poset with the first and the last elements 0 and 1,
respectively, and an orthocomplementation 1 :a+—>a™ which satisfies (i) (a*)* =a
forallaeL ; (ii)ifa<b,thenb*<afora,belL; (iii)ava‘=1forallaeL.We
say that a, b are orthogonal and write a Lb if a <b™. We further assume that if
a<b, then b=av(baa') and if {a;} is a sequence of mutually orthogonal

elements of L, then \/a,— eL. A poset L satisfying the above axioms will be called
a logic ([7]). ‘

A state is a map m from L into (0, 1) such that m(1)=1 and m (\/a,-l=
Zm (a;) if a; La; for i#j. A system M of states of a logic L is called a quite fuil

system if the statement m(b) =1 whenever m(a)=1, m e M, implies a <b. In [3]
it is shown that if M is a quite full system and L has at least three elements, then (i)
M#@; (ii) if a#0, then there is meM such that m(a)=1; (iii) a =>b iff
m(a)=m(b) for al me M ; (iv) a <b iff m(a)<m(b) for all me M.

" Lemma 1.1. (i) Let M be a system of states, a € L, and let us define a'™ =
={meM: m(a)=1}. Then M is a quite full system of states iff the statement

a'™®cb'™ implies a <b.
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(iii) Let M, be a quite full system of states and M, be a system of states, then
M =M UM, is a quite full system of states.

-~

(iii) If M is a system of states and Co(M) = {Zcimi: ¢ =0, Zc,— =1, meM,

ieI], then M is a quite full system iff Co(M) is a quite full system.

(iv) Let H be a separable Hilbert space over real or complex scalars, let L(H) be
a logic of all closed subspaces of H and M = {m,: m.(E) = (Ex, x), E e L(H),
x eH, ||x||=1}. Then M is a quite full system of states. If dim H =3, then Co(M)
is the system of all states on L (H); if dim H =2, then Co (M) is not the system of
all states.

Proof. The propositions (i)—(iii) are corollaries of the definition of the quite
full system and (iv) is a corollary of the famous Gleason theorem [6].

Q.E.D.

An observable is a map x from the Borel sets B(R;) of R, into L such that (i)
x(Ry)=1; (ii)) x(E)Lx(F) if EnF=0, E, Fe B(R;); (iii) x(L_JE,- )= \/x(E;) if

E.nE;=0,i+j, E:e B(R,). If f is a Borel function on R, and x an observable, then
fox: E—x(f '(E)), E e B(R)), is an observable. We say that an observable x is
bounded if there is a compact set C such that x(C)=1. We denote by o(x) the
smallest closed set E such that x(E)=1 and ||x||=sup {|t|:t€o(x)}. The mean

value of x in the state m is m(x) = f t dm,(¢) if the integral on the right-hand side
Ry

exists and is finite, where m, is a measure on B(R,):m.(E) = m(x(E)).
E € B(R,).In [3, Theorem 6.3] it is shown that an observable x is bounded iff m (x)
exists and is finite for every m on L.

Let x4, ..., x» be observables (x; may be unbounded for some i =1, 2, ..., n) of
a logic L. If there is a quite full system M of states and a unique observable z such
that m(x,), ..., m(x,) exist and are finite and m(z) =m(x,) + ...+ m(x,) for every
m e M, then z is called the sum of x,, ..., X, and is written z=x,+ ... + X,.

If there is a quite full system M of states on L such that for any two bounded
observables x, y there is a unique observable z such that m(z)=m(x)+ m(y) for
all m e M, then L is called a sum logic. In [3] it is shown that a sum logic is a lattice.
From this moment we shall suppose that L is a sum logic.

Remark 1. Although z =x + y exists on a sum logic, where x, y, z are bounded
observables, m(z) = m(x) + m(y) does not hold for every state m on L, in general.

