Mathematica Slovaca

Ján Borsík; Jozef Doboš
On a product of metric spaces

Mathematica Slovaca, Vol. 31 (1981), No. 2, 193--205
Persistent URL: http://dml.cz/dmlcz/136266

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON A PRODUCT OF METRIC SPACES

JÁN BORSÍK-JOZEF DOBOŠ

Introduction

There is a natural way of introducing an algebraic structure on a product of algebraic structures of the same type. For example, if $(A,+)$ and (B, \cdot) are groups, then $(A \times B, *)$, where $\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1} \cdot b_{2}\right)$ is a group as well. The application of this method to a collection $\left\{\left(A_{t}, d_{t}\right)\right\}_{t \in T}$ of metric spaces yields a mapping $\left(\varrho_{d}(x, y)\right)(t)=d_{t}(x(t), y(t))$ which need not be a metric on $\prod_{i \in T} A_{t}$, since its values are in R^{T}. However, a metric can be obtained from that mapping by composing it with a suitable $f: R^{T} \rightarrow R$. In fact, the usual metrics on product spaces (as $V\left(\varrho^{2}+\sigma^{2}\right), \max (\varrho, \sigma), \varrho+\sigma$, the Fréchet metric) can all be described in this way. Therefore it seems useful to investigate the set $\mathcal{M}(T)$ of all such mappings f : $R^{T} \rightarrow R$. A subset of $\mathcal{M}(T)$ (consisting of all nonnegative, monotone, subadditive mappings vanishing exactly at the constant zero function) is studied in [2]. In [1], the set $\mathscr{M}(T)$ is described in the special case when T has only one element. In the present paper we give a complete characterization of $\mathcal{M}(T)$ in the general case when T is an arbitrary set, and establish a necessary and sufficient condition for $f \circ \varrho_{d}$ to metrize the product topology. Theorem 2.11 was inspired by a suggestion of T. Šalát.

1. Preliminary considerations

1.1. Definition. Let T be a set. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of mappings $d_{t}: A_{t}^{2} \rightarrow B_{t}$, where $\left(A_{t}\right)_{t \in T},\left(B_{t}\right)_{t \in T}$ are collections of sets. Define a mapping ϱ_{d} : $\left(\prod_{t \in T} A_{t}\right)^{2} \rightarrow \prod_{t \in T} B_{t}$ by $\left(\varrho_{d}(x, y)\right)(t)=d_{t}(x(t), y(t))$ for each $x, y \in \prod_{t \in T} A_{t}, t \in T$. Define a mapping $\sigma_{d}:\left(\prod_{t \in T} A_{t}\right)^{3} \rightarrow\left(\prod_{t \in T} B_{t}\right)^{3}$ by $\sigma_{d}(x, y, z)=\left(\varrho_{d}(x, y), \varrho_{d}(x, z)\right.$,
$\left.\varrho_{d}(y, z)\right)$ for each $x, y, z \in \prod_{i \in T} A_{t}$. Denote $E_{d}=\left\{\varrho_{d}(x, x): x \in \prod_{i \in} A_{t}\right\}$, and $F_{d}=$ $=\left\{\varrho_{d}(x, y): x, y \in \prod_{t \in T} A_{t}, x \neq y\right\}$.
1.2. Theorem. Let $B \supset \operatorname{Im} \varrho_{d}$ be a set (where $\operatorname{Im} f=\{f(x): x \in X\}$ for each mapping $f: X \rightarrow Y$. Let $f: B \rightarrow R$. Then $f \circ \varrho_{d}$ is a metric if and only if the following three conditions are satisfied:

$$
\begin{align*}
E_{d} \cap F_{d} & =\emptyset \tag{1}\\
\forall x \in \operatorname{Im} \varrho_{d}: f(x) & =0 \Leftrightarrow x \in E_{d},
\end{align*}
$$

$$
\begin{equation*}
\forall x, y, z \in \operatorname{Im} \varrho_{d}:(x, y, z) \in \operatorname{Im} \sigma_{d} \Rightarrow f(x) \leqq f(y)+f(z) \tag{3}
\end{equation*}
$$

Proof. Necessity. Suppose that $a \in E_{d} \cap F_{d}$. Then $\exists x, y, z \in \prod_{T} A_{t}, y \neq z$: $\varrho_{d}(x, x)=a=\varrho_{d}(y, z)$, therefore $0=\left(f \circ \varrho_{d}\right)(x, x)=f\left(\varrho_{d}(x, x)\right)-f\left(\varrho_{d}(y, z)\right)$ $=\left(f \circ \varrho_{d}\right)(y, z)$, d contradiction. This shows that $E_{d} \cap F_{d}-\emptyset$ Let $x \in \operatorname{Im} \varrho_{d}$. Then $\exists a, b \in \prod_{i \in T} A_{i}: x=\varrho_{d}(a, b)$, therefore $0=f(x)=f\left(\varrho_{d}(a, b)\right)-\left(f \varrho_{d}\right)(a, b) \Leftrightarrow a$ $=b \Leftrightarrow x=\varrho_{d}(a, b) \in E_{d}$.

Let $(x, y, z) \in \operatorname{Im} \sigma_{d}$. Then $\exists a, b, c \in \prod_{i \in T} A_{i}: x=\varrho_{d}(a, b), \quad-\varrho_{d}(a, c), z=$ $\varrho_{d}(b, c)$, hence $f(x)=f\left(\varrho_{d}(a, b)\right)=\left(f \circ \varrho_{d}\right)(a, b) \leqq\left(f \circ \varrho_{d}\right)(a, c)+\left(f \varrho_{d}\right)$ $(b, c)=f\left(\varrho_{d}(a, c)\right)+f\left(\varrho_{d}(b, c)\right)=f(y)+f(z)$.

Sufficiency. Let $x, y \in \prod_{i \in T} A_{t}$. Then $0=\left(f \circ \varrho_{d}\right)(x, y)-f\left(\varrho_{d}(x, y)\right) \Leftrightarrow$ $\varrho_{d}(x, y) \in E_{d} \Leftrightarrow x=y$. Let $x, y, z \in \prod_{t \in T} A_{t}$. Then $\sigma_{d}(x, y, z) \in \operatorname{Im} \sigma_{d}$, hence $\left(f \varrho_{d}\right)$ $(x, y)=f\left(\varrho_{d}(x, y)\right) \leqq f\left(\varrho_{d}(x, z)\right)+f\left(\varrho_{d}(y, z)\right)=\left(f \circ \varrho_{d}\right)(x, z)+\left(f \varrho_{d}\right)(y, z)$.
1.3. Corollary. Let $h=\left(h_{t}\right)_{t \in T}$ be a collection of mappings $h_{t} C_{t}^{2} \rightarrow D_{t}$, where $\left(C_{t}\right)_{t \in T},\left(D_{t}\right)_{t \in T}$ are collections of sets. Let $E_{h}=E_{d}, E_{h} \cap F_{h} \quad \emptyset, \operatorname{Im} \varrho_{h} \subset \operatorname{Im} \varrho_{d}$, $\operatorname{Im} \sigma_{h} \subset \operatorname{Im} \sigma_{d}$. Let $B \supset \operatorname{Im} \varrho_{d}$ be a set. Let $f: B \rightarrow R$ be a mapping such that $f \varrho_{d}$ is a metric. Then $f_{\circ} \varrho_{h}$ is a metric.
1.4. Proposition. Let $f: A \rightarrow R$ and $g: B \rightarrow R$ be mappings, where $A, B \supset \operatorname{Im} \varrho_{d}$. Define a mapping $f+g:(A \cap B) \rightarrow R$ by $(f+g)(x)=f(x)+g()$ for each $x \in A \cap B$. Defıne a mapping $\max (f, g):(A \cap B) \rightarrow R \quad b \quad \max (f, g)(x)$ $=\max (f(x), g(x))$ for each $x \in A \cap B$ Let $f \circ \varrho_{d}$ and $a_{\circ} \varrho_{d} b$ metrics Then $(f+g) \circ \varrho_{d}, \max (f, g) \circ \varrho_{d}$ are metrics.

