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ON THE CONTINUITY FOR CONNECTED 
FUNCTIONS 

MARTA CZAJKA-ZGIRSKA and JAN S. LIPINSKI 

The presented paper deals with properties of sets of points of continuity of real 
functions with a connected graph. These functions will be referred to as connected 
functions. G a r r e t , Ne lms and Ke l l um [1] defined the connectivity points of 
a real function and demonstrated that a function / : R -* R is connected if and only 
if each point of the line R is a point of connectedness. B r u c k n e r and C e d e r [2] 
defined the Darboux points of a real function and noted that it follows from 
a theorem of Csasza r [4] that the function f: R-+R possesses the Darboux 
property if and only if each point of R is a Darboux point. C e d e r [3] has 
demonstrated, among others, that for any set C of Ga type on R there exists a real 
function possessing the Darboux property and such that C is the set of continuity 
points of the function. 

The aim of this paper is to deliver the proof of that theorem concerning the set of 
continuity points of a connected function which is the analogon of Ceder's theorem 
on Darboux functions. 

N o t a t i o n s . If M is a subset of the plane R2, then the projection of M onto the 
Ox-axis will be denoted by (M)x. A line perpendicular to the Ox-axis passing 
through the point (JC, 0) will be denoted by /*. The set of continuity points of 
a function / will be denoted by C(f) and the graph of / b y G/. 

Definition 1. Let M c R 2 . The point (JC0, yo) is said to be the limit point of M 
from the right if for any S > 0 the set ( JC, y ) : JC0<JC<JCO + S , y0-d<y<y0 + 
+ 8}nM£0. Analogously, if for any S > 0 the set {(JC, y ) : J C 0 - 6 < J C < J C 0 , 

yo-6<y<y0+8 }nM£ 0, then (JCO, y0) is said to be the limit point of M from the 
left. 

Definition 2 ( G a r r e t t , Ne lms , Ke l lum) . The point zeR is said to be 
a left-hand (right-hand) connectedness point of a function / if the fact that a and b 
are two left-hand (right-hand) limit values of / in the point z and that M c R 2 is 
a continuum such that (M)x is a non-degenerated interval with the right-hand 
(left-hand) end point in z andMn/ z cz{(z , y):a<y<b} implies that M n G / ^ 0 . 

Definition 3 ( G a r r e t t , Ne lms , Ke l lum) . The function / will be referred to as 
connected in the point z belonging to its domain if f(z) is the right-hand and 
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left-hand limit value of / in z and if z is a left-hand and right-hand connectedness 
point of /. 

Theorem. If C is a set of the Go type on the line R, then there exists a connected 
function f such that C= C(f). 

Proof. If C = R, we take f(x) = const. Then, of course, C(f) =R = C. Assume 
now that R - CV= 0. 

Denote the interior of R - C by the letter B. Then CuB is a dense G6-set and 
A = R-~(CuB) is a F<,-set of the first category. Let F„ be a sequence of closed, 

pairwise disjoint sets such that A=\^JFn. 

Each Fn is nowhere dense. For each F„ there exists an open set G„ such th^t 

GnnFn = 0, F„czG„, F„ c R-(F„uG„), R-(F„uG„) is a union of closed non-
degenerated intervals and each component of G„ is bounded. Let G„ 

= (J (fl<"\ b(n)) where the open intervals (a(n), b(n)) are pairwise disjoint. Take 

T„(JC) = 0 for JC e R - G„, T„(JC) = Tn for JC = T\a(n) + b(n)) and T„(JC) linear on the 
intervals (a\n), 2-\a(n) + b(n))) and (2_ ,(a!n ) + b(n)), b(n)). Each function T„ belongs 
to the Baire class 1, possesses the Darboux property and C(T„) = R - F „ . As 

0 ^ T „ ^ 2 ~ " , the series T(JC)= 2 T„(JC) is uniformely convergent and the function 

T(JC) is also a Darboux function of the Baire class 1. As the sets F„ are pairwise 

disjoint, C ( T ) = f] C(T„) = R-A = C U B . 
n = l 

Let dist (x, C) denote the distance of JC from C. If C = 0, we take dist (JC, C) = 1. 
Let 

P = ! ( j c , y ) : J c e B , T ( j c ) < y < T ( j c ) + dist(jc, C ) } . 