Indeed, let L =L (R:). Due to (iv) of Lemma 1.1 it may be shown that L (R,) is

a sum logic. Let
(10 (172 1/2
N“(o 1)’ Nz_(l/2 1/2)
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and

12 172
N=N:+N.= G/z 1/2)’

where the matrices N;, N, and N, respectively, correspond to the
observables x, y and z [6]. If we choose the state m such that m(N,)=1 for every

. . . . . b1
one-dimensional subspace N, with a direction angle ¢, O0<g <5’ then

a straightforward computation shows that m(N) = (2 + \/5)/2 # m(N,))+m(N,)=
2.

We say that the observables xi, ..., X, have a joint distribution in the state m if
there is an n-dimensional Borel measure m, such that

mn(EsX ... X En)=m (/"\x,-(E,-)) for all E;eB(R.),
i=1 ’
j=1,..,n.

In this case we define (i) the joint distribution function F,, ..: (t1, ..., ta)—
m(xi(—o, t;) A...A X.(—%, t.)) tieR,, j=1, ..., n; (ii) joint characteristic

function @y, x.: (U1, -..» u,.)»—»J’ exp {i Eu,»t,-} dm.(t;, ..., t.), uieRy, j=1,...,n;
R, =1

(iii) the moments m(xy', ..., x¥") = f t3.. tevdma(ty, ..., t,) if the integral on the
Rp

right-hand side exists and is finite.

Due to a one-to-one correspondence between a joint characteristic function and
a joint distribution function, respectively, we may transfer the investigation of
properties of joint characteristic functions of observables of a logic in a state onto
the investigation of joint distribution functions of observables, and conversely. This
note is also valid for a characteristic function ¢,(u) = f e“ dm,(¢t) and F.(t)

= m(x(—x,t)) of one observable x.
Let x, xi, X2, ... be observables, F;, F,, F,, ..., @x, @1, @2, ... be distribution
functions and characteristic functions, respectively, in the state m. We say that

a sequence {F,} converges weakly to F, and write F,,—W>F, if F.(t)— F,.(t) at each

continuity point of F;. Due to the direct and inverse limit theorems [1] F, SF, iff

®@n— @x. This result will be used in the following.
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2. Independence

A system of observables x,, ..., x, is independent in the state m if

mE(ED)A .. A%a(En)) = m(x:(E2))...m (xa(En)),
E,'GB(R]), j=1,...,n.

A system of observables {x.: t € T} is independent in m if any finite subsystem is
independent. Let aeL. We define the question observable q.: q.({1})=a,
q.({0}) =a™. We say that a system of elements {a,: t € T} of L is independent in m
if the corresponding question observables {q.: t € T} are independent.

Theorem 2.1. Let x,, ..., x, be observables and m be a state. Then the following
propositions are equivalent. ’

() m (‘_=/n\lx,~(E,-))='_Ifllm(x,-(E,~)), E,eB(R), j=1, ..., n.
(ii) There is a joint distribution m, in m such that m,(E, X...X E,)
- _r:IIlm(x,-(E,-)), E eB(Ry), j=1, ..., n.
(iii) Thcle;e is a joint distribution function Fy,. ., in m such that F,, ., (t1, ..., t.)
= 'ﬁin(t,'), tieRy, j=1, ..., n. |
(iv) Thé:; is a joint characteristic function @x,...., in m such that @x,.., (U1, ..., U,)
= AI"Tl(p,,A(u,-), uieR,, j=1, ..., n.
Proolfi Let (i) hold. Let us define a set function u on B(R,) by u(E; X ... X E,)
= .ﬁm(x,-(E,-)), E;e B(R)), j=1, ..., n. Then it follows, by extending theorems,
thalt=tlhere is a unique n-dimensional Borel measure m, such that m,(E, X ... X E,)

= IIm(x;(E;)) and hence (ii) holds.
i=1

The converse implication is trivial.

The equivalence of (ii) and (iii) may be shown if we put E;=(—o,),
j=1,...,n.