Proof. Let $x \in \operatorname{Im} \varrho_{d}$. Then $0=(f+g)(x)=f(x)+g(x) \quad f(x)-0 \& g(x)$ $=0 \Leftrightarrow x \in E_{d}$. Let $(x, y, z) \in \operatorname{Im} \sigma_{d}$. Then $(f+g)(x)=f(x)+g(x) \leq f(y)+f(z)$ $+g(y)+g(z)=(f+g)(y)+(f+g)(z)$. Then by $1.2,(f+g) \circ \varrho_{d}$ is a metric.

Let $x \in \operatorname{Im} \varrho_{d}$. Then $0=(\max (f, g))(x)=\max (f(x), g(x)) \Leftrightarrow f(x)=0 \& g(x)$ $=0 \Leftrightarrow x \in E_{d}$. Let $(x, y, z) \in \operatorname{Im} \sigma_{d}$. Then $f(x) \leqq f(y)+f(z) \leqq \max (f(y), g(y)$ $+\max (f(z), g(z)), g(x) \leqq g(y)+g(z) \leqq \max (f(y), g(y))+\max (f(z), g(z))$, i.e. $(\max (f, g))(x)=\max (f(x), g(x)) \leqq \max (f(y), g(y))+\max (f(z), g(z))$ $=(\max (f, g))(y)+(\max (f, g))(z)$. Then by 1.2, $\max (f, g)$ is a metric.
1.5. Proposition. Let $\left\{f_{i}\right\}_{i=1}^{\infty}$ be a sequence of mappings $f_{i}: C_{i} \rightarrow R$, where $C_{i} \supset \operatorname{Im} \varrho_{d}$. Let $\left\{f_{i}(x)\right\}_{i=1}^{\infty}$ converge for each $x \in \bigcap_{i=1}^{\infty} C_{i}$. Define a mapping $\lim _{i \rightarrow \infty} f_{i}$: $\bigcap_{i=1}^{\infty} C_{i} \rightarrow R$ by $\left(\lim _{i \rightarrow \infty} f_{i}\right)(x)=\lim _{i \rightarrow \infty} f_{i}(x)$ for each $x \in \bigcap_{i=1}^{\infty} C_{i}$. Let $\forall x \in F_{d}:\left(\lim _{i \rightarrow \infty} f_{i}\right)(x) \neq 0$. Let $f_{i} \circ \varrho_{d}$ be a metric for every $i \in N$. Then $\left(\lim _{i \rightarrow \infty} f_{i}\right) \circ \varrho_{d}$ is a metric.

Proof. Let $(x, y, z) \in \operatorname{Im} \sigma_{d}$. Then $\left(\lim _{i \rightarrow \infty} f_{i}\right)(x)=\lim _{i \rightarrow \infty} f_{i}(x) \leqq \lim _{i \rightarrow \infty}\left(f_{i}(y)+f_{i}(z)\right)$ $=\lim _{i \rightarrow \infty} f_{i}(y)+\lim _{i \rightarrow \infty} f_{i}(z)=\left(\lim _{i \rightarrow \infty} f_{i}\right)(y)+\left(\lim _{i \rightarrow \infty} f_{i}\right)(z)$. Then by 1.2, $\left(\lim _{i \rightarrow \infty} f_{i}\right) \circ \varrho_{d}$ is a metric.
1.6. Corollary. Let $\sum_{i=1}^{\infty} f_{i}$ be a series of functions $f_{i}: C_{i} \rightarrow R$, where $C_{i} \supset \operatorname{Im} \varrho_{d}$. Let $\sum_{i=1}^{\infty} f_{i}(x)$ be convergent for each $x \in \bigcap_{i=1}^{\infty} C_{i}$. Let $f_{i} \circ \varrho_{d}$ be a metric for all $i \in N$. Then $\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f_{i}\right) \circ \varrho_{d}=\left(\sum_{i=1}^{\infty} f_{i}\right) \varrho_{d}$ is a metric.
Proof. By $1.4\left(\sum_{i=1}^{n} f_{i}\right) \circ \varrho_{d}$ is a metric for any $n \in N$. Let $x \in F_{d}$. Then $\forall i \in N$: $f_{i}(x)>0$, therefore $\forall n \in N: \sum_{i=1}^{n} f_{i}(x) \geqq f_{1}(x)$, i.e. $\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f_{i}\right)(x)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f_{i}(x) \geqq$ $f_{1}(x)>0$. Then by $1.5\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f_{i}\right) \circ \varrho_{d}$ is a metric.
1.7. Proposition. Let $f=\left(f_{t}\right)_{t \in I}$ be a collection of functions $f_{t}: C_{t} \rightarrow R$, where $C_{t} \supset \operatorname{Im} \varrho_{d}$ and $I \neq \emptyset$. Let the set $A_{x}=\left\{f_{t}(x): t \in I\right\}$ be bounded above for each $x \in \bigcap_{i \in I} C_{l}$. Define a function $\sup f: \bigcap_{t \in I} C_{t} \rightarrow R$ by $(\sup f)(x)=\sup A_{x}$ for each $x \in \bigcap_{i \in I} C_{t}$. Let $f_{t} \circ \varrho_{d}$ be a metric for every $t \in I$. Then (supf) $\circ \varrho_{d}$ is a metric.

Proof. Let $x \in F_{d}$. Then $\forall t \in I: f_{t}(x)>0$, thus $A_{x} \subset(0, \infty)$, i.e. $\sup A_{x}>0$. Hence $\forall x \in \operatorname{Im} \varrho_{d}:(\sup f)(x)=0 \Leftrightarrow x \in E_{d}$. Let $(x, y, z) \in \operatorname{Im} \sigma_{d}$. Then $\forall t \in I: f_{i}(x) \leqq$ $f_{i}(y)+f_{t}(z) \leqq \sup A_{y}+\sup A_{z}$. Then by 1.2 it follows that $(\sup f) \circ \varrho_{d}$ is a metric,

2. Characterization of $\mathcal{M}(T)$

2.1. Definition. Let T be a nonempty set. Suppose R^{T} is ordered coor-dinate-wise, i.e. $x \leqq y(x<y)$ if and only if $x(t) \leqq y(t)(x(t)<y(t))$ for each x, $y \in R^{T}, t \in T$. Define a function $\Theta: T \rightarrow R$ by $\Theta(t)=0$ for each $t \in T$. Denote $T^{+}=\left\{x \in R^{T}: x \geqq \Theta\right\}$. Denote by $\mathcal{M}(T)$ the set of all functions $f: T^{+} \rightarrow R$ such that $f \circ \varrho_{d}$ is a metric for every collection of metrics $d=\left(d_{t}\right)_{t \in T}$.
2.2. Proposition. Let $f: T^{+} \rightarrow R$ be a function such that
(i) $f(\Theta)=0$,
(ii) $\exists a>0 \forall x \in T^{+}, x \neq \Theta: f(x) \in\langle a, 2 a\rangle$.