We form a transfinite sequence F$, £<£2, of all continua of R2 such that 
r$nPj= 0. The projection of the set r$nP onto the Ox-axis will be denoted by fT§. 
If Int 17? T-= 0, then we select by means of a transfinite induction the denumerable set 

of points S§ = {x(P, x(2], ...} dense in Int J7.= in such a manner that S^nf (J S-,) = 0. 
\r,<^ / 

We define now a function f(x) such that for JC e S« the condition (JC, /(JC) eTanP 

holds, whereas for JC £ [J S§ we take /(JC) = T(JC). We shall show that a function 

defined in this way satisfies the conditions of the theorem. 
Let JC e B and let M be the continuum occurring in the definition of the 

right-hand connectedness point. Then there exists an %<Q such that M = T^. In 
each interval (JC, X + 6) there exists a point JC-§) e S.= . According to the definition of 

[̂  | j the function (f\x(M)i, /(JCP)) e F§ and therefore JC is a right-hand connectedness 
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point.* The point (JC, f(x)) belongs to the closure of P. The graph of / is dense in P. 
Point JC is an interior point of B. It follows therefrom that f(x) is the right-hand and 
left-hand limit value of / in JC. 

Let JC e C - C. If JC is a right-hand continuity point of /, then it is also 

a right-hand connectedness point of /, or otherwise lim f(t) > lim f(t). As JC £ B, 

dist (JC, C) = 0 and lim f(t) = lim r(t) and lim f(t) = lim x(t). Let M be the 
f - » x + r-»jc+ r—>x + i-*x + 

continuum occurring in the definition of the right-hand connectedness point of /. 
The functions T(JC) and T(JC) + dist (JC, C) belong to the Baire class 1 and possess 
the Darboux proprety. According to Kuratowski and Sierpinski [5], the graphs 
of both these functions are connected sets. Therefore by the theorem of Garrett, 
Nelms and Kellum [1] each point of its domain is a connectedness point of both 
these functions. For any <5>0 there exist point 0 such that @e(x,x + d) and 
( 0 , T(0))eM. If even one of these points, say 0 ' belongs to C, then / (0 ' ) = 
T ( 0 ' ) and (&', /(©')) 6 M. Otherwise no point 0 belongs to C and hence all 0 
belong toB.. Then all points 0" such that 0"e(jc, JC + 6 ) and (0", T(0") 
+ dist (0", C))eM must also belong to B. We shall show that in this case 

(i) MnP*0. 

For any t e Cn(x, x + 8) let P. = (t, f(t)). For any t e Cn(x, x + 8) there exists 
et > 0 such that MnK(Pt, et) = 0, where K(P, et) denotes a sphere with its center in 

Pt and the radius et. Let Q = [(JC, JC + 8) x R] n [Pu(J K(Pt, st)]. The set Q is 
r e C 

open and each point of Q can be connected by means of a segment contained in Q 
with points belonging to the graph of the function T ( 0 + 2 _ 1 dist (t, C), 
(x<t<x + 8), which has a connected graph. Therefore Q is connected. 

Assume that (i) does not hold. Then there exists a 6', 0< 8' < 8 such that for any 
JC' 6 (JC, JC + 8) there exist points (JC\ y.)e M and (JC", y2)eM such that y.^/(jc')^ 
y2 and y.<y2. 

In fact, suppose on the contrary that there exists a sequence {JC„} tending from, 
the right-hand side to JC such that for any n 

(ü) 
[either Mn{(xn, y): y >f(xn) = 0 
lor Mn{(x„,y):y<f(xn) = 0 

Choose xn><x + 5. Assume that 

(iii) Mn{(Xm, y): y >/(*„.)} =0 . 