Let now (i) hold ; then, by (ii), there is a joint distribution m, and consequently
there is a joint characteristic function ¢;,. .,, hence ’

N (7 TH u..)=f exp {i Zu,vt,-} dm.(ts, ..., t.) =
Rn =1
=1 exp (iwit;) dm., (4) = s, (1))
i=1 Jr, i=1

To prove (iv) implies (iii), we use the above mentioned one-to-one correspond-
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ence between a joint characteristic function and a joint distribution function,
respectively, in the state m. Therefore

m"((al, bl)x X (a,., bn))=

n "f‘l "i”i
= (231:)—'l I—I * Px,.. xu(th veey t,.) de,...dt,. =
—n @) f cp,,(t,)dt, Tm. (@, b)).

Passing to ¢;— —, j=1, ..., n, we obtain (m).
' Q.E.D.

We say that an observable x is nonnull a.e. [m] if m(x({0}°))>0.

Theorem 2.2. Let x,, ..., x, be observables which are independent in the state m
and nonnull a.e. [m]. Then the moment m(x,, ..., X») exists iff m(x;), j=1, ..., n,
exist and then in this case

m(xi, ..., Xa) =m(x1)...m(x,).

Proof. Let m, be a joint distribution of x4, ..., x, inm and &;,j =1, ..., n, be the
coordinate functions in R,. Since 7; are independent on (R., B(R.), m.), the proof
of our theorem follows from the same proposition of the measure theory, therefore

n n .
mxy, ..., %)= | A dma=[] | mdm.=][][m(x).
R, i=1 JRa i=1

Q.E.D.

According to Gudder [2] we introduce the notion of a strong independence in

a state, which converts into the notion of an idependence in a state in the
conventional probability theory. This notion enables us to study properties of

a characteristic function of the sum z=x,+...+x, by means of ¢, ..., @s,;
indeed, in this case @, = I1@,,. Thus, we say that the observables x,, ..., X, are
i=1

strongly independent in the state m if for any n Borel functions f,, ..., f., for which
fiox1+ ...+ faox. has a sense, we have

Mfyoxs+.tfpoxn — Mfrox ¥ XMy, ox,

where the x denotes the convolution.

As usual, a system {x,: t € T} of observables is strongly independent in the state
m if every finite subsystem is strongly independent in m and a collection {a,: t € T}
is strongly independent in m if {q,,: t € T} is strongly independent.

Let a be real, we define an observable I, by I.({a}) = 1 and it may be shown that
al, =I,, where on the left-hand side we have a constant function a(t)=a, t € R,,
and al,=a.l,.
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If m(x?) is finite, then m(x) is finite, too, and we define the variance V,.(x) of an
observable x in the state m by

Vi (x)=m((x —m(x)1,))’,

and in this case the Chebyshev inequality m((x — m(x)I,) ((—¢, £)°)) < Va(x)e™>
holds. -
Observables xi, ..., x, are uncorrelated in the state m if

V(X4 ...+ %)=V (x) + ... + Viu(xn),

if the sum x; + ... + x, exists, and a system {x,: t € T} of observables is uncorrelated
in m ; if every finite subsystem is uncorrelated in m.

In [2, Theorem 4.5, Lemma 4.7] it is shown that if a system {x.: te T} of
observables is strongly independent in the state m, then it is independent and
uncorrelated in m. The converse question, that is, whether the independence in m
implies the strong independence, seems to be open for some classes of logics or
systems of observables and states. A partial answer is given in [2] for one-dimens-
ional subspaces in a pure state on L (H).