Then $f \in \mathcal{M}(T)$.
Proof. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t} \times M_{t} \rightarrow R$. Then $E_{d}=\{\Theta\}, \Theta \notin F_{d}$, hence $E_{d} \cap F_{d}=\emptyset$. Let $x \in \operatorname{Im} \varrho_{d}$. Then $f(x)=0 \Leftrightarrow x=\Theta \Leftrightarrow$ $x \in E_{d}$. Let $x, y, z \in \operatorname{Im} \varrho_{d},(x, y, z) \in \operatorname{Im} \sigma_{d}$. If $x=\Theta$, then $f(x)=0 \leqq f(y)+f(z)$. If $y=\Theta$, then $x=z$, hence $f(x)=0+f(z)=f(y)+f(z)$. If $z=\Theta$, then $x=y$, hence - $f(x)=f(y)+0=f(y)+f(z)$. If $\Theta \notin\{x, y, z\}$, then $f(x) \leqq 2 a=a+a \leqq$ $f(y)+f(z)$. Then by 1.2 we see that $f_{\circ} \varrho_{d}$ is a metric.
2.3. Lemma. Let $f \in \mathcal{M}(T)$. Then

$$
\forall x \in T^{+}: f(x)=0 \Leftrightarrow x=\Theta .
$$

Proof. Let $\varrho: S \times S \rightarrow R$ be a metric such that $\forall a \geqq 0 \exists x, y \in S: \varrho(x, y)=a$ (for example $S=R, \varrho(u, v)=|u-v|$ for every $u, v \in R, x=a, y=0$). Define a collection of metrics $d=\left(d_{t}\right)_{t \in T}$ by $d_{t}=\varrho$ for each $t \in T$. Then $\operatorname{Im} \varrho_{d}=T^{+}$, $E_{d}=\{\Theta\}$. Hence by 1.2 it follows that $\forall x \in T^{+}: f(x)=0 \Leftrightarrow x \in E_{d} \Leftrightarrow x=\Theta$.
2.4. Lemma. Let $f \in \mathcal{M}(T)$. Then $\forall x, y, z \in T^{+}$:

$$
(x \leqq y+z \boldsymbol{\&} y \leqq x+z \boldsymbol{\&} z \leqq x+y) \Rightarrow f(x) \leqq f(y)+f(z)
$$

Proof. Let $\varrho: S \times S \rightarrow R$ be a metric such that $\forall a, b, c \geqq 0, a \leqq b+c, b \leqq a+c$, $c \leqq a+b \exists x, \quad y, \quad z \in S: \quad \varrho(x, y)=a, \quad \varrho(y, z)=c, \quad \varrho(x, z)=b \quad$ (for example $S=R \times R, \varrho(u, v)=\|u-v\|$ for each $u, v \in R \times R, x=(a / 2,0), y=(-a / 2,0)$, $z=\left(\left(c^{2}-b^{2}\right) /(2 a), \quad(V((a+b+c) \cdot(a+b-c) \cdot(a-b+c) \cdot(-a+b+c))) /(2 a)\right)$ for $a \neq 0, z=(b, 0)$ for $a=0)$. Define a collection of metrics $d=\left(d_{t}\right)_{t \in T}$ by $d_{t}=\varrho$ for all $t \in T$. Let $x, y, \quad z \in T^{+}, x \leqq y+z, y \leqq x+z, z \leqq x+y$. Since $\left\{(x, y, z) \in\left(T^{+}\right)^{3}: x \leqq y+z, y \leqq x+z, z \leqq x+y\right\} \subset \operatorname{Im} \sigma_{d}$, by 1.2 we obtain $f(x) \leqq$ $f(y)+f(z)$.
2.5. Lemma. Let $f \in \mathcal{M}(T)$. Then
(i) $\forall x, y \in T^{+}: f(x+y) \leqq f(x)+f(y)$,
(ii) $\forall x, y \in T^{+}: x \leqq 2 y \Rightarrow f(x) \leqq 2 f(y)$.

Proof. Let $x, y \in T^{+}$. Since $(x+y) \leqq x+y, x \leqq(x+y)+y, y \leqq(x+y)+x$, by
2.4 we have $f(x+y) \leqq f(x)+f(y)$. Let $x, y \in T^{+}, x \leqq 2 y$. Since $x \leqq y+y$, $y \leqq x+y$, by 2.4 we get $f(x) \leqq f(y)+f(y)=2 f(y)$.
2.6. Theorem. Let $f: T^{+} \rightarrow R$. Then $f \in \mathcal{M}(T)$ if and only if
(i) $\forall x \in T^{+}: f(x)=0 \Leftrightarrow x=\Theta$,
(ii) $\forall x, y, z \in T^{+}:(x \leqq y+z \& y \leqq x+z \& z \leqq x+y) \Rightarrow f(x) \leqq f(y)+f(z)$.

Proof. Sufficiency. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t} \times M_{t} \rightarrow R$. Then $E_{d}=\{\Theta\}, \Theta \notin F_{d}$, therefore $E_{d} \cap F_{d}=\emptyset$. Let $x \in \operatorname{Im} \varrho_{d} \subset T^{+}$. Then $f(x)=0 \Leftrightarrow$ $x=\Theta \Leftrightarrow x \in E_{d}$. Let $(x, y, z) \in \operatorname{Im} \sigma_{d}$. Then $x \leqq y+z, y \leqq x+z, z \leqq x+y$, hence $f(x) \leqq f(y)+f(z)$.

Necessity. By 2.3 and 2.4.
2.7. Proposition. Let $f, g \in \mathcal{M}(T)$. Then $f+g \in \mathcal{M}(T), \max (f, g) \in \mathcal{M}(T)$. (See 1.4)
2.8. Definition. Let (M, d) be a metric space and let Ω denote the first uncountable ordinal numier. The transfinite sequence

$$
\begin{equation*}
\left\{a_{\xi}\right\}_{\xi<\Omega} \tag{1}
\end{equation*}
$$

of elements of the space M is said to be convergent and to have a limit $a \in M$ if for each $\varepsilon>0$ there exists an ordinal number $\alpha<\Omega$ such that $d\left(a_{\xi}, a\right)<\varepsilon$ whenever $\alpha \leqq \xi<\Omega$. If (1) has a limit a, we write $\lim _{\xi \rightarrow \Omega} a_{5}=a$ (or briefly $a_{\xi} \rightarrow a$). (See [3], [4].)
2.9. Definition. Let X be a set and let (Y, d) be a metric space. The transfinite sequence

$$
\begin{equation*}
\left\{f_{\xi}\right\}_{\xi<\Omega} \tag{2}
\end{equation*}
$$

of functions $f_{5}: X \rightarrow Y$ is said to be convergent and to have a limit function $f: X \rightarrow Y$ if for each $x \in X$ we have $\lim _{\xi \rightarrow \Omega} f_{\xi}(x)=f(x)$. If (2) has a limit function f, we write $\lim _{\xi \rightarrow \mathrm{a}} f_{\zeta}=f$ (or briefly $f_{5} \rightarrow f$). (See [3], [4].)
2.10. Lemma. Let (M, d) be a metric space, $a_{5} \in M(\xi<\Omega)$ and $a_{5} \rightarrow a$. Then there exists an ordinal number $\alpha<\Omega$ such that $a_{\xi}=a$ for each ξ with $\alpha \leqq \xi<\Omega$. (See [4; lemma 1].)
2.11. Theorem. Let $f_{\xi} \in \mathcal{M}(T)(\xi<\Omega)$ and let $f_{\xi} \rightarrow f$. Then $f \in \mathcal{M}(T)$.