*) In a analogous way we can prove that x is a left-hand connectedness point. 
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There exists a point (§, r\)eM such that JC<g<xm and r?>/(?). If this were not 
the case, then in girdle {(f, y): JC <*<**,} the entire continuum M would be 
situated below Q and hence not above the graph of T. Assume that it is not situated 

above. Then there exists a sequence of points tn e(x, JC„,,) such that lim T(tn) = 
n—»°° 

6 

= lim T(t). For the points (tn, un)e M the condition un ̂  T(tn) holds. Select from tn 

a subsequence tin such that w,,, is convergent and let u = lim uin. Then (JC, u)eM, 
n—*°o 

but w ^ lim T(t) = lim /(f). This contradicts the choice of the continuum M. From 
f—»X+ t-*x + 

assumption (iii) there follows therefore the existence of (£, rj). Choose a point JC„, 
such that JC<JC„,<§. If Mn((JC„„ y):y</(jc„,)} = 0, then the set 

{(xm, y):y >f(xm)}u{(xni, y):y<f(xni)}uP 

divides the continuum M into two non-empty parts, no one of these parts has 
a limit point belonging to the other part, which contradicts the definition of the 
continuum. Hence from the alternative (ii) the condition Mn {(JC„„ y) : y > 
/(JC„,)} =0 remains. However, in this case by (iii) the set 

!(*m„ y):y>f(xm))}v{(xni, y):y>/(*„,)}uP 

divides M into two parts, as above, which is impossible. Thus we come to the 
conclusion that the number 6' exists. 

For any te(x, x + d') there exist points (t, w)eM and (t, v)eM such that 
w ^T(J) , T(t) + dist (t, C)^v. Reasoning as in the case of point (x, u) we come to 
the conclusion that there exist the points (JC, w')eM and (JC, v')eM such that 

w'^ lim T(t) = lim fit) and v'^z lim T(0 = lim f(t), which contradicts the 
f—*x + l—*x+ t—>x+ t—*x + 

choice of M. therefore (i) holds. 
Hence there exists an § such that M = JV If the measure of (r^)xn(x, x + 6) is 

positive, then there exists a point JC!^e(r^)x and then (JCP\ /(JCP)GT| = M . If the 
measure of (r^)^n(jc, JC + 6 ) is equal to zero, then the set H = r$nPn{(t,y) 
: jc^f^jc + <5} is a sum of segments J parallel to the Oy-axis and such that at least 
one end point of these segments belongs to GT or GT- where T' = T(t) + dist (t, C). 
There exists among them a segment I such that J = ((c,y) : T(c)<y<T(c) 
+ dist (c, C)}, JCO<C<JCO + 6 , ceB. Indeed, should J not exist, then H = HxuH2, 
where H\nH2 = 0, Hi is the sum of intervals I possessing common points only with 
the graph of the function T(JC) + dist (JC, C) and H2 only with the graph of T(JC). 

The set Q* = Q - H is connected. By the definition of H we have Q*nr^ = 0. 
This, however, leads in a similar manner as the foregoing case with the assumption 
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that PnM = 0 to a contradition with the assumed property of M. Thus the 
existence of I has been proved. 

Clearly (c, f(c))e I c M , The point JC is therefore a right-hand connectedness 
point of /.*) The number /(JC) = T(JC) is the left-hand and the right-hand limit value 
of T. In fact, for any sequence {JC„}, JC„—>JC e C the condition T(JC„) ^ /(JC„) ^ T(JC„) 

+ dist (JC„, C) is satisfied. As lim T(X„) = T(JC) = lim [T(JC„) + dist (JC„, C)], 
n—»oo n—»°° 

lim f(xn) = T(X) = /(JC). Point JC e C - C is therefore also a connectedness point of 
n-*a° 

/, which completes the proof. 
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О НЕПРЕРЫВНОСТИ СВЯЗНЫХ ФУНКЦИЙ 

М. Чайка-Згирска,Я.С. Липински 

Резюме 

Дж. Сидер [3] доказал, что в пространстве вещественных чисел для всякого множества Е 
типа Об существует функция /": К—>К обладающая свойством Дарбу, непрерывная во всех 
точках множества Е и разрывная в остальных точках. Пользуясь гипотезой континуума авторы 
этой статьи доказывают, что функция ( может быть выбрана так, что ее график связен. 

*) In a similar way we can prove that * is a left-hand connectedness point of /. 
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