3. Convergence of observables

For purposes of the last three sections of this paper we need to introduce some
types of convergences of observables with respect to a state. These forms of
convergences are equivalent to the corresponding convergences in the conventional

_probability theory. If x, x, x», ... are observables and m is a state, then we say that

(f) X. converges in the state m to x, and write x,, Sxif lirr}n m((x —x.) ((—&, €)°))=

0 for every € >0; (ii) x. converges almost everywhere [m] to x, and write x, —»x
a.e. [m] if m(lim, sup (x, —x) ((—¢, £)°)) =0 for every £ > 0; (iii) x. converges in

the square mean (m) to x if lim m((x —x,)*)=0. -

Lemma 3.1. There holds x, —’:L, iff F,.—:;F,,, where F,, F, are distribution
functions of x. and L., respectively, in the state m.
Proof. It is easy to see that F,(t)=0for t<a and F,(¢t)=1for t >a. Let Xn— 1,
and t<a; then for every £ >0 such that t + £ <a we have
Fu()=m(x.(=, t)) Sm(x.(—, a —£))<sm((x — L)((—¢, €)"))—>0,
by the assumption. Similarly, for ¢t >a and £ >0 such that t=a + ¢ we have
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.

1 —Fn(t) =m(x,.((t, oo)))sm(x,,((a +¢&, W)))Sm((x,. = Ia)(("'[", €)C))_’0’
hence F,(t)—1 and the necessity is proved.
To prove the sufficiency, let F,.—W>F,., that is F,(t)— Fa(t) for every t#a. Then

for an arbitrary € >0
F.(a+e)—F.(a—¢g)=m(x.({a—¢,a+¢)))=m((x. —~L)({—c¢, s)j)—» 1,

therefore x, S I.
Q.E.D.

Lemma 3.2. Let x, 5 I, and let f be a Borel function which is continuous at a.

Then fox. 3 I@y.
Proof. From the continuity of f at a it follows that for each £ >0 thereisa 6 >0
such that |[f(t)—f(a)| <e for |t —a| <. The convergence x,—s I, implies that for

this & and for sufficiently large nm ((x. — L) ((—8, 6)°)) is enough small. Moreov-
er, m((foxa—Iiw) ((—£,€))) = m(folxa—L) ((—&,£))) < m((x.—L)
(-6, 6)))—0.

Q.E.D.

4. Weak laws of large numbers

From this moment we suppose in theses three last sections that {x;} is such
a sequence of observables (they may be unbounded, too) of a sum logic L that for
all n=1, 2, ... the sum x;+ ... + x, exists, and m is such state that if m(x,), ...,
m(x,) exist and they are finite, n=1, 2, ..., then m(xi+...+x.)=
=m(x;)+...+ m(x,) (see Remark 1).

Let {x:} be a sequence of observables and m be a state; we shall investigate

convergences of s, = oy Z (xi—m(x)L) if m(x:),i=1, 2, ..., is finite, with respect
=1

to the state m.
We say that for a sequence {x;}

(i) the weak law of large numbers (w.l.l.n.) in the state m holds if s,.—";O;

(ii) the strbng law of large numbers (s.1.1.n.) in the state m holds if s, —» 0 a.e. [m];
(iii) the square mean law of large numbers (s.m.l.l.n.) in the state m holds if
m(sx)—0; ‘
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(iv) the central limit theorem (c.1.t.) in the state m holds if distribution functions of
t 2

ns./B, convergence to F(t)= exp ( —u?l du at each t € Ry, where

1
V2r ).
Bi=V,(x1+...+x).
Theorem 4.1. [2] (Chebyshev) If {x;} is a sequence of uncorrelated observ-
ables in the state m and there is a constant K such that m(x?)s K,i=1,2,..., then
for {x;} the w.LLn. and the s.m.LLn. hold.

Proof. Due to the finiteness and boundedness of m(x,-z), i=1,2,...,and by the
Chebyshev inequality, we have

m(s.((—¢, 6)‘))<;15 Vi (% (x,+...+x,.)) =

Similarly, m(s2)= V. (rlz (xi+... +x,.))—>0.
Q.E.D.