Proof. Let $a \in T^{+}$. Since $f_{5} \rightarrow f$, by 2.10 there exists an ordinal number $\alpha=\alpha(a)<\Omega$ such that $f_{5}(a)=f(a)$ whenever $\alpha \leqq \xi<\Omega$. Then $0=f(a)=f_{\alpha}(a) \Leftrightarrow$ $\boldsymbol{a}=\boldsymbol{\Theta}$.

Let $a, b, c \in T^{+}, a \leqq b+c, b \leqq a+c, c \leqq a+b$. Since $f_{\xi} \rightarrow f$, by 2.10 there exists an ordinal number $\beta=\beta(a, b, c)<\Omega$ such that $f_{5}(a)=f(a), f_{5}(b)=f(b), f_{5}(c)=$ $g(c)$ for each ξ with $\beta \leqq \xi<\Omega$. Then $f(a)=f_{\beta}(a) \leqq f_{\beta}(b)+f_{\beta}(c)=f(b)+f(c)$.
2.12. Proposition. Let $\left\{f_{i}\right\}_{i=1}^{\infty}$ be a sequence of functions $f_{i} \in \mathcal{M}(T)$ such that the sequence $\left\{f_{i}(x)\right\}_{i=1}^{\infty}$ converges for each $x \in T^{+}$. Let $\forall x \in T^{+}, x \neq \Theta:\left(\lim _{i \rightarrow \infty} f_{i}\right)(x) \neq 0$. Then $\lim _{i \rightarrow \infty} f_{i} \in \mathcal{M}(T)$. (See 1.5)
2.13. Proposition. Let $\sum_{i=1}^{\infty} f_{i}$ be a series of functions $f_{i} \in \mathcal{M}(T)$ such that the series $\sum_{i=1}^{\infty} f_{i}(x)$ converges for each $x \in T^{+}$. Then $\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f_{i}\right) \in \mathcal{M}(T)$. (See 1.6)
2.14. Proposition. Let $f=\left(f_{t}\right)_{t \in I}$ be a collection of functions $f_{t} \in \mathcal{M}(T)$ such that the set $\left\{f_{t}(x): t \in I\right\}$ is bounded above. Then $\sup f \in \mathcal{M}(T)$. (See 1.7)
2.15. Theorem. Let $f \in \mathcal{M}(T)$. Then f is continuous if and only if f is contınuous at the point Θ.

Proof. Denote by \mathscr{T} the usual topology on R. Denote by \mathscr{S}_{T} the product topology on R^{T}. Let $\varepsilon>0$. Then

$$
\exists U \in \mathscr{S}_{T}, \quad \Theta \in U \forall x \in U \cap T^{+}: f(x)<\varepsilon .
$$

Therefore there exists a base element $V \subset U, \Theta \in V$, i.e. $\exists F \subset T, F$ is finite nonempty $\forall t \in F \exists U_{t} \in \mathscr{T}, 0 \in U_{t}: V=\bigcap_{t \in F} \pi_{t}^{-1}\left(U_{t}\right)$, where π_{t} is the projection from R^{T} into R, i.e. $\pi_{t}(x)=x(t)$ for each $x \in R^{T}$. Let $t \in F$. Then $\exists \gamma_{t}>0:\left(-\gamma_{t}, \gamma_{t}\right) \subset U_{t}$. Denote $\gamma=\min _{t \in F} \gamma_{t}$. Then $\bigcap_{t \in F} \pi_{t}{ }^{1}((-\gamma, \gamma)) \subset V$, therefore $\forall x \in T^{+}:(\forall t \in F$: $x(t)<\gamma) \Rightarrow f(x)<\varepsilon$.

Let $x \in T^{+}, x \neq \Theta$. Denote $\delta=\gamma / 2$. Let $y \in T^{+}$be a function such that $\forall t \in F$: $|x(t)-y(t)|<\delta$.

Define a function $z: T \rightarrow R$ by

$$
\begin{aligned}
& z(t)=\min (\delta, x(t)+y(t)) \text { for } t \in F, \\
& z(t)=x(t)+y(t) \text { for } t \in T-F .
\end{aligned}
$$

Then $z \in T^{+}, x \leqq y+z, y \leqq x+z, z \leqq x+y, \forall t \in F: z(t)<\gamma$, hence $|f(x)-f(y)| \leqq$ $f(z)<\varepsilon$. Therefore $\forall x \in T^{+}, \quad x \neq \Theta \forall \varepsilon>0 \exists W \in \mathscr{S}_{T}, \quad x \in W \forall y \in W \cap T^{+}:$ $|f(x)-f(y)|<\varepsilon\left(W=\bigcap_{t \in F} \pi_{t}^{-1}(S(x(t), \delta))\right)$ and since, by the hypothesis, f is continuous at the point Θ, f is continuous.
2.16. Lemma. Let $f \in \mathcal{M}(T)$ be continuous. Then

$$
\forall \varepsilon>0 \exists x \in T^{+}, \quad x>\Theta: f(x)<\varepsilon .
$$

Proof. Let $\varepsilon>0$. Since f is continuous at the point Θ, we have $\exists U \in \mathscr{S}_{T}, \Theta \in U$ $\forall x \in U \cap T^{+}: f(x)<\varepsilon$. Since $U \in \mathscr{S}_{T}$ and $\Theta \in U, \exists \delta>0 \exists F \subset T, F$ is finite nonempty: $\bigcap_{i \in F} \pi_{i}^{-1}(S(0, \delta)) \subset U$. Define a function $x: T \rightarrow R$ by $x(t)=\delta / 2$ for each $t \in T$. Then $x \in U \cap T^{+}$, therefore $f(x)<\varepsilon$.
2.17. Proposition. Let T be a finite set. Let $f \in \mathcal{M}(T)$. Then f is continuous if and only if

$$
\forall \varepsilon>0 \exists x \in T^{+}, \quad x>\Theta: f(x)<\varepsilon .
$$

Proof. Sufficiency. Let $\varepsilon>0$. Then for $\varepsilon>0$ there is $a \in T^{+}, a>\Theta: f(a)<\varepsilon / 2$. Since $\forall x \in T^{+}: x \leqq 2 a \Rightarrow f(x) \leqq 2 f(a)<\varepsilon$, hence for $U=\bigcap_{i \in T} \pi_{i}^{-1}\left(S\left(0, \min _{t \in T} a(t)\right)\right)$ there holds $U \in \mathscr{S}_{T}, \Theta \in U, \forall x \in U \cap T^{+}: f(x)<\varepsilon$, therefore f is continuous at the point Θ and by $2.15 f$ is continuous. Necessity follows from 2.16.
2.18. Example. Let $f:\{0,1\}^{+} \rightarrow R$ be defined as follows:

$$
\begin{gathered}
f(\{(0, x),(1, y)\})=1 \text { for } x \neq 0, \\
f(\{(0, x),(1, y)\})=\min (1, y) \text { for } x=0 .
\end{gathered}
$$

Then $f \in \mathcal{M}(\{0,1\}), f$ is not continuous and we have

$$
\forall \varepsilon>0 \exists x \in\{0,1\}^{+}, \quad x \neq \Theta: f(x)<\varepsilon
$$

(for example $x=\{(0,0),(1, \min (1 / 2, \varepsilon / 2))\}$).
2.19. Corollary. Let T be a finite set. Let $f \in \mathcal{M}(T)$. Then f is not continuous if and only if

$$
\exists \eta>0 \forall x \in T^{+}, \quad x>\Theta: f(x) \geqq \eta .
$$

2.20. Lemma. Let $f: S \rightarrow T$ be a bijective mapping. Define a mapping f^{*} : $T^{+} \rightarrow S^{+}$by $f^{*}(a)=a \circ$ for all $a \in T^{+}$. Let $g: S^{+} \rightarrow R$. Then $g \in \mathcal{M}(S)$ if and only if $\left(g \circ f^{*}\right) \in \mathcal{M}(T)$.