Corollary 4.1.1. If {x;} is a sequence of observables which are uncorrelated in
the state m and uniformly bounded, that is, there is a constant K such that
Ix:l<K,i=1, 2, ..., then for {x;} the w.LLn. and the s.m.Ln. hold.

Proof. Since ||x:]| <K, then m(x})<K? and the rest of the proof follows from
Theorem 4.1.

Q.E.D.

Corollary 4.1.2. Let {x;} be a sequence of uncorrelated observables which have
the same distribution function in the state m. Let m(x}) be finite and m(x,)=a;

1 " oy
then " (x1+ ... +x.) converges to I, (i) in the state m ; (ii) in the square mean (m).

Proof. It is easy to verify that the proposition fulfils the assumptions of t'he
Chebyshev theorem. '
Q.E.D.

Theorem 4.2. (Kchinchih) Let {x;} be a sequence of strongly independent
observables, which have the same distribution function in the state m and let
m(x,)=a; then

1 m
— (1t ...+ x)> L.
n
Proof. By substituting x; — I, for x;, we may assume that a =0. According to
. . U . 1
Lemma 3.1 it suffices to show that a sequence of distribution functions of y. ==

(x1+ ... +x,) converges weakly to the distribution function of I,, but due to the
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known theorems of the probability theory it is sufficient to examine a convergence
of the corresponding functions @, of y, in the state m to @o(u)=1, ueR,.
If @ is a characteristic function of x,, then the strong independence of {x;} in m

implies @a(u)=@" (5) forallueR,,n=1,2, ... Since ¢’ exists, ¢'(0)=0, and ¢’

n—sc

is continuous, then, by Taylor’s theorem, we have ¢ (5) =140 (5) , where lim

n

(0] (’%) =0, u € R,. Therefore ¢" (5) = (1+O (5)) — 1 for every u € R,, and

the proof is finished. )
Q.E.D.

Theorem 4.3. (Markov) If a sequence of observables satisfies in the state m the
Markov condition

'71, V(X1 o+ %,)— 0 4.1)

then for {x;} the w.ll.n. and the s.m.LLn. hold in the state m.
Proof. Using the Chebyshev inequality we have

m(s.((—¢, e)‘))s?l? Vm(x1+ ...+ x,)—>0.
Q.E.D.
Remark 2. If {x;} is a sequence of uncorrelated observables in m, then the
Markov condition (4.1) can be rewritten in the form n > 2V,,.(x.-)—>0, therefore
the Chebyshev theorem follows from the Markov theore;x_l.
If x is an observable, then y =L25 is an observable if we put y =fox, where

1+x
f(O=1/(1+1%).

Theorem 4.4. In order that the w.l.1.n. may hold in the state m for a sequence
{x:} it is necessary and sufficient that

lim m

n—c

=0. (42)

( (i:l(xl_m(xl)Il)), )
n2 (x,‘ - ITI(X;)I]))_'2

n
i=1

*

Proof. The necessity follows from this calculus

m(s.((—¢, €)))= fmw dm’"a)>£;|m-!2/(1 + tf}glﬁf,,(t) =
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t

=ft2/(1 +1¢%) dm,n(:)—f“ ’ /(1 +5) dm, (1) =

2
th2/(l +1%) dm, (1) - =m (1 isi) —e

Therefore 2
< Sn s .2 e c
o<m .(’ﬁ1+s,.) e +m(sn((—¢, €)))

and the (4.2) holds.
The sufficiency. Let (4.2) hold, then for each £ >0 we have

m(s,.((—s,s)c))=f”;r dm,"(t)$(1+f2)e_zf /A +) dm,, (1)<

t ltl=¢

2

¢! +t‘2)t'_2f'2/(1 +£) dm,, (1)=(1+")e’m (1 i"sz)_’o'

Q.E.D.

Remark 3. We can show that Theorems 4. 1—4.3 follow from Theorem 4.4. For
example, if the Markov condition (4.1) is satisfied, then

2
m (l—i"?)=jt’/(1+z’) dm,, ()< [ 2 dm, (6) =12V (x1 + ... + x2)— 0.