Proof. Necessity. Let $a \in T^{+}$. Then $0=\left(g \circ f^{*}\right)(a)=g\left(f^{*}(a)\right) \Leftrightarrow f^{*}(a)=\Theta \Leftrightarrow$ $\forall t \in S: a(f(t))=0 \Leftrightarrow \forall t \in T: a(t)=0 \Leftrightarrow a=\Theta$.

Let $a, b, c \in T^{+}, a \leqq b+c, b \leqq a+c, c \leqq a+b$. Then $f^{*}(a) \leqq f^{*}(b)+f^{*}(c)$, $f^{*}(b) \leqq f^{*}(a)+f^{*}(c), f^{*}(c) \leqq f^{*}(a)+f^{*}(b)$, hence $\left(g \circ f^{*}\right)(a)=g\left(f^{*}(a)\right) \leqq$ $g\left(f^{*}(b)\right)+g\left(f^{*}(c)\right)=\left(g \circ f^{*}\right)(b)+\left(g \circ f^{*}\right)(c)$. Then by 2.6. we obtain $\left(g \circ f^{*}\right) \in \mathcal{M}(T)$.

Sufficiency. Since $f^{-1}: T \rightarrow S$ is a bijective mapping, we have $g=\left(g \circ f^{*}\right) \circ\left(f^{-1}\right)^{*} \in$ $\mu(S)$.
2.21. Lemma. Let $S \subset T$ be a nonempty set, $i: S \rightarrow T, i(x)=x$. Define a mapping $i *: S^{+} \rightarrow T^{+}$for each $a \in S^{+}$by $(i *(a))(t)=a(t)$ for $t \in S$ and $(i *(a))(t)=0$ for $t \in T-S$. Let $f \in \mathcal{M}(T)$. Then $\left(f_{\circ} i *\right) \in \mathcal{M}(S)$.

Proof. Let $a \in S^{+}$. Then $0=\left(f_{\circ} i *\right)(a)=f(i *(a)) \Leftrightarrow i *(a)=\Theta \Leftrightarrow a=\Theta$.
Let $a, b, c \in S^{+}, a \leqq b+c, b \leqq a+c, c \leqq a+b$. Then $i *(a) \leqq i *(b)+i *(c)$, $i *(b) \leqq i *(a)+i *(c), i *(c) \leqq i *(b)+i *(a)$, therefore $(f \circ i *)(a)=f(i *(a)) \leqq$ $f(i *(b))+f(i *(c))=(f \circ i *)(b)+(f \circ i *)(c)$. Then $\left(f_{\circ} i_{*}\right) \in \mathcal{M}(S)$ (by 2.6).
2.22. Proposition. Let S be a nonempty set. Let $f: S \rightarrow T$ be an injective mapping. Define a mapping $i: \operatorname{Im} f \rightarrow T$ by $i(x)=x$. Let $g: \operatorname{Im} f \rightarrow S$ be a bijective mapping such that $f=i \circ g^{-1}$. Define a mapping $f_{*}: S^{+} \rightarrow T^{+}$by $f_{*}=i * \circ g^{*}$. Let $h \in \mathcal{M}(T)$. Then $(h \circ f *) \in \mathcal{M}(S)$.

Proof. Since by $2.21\left(h_{\circ} i *\right) \in \mathcal{M}(\operatorname{Im} f)$, it follows from 2.20 that $h \circ f_{*}$ $=(h \circ i *) \circ g^{*} \in \mathcal{M}(S)$.
2.23. Remark. Let \mathscr{K} and \mathscr{S} be categories whose objects are nonempty sets and morphisms are injective mappings and mappings, respectively. Assign the set $\mathcal{M}(T)$ to each object T of \mathscr{K}. For every morphism $f: S \rightarrow T$ of the category \mathscr{K} define a mapping $\mathcal{M}(f): \mathcal{M}(T) \rightarrow \mathcal{M}(S)$ by $(\mathcal{M}(f))(g)=g \circ f *$ whenever $g \in \mathcal{M}(T)$. Thus we have described a countervariant functor $\mathcal{M}: \mathscr{K} \rightarrow \mathscr{S}$.

3. Metrization of the product topology

3.1. Lemma. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t}^{2} \rightarrow R$. Let $f \in \mathcal{M}(T)$. Denote by \mathscr{T}_{s} the product topology on $\prod_{i \in T} M_{t}$ and denote by \mathscr{T}_{f} the topology generated by the metric $f \circ \varrho_{d}$. Then $T_{s} \subset T_{f}$.

Proof. Let $t \in T$. Let U_{t} be an open set in M_{t}. Let $x \in \pi_{t}^{-1}\left(U_{t}\right)$, where π_{t} is the projection from $\prod_{i \in T} M_{t}$ into M_{t}, i.e. $\pi_{t}(x)=x(t)$ for each $x \in \prod_{i \in T} M_{t}$. Then $x(t) \in U_{t}$, therefore $\exists \varepsilon>0: S(x(t), \varepsilon) \subset U_{t}$. Define a function $a: T \rightarrow R$ by $a(t)=2 \varepsilon$ and $a(i)=0$ for each $i \in T-\{t\}$.

Put $\delta=f(a) / 2$. Let $y \in S(x, \delta) \in \mathscr{T}_{f}$. Then $\left(f \circ \varrho_{d}\right) \quad(x, y)<\delta$, therefore $f\left(\varrho_{d}(x, y)\right)<\delta=f(a) / 2$. By 2.6 we have $\forall b \in T^{+}: a \leqq 2 b \Rightarrow f(a) \leqq 2 f(b)$, or equivalently $\forall b \in T^{+}: f(b)<f(a) / 2 \Rightarrow \neg(b \geqq a / 2)$.

Hence $\urcorner\left(\varrho_{d}(x, y) \geqq a / 2\right)$ and therefore, by definition a, we have $d_{t}(x(t), y(t))$ $=\left(\varrho_{d}(x, y)\right)(t)<a(t) / 2=\varepsilon$. Therefore $y \in \pi_{t}^{-1}(S(x(t), \varepsilon)) \subset \pi_{t}^{-1}\left(U_{t}\right)$. Then

$$
\forall x \in \pi_{t}^{-1}\left(U_{t}\right) \exists V \in \mathscr{T}_{f}, x \in V: V \subset \pi_{t}^{-1}\left(U_{t}\right) \quad(V=S(x, \delta))
$$

which implies $\mathscr{T}_{s} \subset \mathscr{T}_{f}$.
3.2. Proposition. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t}^{2} \rightarrow R$. Put $H_{d}=\left\{t \in T: M_{t}^{\prime} \neq \emptyset\right\}$ (where M^{\prime} is the set of all accumulation points of the metric space (M, ϱ)). Let $F, H_{d} \subset F \subset T$, be such a set that $T-F$ is a finite set. Let i : $F \rightarrow T$ be a mapping defined by $i(x)=x$. Let $f \in \mathcal{M}(T)$. Let $f_{\circ} i *$ be a continuous mapping. Then $\mathscr{T}_{s}=\mathscr{T}_{f}$.

Proof. Since by 3.1 we have $\mathscr{T}_{s} \subset \mathscr{T}_{f}$, it is sufficient to prove that $\mathscr{T}_{f} \subset \mathscr{T}_{s}$.
Let $x \in \prod_{i \in T} M_{t}$ and $\varepsilon>0$. The function $f_{\circ} i *$ is continuous at the point Θ, i.e. $\exists K \subset F, K \neq \emptyset$ finite $\exists \gamma>0 \forall y \in F^{+}:(\forall t \in K: y(t)<\gamma) \Rightarrow(f \circ i *)(y)<\varepsilon$.

The set $T-F$ is finite, this implies that there exists $\beta>0$ such that $\forall t \in T-F$ $\forall y \in M_{t}, y \neq x(t): d_{t}(x(t), y) \geqq \beta$. Denote $\delta=\min (\beta, \gamma)$ and $L=K \cup(T-F)$.

Put $V=\bigcap_{i \in L} \pi_{t}^{-1}(S(x(t), \delta))$. Then $V \in \mathscr{T}_{s}$ and $x \in V$. Let $y \in V$.
Then $\forall t \in T-F:\left(\varrho_{d}(x, y)\right)(t)=0$, this implies $i *\left(\left.\varrho_{d}(x, y)\right|_{F}\right)=\varrho_{d}(x, y)$. Since $\left.\varrho_{d}(x, y)\right|_{F} \in F^{+}$and $\forall t \in K:\left(\left.\varrho_{d}(x, y)\right|_{F}\right)(t)=d_{t}(x(t), y(t))<\gamma$, we have $\left(f \circ \varrho_{d}\right)$ $(x, y)=f\left(\varrho_{d}(x, y)\right)=\left(f_{\circ} i_{*}\right)\left(\left.\varrho_{d}(x, y)\right|_{F}\right)<\varepsilon$, i.e. $y \in S(x, \varepsilon)$. Therefore $\forall x \in \prod_{t \in T} M_{t} \forall \varepsilon>0 \exists V \in \mathscr{T}_{s}: x \in V \subset S(x, \varepsilon)$, i.e. $\mathscr{T}_{f}=\mathscr{T}_{s}$.
3.3. Corollary. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t}^{2} \rightarrow R$. Let $f \in \mathscr{M}(T)$ be a continuous mapping. Then $\mathscr{T}_{s}=\mathscr{T}_{f}$.
3.4. Proposition. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t}^{2} \rightarrow R$. Denote $I_{d}=\left\{t \in T: \sup \operatorname{Im} d_{t} \in R\right\}$. Let M_{t} be a nonempty set for each $t \in T$. Let $H_{d} \cap I_{d}$ be a finite set. Let $i: H_{d} \rightarrow T$ be a mapping defined by $i(x)=x$. Let $f \in \mathcal{M}(T)$ be a mapping such that $\mathscr{T}_{s}=\mathscr{T}_{f}$. Then $f_{\circ} i *$ is a continuous mapping.

Proof. If $H_{d}=\emptyset$, then the statement is true. Suppose $H_{d} \neq \emptyset$. Then by 2.21 $f_{\circ} i * \in \mathcal{M}\left(H_{d}\right)$, therefore it is sufficient to prove that $f_{\circ} i *$ is continuous at the point Θ. Since M_{t} is nonempty for all t in T, there exists x in $\prod_{i \in T} M_{t}$ such that $\forall t \in H_{d}$: $x(t) \in M_{t}^{\prime}$. Let $\varepsilon>0$. Then $S(x, \varepsilon / 2) \in \mathscr{T}_{f} \subset \mathscr{T}_{s}$, hence

$$
\exists K \subset T, \quad K \neq \emptyset \quad \text { finite } \quad \exists \gamma>0: \bigcap_{i \in K} \pi_{t}^{-1}(S(x(t), \gamma)) \subset S(x, \varepsilon / 2)
$$

Let F be a nonempty finite set such that $H_{d} \cap\left(K \cup I_{d}\right) \subset F \subset H_{d}$. Let $t \in F$. Since $x(t) \in M_{t}^{\prime}$, there exists $y_{t} \in M_{t}$ with $0<d_{t}\left(x(t), y_{t}\right)<\gamma$. Put $\delta=\min _{t \in F} d_{t}\left(x(t), y_{t}\right)$. Let $z \in H_{d}^{+}, z \in \bigcap_{t \in F} \pi_{t}^{-1}(S(0, \delta))$. Then $\forall t \in H_{d}-F \exists y_{t} \in M_{t}: z(t) \leqq d_{t}\left(x(t), y_{t}\right)$. Define a mapping $y: T \rightarrow \bigcup_{t \in T} M_{t}$ by $y(t)=y_{t}$ for $t \in H_{d}, y(t)=x(t)$ for $t \in T-H_{d}$. Then $y \in \bigcap_{i \in K} \pi_{t}^{-1}(S(x(t), \gamma))$ and $i *(z) \leqq 2 \varrho_{d}(x, y)$, hence

$$
(f \circ i *)(z)=f(i *(z)) \leqq 2 f\left(\varrho_{d}(x, y)\right)=2\left(f \circ \varrho_{d}\right)(x, y)<\varepsilon .
$$

Therefore $\forall \varepsilon>0 \exists F \subset H_{d}, F \neq \emptyset$ finite $\exists \delta>0$

$$
\forall z \in \bigcap_{i \in F} \pi_{t}^{-1}(S(0, \delta)):(f \circ i *)(z)<\varepsilon
$$

i.e. $f \circ i *$ is continuous at the point Θ.
3.5. Corollary. Let d_{t} be the usual metric on R for all $t \in T$. Let $f \in \mathcal{M}(T)$. Then $\mathscr{T}_{s}=\mathscr{T}_{f}$ if and only if f is continuous.
3.6. Theorem. Let T be a finite set. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics d_{t} : $M_{t}^{2} \rightarrow R$. Let M_{t} be a nonempty set for all $t \in T$. Let $i: H_{d} \rightarrow T$ be a mapping defined by $i(x)=x$. Let $f \in \mathscr{M}(T)$. Then $\mathscr{T}_{s}=\mathscr{T}_{f}$ if and only if $f_{\circ} i *$ is continuous.

Proof. Necessity follows by 3.4. Sufficiency follows by 3.2.
3.7. Example. Let $d=\left(d_{n}\right)_{n \in N}$ be a collection of metrics $d_{n}:\langle 0,1 / n\rangle^{2} \rightarrow R$, $d_{n}(u, v)=|u-v|$ for each $u, v \in\langle 0,1 / n\rangle$, where N is the set of all positive integer numbers. Let $i: H_{d} \rightarrow N, i(x)=x$ (therefore i is the identity, since $H_{d}=N$).