Theorem 4.5. If a sequence of observables {x;} satisfies the following condition
in the state m

n

> (xi—m(x)I)

i=1

. —(1+8
lim n “)m(

n—so

1+6
) =0 4.3)
for 0<6 =<1, then the w.l1.n. holds.

Proof. According to Theorem 4.4, it suffices to verify (4.2).
Indeed,

m (%z) =I;2/(1 +3)dm, ()<[|t|'*° dm, (1) =
> (xi—m(x)h)

o )0
Yt ; Q.E.D.

Remark 4. If in (4.3) we put 6 =1, then the Markov condition is satisfied.

5. Strong law of large numbers

Because of a somewhat more complicated investigation of the properties of the
convergence almost everywhere [m] we introduce the following definition.
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If every finite subsystem x;, ..., x;, of a sequence {x;} has a joint distribution m,
in the state m, then there is a unique measure u (u is the Kolmogorov measure on
(R«, B(R.)) which is determined by all m,. We shall say that a sequence {x;} of
observables which has the Kolmogorov measure y in the state m satisfies the
Cezaro joint distribution condition in the state m if

m (k\? % Z(x,- —m(x)L)((—¢, s)°)> =
o (5.1)

L é(m(r)—m(xi))’zv})

holds foreverye >0and n <m,where m;(t)=¢t,i=1,2,...,t =(t1, t2,...) € Re.

(U teR.

k=n

Theorem 5.1. Let a sequence {x;} of independent observables in the state m

satisfy the Cezaro joint distribution condition in m and let Ei 2Vu(x:)<; then

i=1
the s.l.1.n. holds.

Proof. The independence of {x;} in m implies that the Kolmogorov measure u
exists, and it is a product measure on (R., B(Rx)), that is, u =m, X m.,X
Therefore a sequence of coordinate functions w;: t—>t,i=1,2,...,t=(t), t2, ...), I
independent and [ du =m(x:), 0°(7) = V. (x:). Because of the validity of the
strong law of large numbers for {m:} [4] we have

—Z(n. fm du)—0 ae. [u].

i=1

Let now £ >0; then

o

m(lim, sup s.((—¢, £)°))=m ("/i\1 k\/sk((_89 E)c)) =

=lim lim m (k\’:/nsk((——e, £)°)>=

n—so m-—sx

=lim lim u (LmJ ll l%z m(t)—m(x))| =

o o
n—o m—» k=n

=u (lim,. suplteR l E(n.(t) m(x,))~>s) ,

as it follows by [4, Theorem 4], and the proof is complete. QED

Theorem 5.2. (Kolmogorov’s strengthened law of large numbers.) Let {x;} be
a sequence of independent observables which have the same distribution function
in the state m and let {x;} satisfy the Cezaro joint distribution condition (5.1) in m

and let m(x,)=a; then % (x1+...+x,)—> 1L ae. [m].
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Proof. A sequence of integrable coordinate functions {;} is independent on
(R, B(R=), p) and {m;} have the same distribution function with respect to
{t = m,, X my, % ... Because of the strengthened law of large numbers 1 S -

i=1
m(x;))— 0 a.e. [u] [4]. The rest of the proof is analogical to the proof of the above

theorem.
Q.E.D.

6. Central limit theorems

The role of the Gaussian distributions in the conventional probability theory and
its applications are, doubtless, very important. Moreover, in the quantum field
theory, which motivates the theory of logic, they give a satisfactory description of
the radiation field of coherent sources, as it was remarked in [5, p. 372]. We now
show the role of the Gaussian distribution from a purely probabilistic viewpoint for
the logic theory. If a distribution function F, of an observable x in the state m has

t 2
the form F,(t)=L_f exp ( _u_) du, then F, is called the Gaussian dis-
V2n ) . 2

tribution.