Let $f: N^{+} \rightarrow R$ be a function defined by $f(x)=\sup _{n \in N}(\min (1, x(n)))$ for all $x \in N^{+}$. Then we can verify that $f \in \mathscr{M}(N), \mathscr{T}_{s}=\mathscr{T}_{f}$ but $f_{\circ} i *$ is not continuous.
3.8. Example. Let $d=\left(d_{n}\right)_{n \in N}$ be a collection of metrics $d_{n}:\{0,1\}^{2} \rightarrow R$, $d_{n}(0,1)=1$ for all $n \in N$. Let $i: H_{d} \rightarrow N, i(x)=x$ (since $H_{d}=\emptyset, i$ is the empty mapping). Let $f: N^{+} \rightarrow R$ be a function defined by $f(\Theta)=0$ and $f(x)=1 \forall x \in N^{+}$, $x \neq \Theta$. Then we can show that $f \in \mathcal{M}(N), f_{\circ} i *$ is continuous but $\mathscr{T}_{s} \neq \mathscr{T}_{f}$.
3.9. Proposition. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t}^{2} \rightarrow R$. Let E, $H_{d} \subset E \subset I_{d}$, be such a set that $T-E$ is a finite set. Let $f \in \mathcal{M}(T)$ be a mapping such that $\forall \varepsilon>0 \exists c \in T^{+}$:
(i) $\exists F \subset E$ finite $\forall t \in E-F: c(t) \geqq \sup \operatorname{Im} d_{t}$,
(ii) $\forall t \in E: c(t)>0$,
(iii) $f(c)<\varepsilon$.

Then $\mathscr{T}_{s}=\mathscr{T}_{f}$.
Proof. Let $x \in \prod_{i \in T} M_{t}$ and $\varepsilon>0$. Since $T-E$ is a finite set, there exists $\delta>0$ such that $\forall t \in T-E \quad \forall y \in M_{t}, y \neq x(t): d_{t}(x(t), y) \geqq \delta$. Further, since $\varepsilon / 2>0$, there exists $c \in T^{+}$such that $(\forall t \in E: c(t)>0) \&(\exists F \subset E$ finite $\forall t \in E-F: c(t) \geqq$ $\left.\sup \operatorname{Im} d_{t}\right) \boldsymbol{\&}(f(c)<\varepsilon / 2)$. Since $F \subset E$, we have $\forall t \in F: c(t)>0$. Since F is a finite set, there exists $\gamma>0$ such that $\forall t \in F: c(t) \geqq \gamma$. Let K be a nonempty finite set such that $((T-E) \cup F) \subset K \subset T$. Put $V=\bigcap_{t \in K} \pi_{t}^{-1}(S(x(t), \min (\gamma, \delta)))$. Let $y \in V$. Then $\forall t \in E-F: d_{t}(x(t), y(t)) \leqq \sup \operatorname{Im} d_{t} \leqq c(t), \forall t \in T-E: d_{t}(x(t), y(t))=0 \leqq c(t)$, $\forall t \in F: d_{t}(x(t), y(t)) \leqq \gamma \leqq c(t)$, i.e. $\varrho_{d}(x, y) \leqq c$. Then $\varrho_{d}(x, y) \leqq 2 c$, hence $\left(f \circ \varrho_{d}\right)$ $(x, y)=f\left(\varrho_{d}(x, y)\right) \leqq 2 f(c)<2 \varepsilon / 2=\varepsilon$, i.e. $y \in S(x, \varepsilon)$. Therefore $x \in V \subset$ $S(x, \varepsilon), V \in \mathscr{T}_{s}$. Then $\mathscr{T}_{f} \subset \mathscr{T}_{s}$.
3.10. Corollary. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t}^{2} \rightarrow R$. Let $\forall \varepsilon>0$ $\exists H \subset T$ finite $\forall t \in T-H$: sup $\operatorname{Im} d_{t}<\varepsilon$. Let $E, H_{d} \subset E \subset T$, be such a set that $T-E$ is a finite set. Let $f \in \mathcal{M}(T)$ be a mapping such that

$$
\forall \varepsilon>0 \exists \gamma>0 \exists c \in T^{+}:(f(c)<\varepsilon) \&(\forall t \in E: c(t) \geqq \gamma) .
$$

Then $\mathscr{T}_{s}=\mathscr{T}_{f}$.
Proof. Let $\varepsilon>0$. Then $\exists \gamma>0 \exists c \in T^{+}:(f(c)<\varepsilon) \&(\forall t \in E: c(t) \geqq \gamma)$. Then $\exists H \subset T$ finite $\forall t \in T-H$: sup $\operatorname{Im} d_{t}<\gamma$. Put $F=H \cap E$. Then $F \subset E, F$ is a finite set and $\forall t \in E-F: c(t) \geqq \gamma>\sup \operatorname{Im} d_{t}$. Therefore $\mathscr{T}_{s}=\mathscr{T}_{f}$ by 3.9.
3.11. Example. Let $d=\left(d_{n}\right)_{n \in N}$ be a collection of metrics $d_{n}:\left\langle 0,1 / n^{2}\right\rangle^{2} \rightarrow R$, $d_{n}(u, v)=|u-v| \forall u, v \in\left\langle 0,1 / n^{2}\right\rangle$. Let $f: N^{+} \rightarrow R$ be a function defined by $f(x)$ $=\sup _{n \in N}(\min (1, n \cdot x(n)))$ for each $x \in N^{+}$. Then by $2.6 f \in \mathcal{M}(N)$, by $3.9 \mathscr{T}_{s}=\mathscr{T}_{f}$, but d and f do not satisfy the hypothesis of 3.10 .
3.12. Theorem. Let $d=\left(d_{t}\right)_{t \in T}$ be a collection of metrics $d_{t}: M_{t}^{2} \rightarrow R$. Let M_{t} be a nonempty set for all t in T. Let $f \in \mathcal{M}(T)$. Then $\mathscr{T}_{s}=\mathscr{T}_{f}$ if and only if

$$
\forall \varepsilon>0 \exists F \subset T \quad \text { finite } \quad \exists \delta>0 \forall \alpha \in N^{\left(T-\left(I_{d} \cup F\right)\right)} \exists a \in T^{+}:
$$

(i) $\forall t \in\left(T-\left(I_{d} \cup F\right)\right): a(t) \geqq \alpha(t)$,
(ii) $\forall t \in\left(I_{d}-F\right): a(t) \geqq \sup \operatorname{Im} d_{t}$,
(iii) $\forall t \in\left(F \cap H_{d}\right): a(t) \geqq \delta$,
(iv) $f(a)<\varepsilon$.