Theorem 6.1. (Lindeberg—Levy) Let {x;} be a sequence of strongly
independent observables which have the same distribution function in the state m
and let m(x?) be finite; then for {x;} the c.lt. holds in m.

Proof. The proof is analogical to that of the conventional probability theory. Let
@ be a characteristic function of (x; —m(x1)I1)/ Vim(x1); then ¢ (0)=1, ¢'(0)=0,
@"(0)=-1 and ¢" is continuous. By Taylor’s theorem we have @ (u)
u’ o®w?)

2 + O(u®), where ling u? =0. If . is a characteristic function of

= 1-

ya=B;" i (xi —m(x;)I,) in m, then, by the strong independence,
i=1
u n u2 u2 n u2
4p,.(u)=(q) (W)) =(1_.;+O (:)) —exp (———2—) , UER,,

and this property implies a weak convergence of the corresponding distribution
functions.
Q.E.D.

We say that a sequence {x:} of observables of a logic satisfies the Lindeberg
condition in the state m if for every T >0

n—w

lim B;* > fl (= mx)) dm(0)=0. (6.1)
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Theorem 6.2. (Lindeberg) If a sequence {x:} of strongly indenpendent
observables satisfies the Lindeberg condition (6.1) in the state m, then the c.l.t.
holds for {x;} in m.

Proof. Since a sequence of coordinate functions {x;} is independent on (R,
B(R<), ) and they satisfy the Lindeberg condition, then, by the known result of
the probability theory [1], it follows that the distribution functions F, of
Z(m - E(m))/o (Zm) converge weakly to the distribution function of N(O, 1).
Because of the equality of F, and the distribution function of y., respectively, the
remaining part of the proof is shown.

Remark 5. Theorem 6.1 follows from Theorem 6.2. Indeed, let T>0; then

B. =0 Vn, where o”= V,.(x1). If m(x,)=a, then

>5: | (t = m(x))’ dmy, (1) =
lt—m(x;)|>tB,

i=1

B 0_2 .f'l—a|>m" (t - a)z dmxl(’)-)O.

Theorem 6.3. (Ljapunov) If for a sequence {x:} of strongly independent
observables in the state m we may choose an 6 >0 such that

lim B,®*” > [t =m(x)|*** dm,(t)=0, (6.2)
R—s i=1

then for {x;} the c.l.t. holds in m.
Proof. It suffices to verify that the condition (6.2) implies the validity of (6.1).
Indeed,

| (t=m(x))? dmy, (1)<
i=1 J|t—m(x;)|>tB,

<B,’(tB.)* [t —m(x)|**® dm,,(£) <

i=1 Jlt—-m(x;)|>tB,

<t°B;%® S [|t—m(x)|*** dm.(t)—O.
i=1

Q.E.D.

Corollary 6.3.1. If a sequence of uniformly bounded observables {x;} is strongly
independent in the state m and if B, — =, then the c.l.t. holds in m.
Proof. If ||x]|<K, i=1, 2, ..., for some K, then
[lt=m@))**® dm, (1)< (2K)***/B:*°>0
for n— .

Q.E.D.
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3AKOHBI BOJIbIINX YUCEN
U LHEHTPAJIBHBIE INPEAEJIBHBIE TEOPEMBI HA JIOTUKE
AHaTonui JIBypeyeHCKHU
Pe3ome
B pa6ore uccneayeTcs IOHATHE HE3aBUCHMOCTH Ha JIOTHKE, Kak ero 3aBes Gudder |2]. Hekoropbie
0606uieHHbIe (opMbI €1a6Or0 M CHILHOIO 3aKOHa GONBLIMX YMCEN M LEHTPaNbHbIE TEOpeMbl NI

HabmomaeMbIX Ha JIOTMKE AoKa3aHbl. Hcnonb3oBaHble METOAbI MOAOOHbIE METONAM KJIACHYECKOH
TEOPHH BEPOSATHOCTEN.
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