Proof. Necessity. Let $t \in H_{d}$. Then $\exists x_{t} \in M_{t} \forall \varepsilon>0 \exists y \in M_{t}: 0<d_{t}\left(x_{t}, y\right)<\varepsilon$. Since $\forall t \in T: M_{t} \neq \emptyset$, we have $\forall t \in\left(T-H_{d}\right) \exists x_{t} \in M_{t}$. Define a mapping x : $T \rightarrow \bigcup_{t \in T} M_{t}$ by $x(t)=x_{t}$ for all $t \in T$. Let $\varepsilon>0$. Since $\mathscr{T}_{s}=\mathscr{T}_{f}, S(x, \varepsilon / 4) \in \mathscr{T}_{s}$. Therefore

$$
\exists F \subset T, \quad F \neq \emptyset \quad \text { finite } \quad \exists \gamma>0: \bigcap_{t \in F} \pi_{t}^{-1}(S(x(t), \gamma)) \subset S(x, \varepsilon / 4) .
$$

Let $t \in F \cap H_{d}$. Then $\exists y_{t} \in M_{t}: 0<d_{t}\left(x(t), y_{t}\right)<\gamma$. If $F \cap H_{d} \neq \emptyset$ put $\delta=$ $\min _{t \in F \cap H_{d}} d_{t}\left(x(t), y_{t}\right)>0$. If $F \cap H_{d}=\emptyset$, put $\delta=1$. Let $\alpha \in N^{\left(T-\left(t_{d} \cup F\right)\right)}$. Let $t \in T-\left(I_{d} \cup F\right)$. Then $\exists y_{t} \in M_{t}: d_{t}\left(x(t), y_{t}\right) \geqq \alpha(t)$. Let $t \in I_{d}-F$. If sup $\operatorname{Im} d_{t}>0$, there exists $y_{t} \in M_{t}$:

$$
d_{t}\left(x(t), y_{t}\right)>(1 / 4) \cdot \sup \operatorname{Im} d_{t}
$$

If $\sup \operatorname{Im} d_{t}=0$, put $y_{t}=x(t)$. Put $y_{t}=x(t)$ for each $t \in F-H_{d}$.
Define a mapping $y: T \rightarrow \bigcup_{t \in T} M_{t}$ by $y(t)=y_{t}$ for all $t \in T$. Put $a=4 \varrho_{d}(x, y)$. Then

$$
f(a) \leqq 4 \cdot f\left(\varrho_{d}(x, y)\right)=4 \cdot\left(f \circ \varrho_{d}\right)(x, y)<4 \cdot \varepsilon / 4=\varepsilon .
$$

Sufficiency. Let $x \in \prod_{i \in T} M_{t}$ and $\varepsilon>0$. Since $\varepsilon / 2>0$, there exists a finite set $F \subset T$ such that

$$
\begin{gathered}
\exists \delta>0 \forall \alpha \in N^{\left(T-\left(I_{d} \cup F\right)\right)} \exists a \in T^{+}:\left(\forall t \in\left(T-\left(I_{d} \cup F\right)\right):\right. \\
a(t) \geqq \alpha(t)) \&\left(\forall t \in I_{d}-F: a(t) \geqq \sup \operatorname{Im} d_{t}\right) \& \\
\&\left(\forall t \in F \cap H_{d}: a(t) \geqq \delta\right) \&(f(a)<\varepsilon / 2) .
\end{gathered}
$$

Since $F-H_{d}$ is a finite set

$$
\exists \gamma>0 \forall t \in\left(F-H_{d}\right) \forall y \in M_{t}, \quad y \neq x(t): d_{t}(x(t), y) \geqq \gamma .
$$

Let $K, F \subset K \subset T$, be a nonempty finite set.
Put $V=\bigcap_{t \in K} \pi_{t}^{-1}(S(x(t), \min (\gamma, \delta)))$. Let $y \in V$. Let $t \in\left(T-\left(I_{d} \cup F\right)\right)$. Then there exists a positive integer n_{t} such that $d_{t}(x(t), y(t)) \leqq n_{t}$. Define a mapping α : $\left(T-\left(I_{d} \cup F\right)\right) \rightarrow N$ by $\alpha(t)=n_{t}$ for each $t \in T-\left(I_{d} \cup F\right)$. Then $\exists a \in T^{+}$: $\left(\forall t \in\left(T-\left(I_{d} \cup F\right)\right): a(t) \geqq \alpha(t)\right) \&\left(\forall t \in I_{d}-F: a(t) \geqq \sup \operatorname{Im} d_{t}\right) \&(\forall t \in F:$ $a(t) \geqq \delta) \&(f(a)<\varepsilon / 2)$.

Then $\forall t \in I_{d}-F: d_{t}(x(t), y(t)) \leqq \sup \operatorname{Im} d_{t} \leqq a(t), \forall t \in F \cap H_{d}: d_{t}(x(t), y(t))<\delta$ $\leqq a(t), \forall t \in\left(T-\left(I_{d} \cup F\right)\right): d_{t}(x(t), y(t)) \leqq \alpha(t) \leqq a(t), \forall t \in F-H_{d}: d_{t}(x(t)$, $y(t))=0 \leqq a(t)$, i.e. $\varrho_{d}(x, y) \leqq a$. Then $\varrho_{d}(x, y) \leqq 2 a$, hence $\left(f_{\circ} \varrho_{d}\right)(x, y)$ $=f\left(\varrho_{d}(x, y)\right) \leqq 2 f(a)<2 \cdot \varepsilon / 2=\varepsilon$, i.e. $y \in S(x, \varepsilon)$. Therefore $x \in V \subset S(x, \varepsilon)$, $V \in \mathscr{T}_{s}$. Then $\mathscr{T}_{f} \subset \mathscr{T}_{s}$.
3.13. Example. Let d be a collection of metrics from example 3.8. Define a function $k: N^{+}-\{\Theta\} \rightarrow N$ by $k(x)=\min \{n \in N: x(n) \neq 0\}$. Define a function $f:$ $N^{+} \rightarrow R$ by $f(x)=\mathrm{e}^{-k(x)}$ for $x \in N^{+}, x \neq \Theta$ and $f(\Theta)=0$. Then by $2.6 f \in \mathcal{M}(N)$, by $3.12 \mathscr{T}_{s}=\mathscr{T}_{f}$, but f and d do not satisfy the hypotheses of either 3.2 or 3.9.

REFERENCES

[1] ДОБОШ, Й.-БОРСИК, Й. : О функциях, композиция с метрикой которых является метрикой, Math. Slov., to appear.
[2] NEUBRUNN, T., ŠALÁT, T.: Über eine Klasse metrischer Räume, Acta F.R.N. Univ. Comen. 10, 3, Math. 12, 1965, 23-30.
[3] SIERPIŃSKI, W.: Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math. 1, 1920, 132-141.
[4] SALÁT, T.: On transfinite sequences of B-measurable functions, Fund. Math. 78 1973, 157—162.
Received October 17, 1979

Ján Borsík
Belanská štvrt 550/B 03301 Liptovský Hrádok

О ПРОИЗВЕДЕНИИ МЕТРИЧЕСКИХ ПРОСТРАНСТВ

Ян Борсик и Йозеф Добош

Резюме

Пусть T является непустым множеством. Обозначим $\mathcal{M}(T)$ множество всех отображений f : $\left\{x \in R^{T} ; \forall t \in T: x(t) \geqq 0\right\} \rightarrow R$, для которых

$$
\begin{equation*}
d(x, y)=f\left(\left\{d_{t}\left(x_{t}, y_{t}\right)\right\}_{t \in T}\right) \tag{1}
\end{equation*}
$$

является метрикой на множестве

$$
\prod_{t \in T} M_{t}
$$

для каждого семейства метрических пространств $\left\{\left(M_{t}, d_{t}\right)\right\}_{\iota \in \tau}$. В этой работе мы предлагаем характеризацию множества $\mathcal{M}(T)$, а также необходимое и достаточное условие метризации топологии произведения на

$$
\prod_{i \in T} M_{t}
$$

при помощи метрики (1).

