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ELONGATION IN A GRAPH
BOHDAN ZELINKA

In [1] the concept of the elongation of two vertices in an undirected graph is
defined.

Let u, v be two vertices of a finite undirected graph G. If u# v and u, v belong
to the same connected component of G, then the elongation elg(u, v) of the
vertices u, v is the maximum of the lengths of all paths in G connecting « and v. If
u=v, then elg(u, v)=0. If u, v belong to distinct connected components of G,
then els(u, v) = =. Instead of elg(u, v) we shall write el(u, v) if it does not cause
a misunderstanding.

It is well known that the elongation els is a metric on the vertex set of a finite
connected graph G.

Proposition 1. The elongation in a finite graph G is equal to the distance in G for
any two vertices of G if and only if G is a forest.

The proof is left to the reader.

We shall define some concepts related to the elongation.

The elongation diameter ed(G) of a finite connected graph G is the maximum of
elc(u, v) taken over all the pairs u, v of vertices of G. The inner elongation
diameter ined (G) of G is the minimum of elg(u, v) taken ever all the pairs u, v of
distinct vertices of G. An elongation centre of G is a vertex u of G for which

max elg(u, v) attains the minimum ; this minimum is called the elongation radius
veE
of G and denoted by er(G).

Proposition 2. The elongation diameter of a connected graph G is equal to 1. if
and only if G=K,.

Proposition 3. The elongation diameter of a connected graph G is equal to 2 if
and only if either G=K; or G is a star.
Proofs are straightforward.

Theorem 1. Let u, v be two adjacent vertices of a finite connected graph G with
n vertices. Then the equality elc(u, v) = ed(G) implies ed(G)=n—1.
Proof. Suppose that elc(u, v) = ed(G) holds. Evidently always ed(G)=n -1,
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where n is the number of vertices of G. If el;(u, v)—1, then ed(G)— 1 and by
Proposition 2 the graph G is isomorphic to K;, hence n—2 and ed(G)—n 1.
Suppose 2=elg(u, v) < n 2. Let P be a path of the length el;(u, v) connecting
u and v. The path P does not contain the edge uv ; otherwise it would have the
length 1. Therefore P together with the edge ur forms a circuit C of the length
ed(G)+ 1. We have ed(G)+1<n 1 and therefore there exists at least one
vertex w of G not belonging to C. As G is connected, there exists a vertex z of C
such that there exists a path P, connecting w and z and having no common vertex
with C except z; let its length be p.. Let y be a vertex of C such that yz is an edge
of C. The union of P, and the path obtained from C by deleting the edge yz is
a path connecting y and z and having the length po+ e/ (« v) which is at least
el.(u, v)+ 1. This is a contradiction.

Corollary 1. For a finite connected graph G the equality ined(G)— ed(G)
implies that G is Hamiltonian connected (i e. any two distinct vertices of G are
connected by a Hamiltonian path).

Corollary 2. In a finite connected graph G any two distinct vertices have the same
elongation if and only if G 1s Hamiltoman-connected.

Theorem 2. Let a, b be positive integers, a<b. Then there exists a finite
connected graph G such that ined(G) a, ed(G) b.

Proof. If 2a=b thenlet G be a graph consisting of two blocks (with a common
vertex) which are both complete graphs, one with a +1 vertices, the other with
b a+1 vertices. Any two distinct vertices belonging to the first block have the
elongation a, any two distinct vertices of the second block have the elongation
b a, because they are connected by a Hamiltonian path of the corresponding
block and each path connecting them must be contained in this block. The
elongation of two vertices not belonging to the same block is b, because they are
connected by a Hamiltonian path of G. We have a=b a<b, therefore
ined(G)—a, ed(G)=b. If a<b<2a, take a complete graph G, with a+1
vertices, choose two vertices «, v of it and connect them by a path P of the length
b —a + 1 whose inner vertices do not belong to Go; denote the resulting graph by
G. Each path connecting u and v in G either is P, or is contained in Gi.. A
Hamiltonian path connecting ¥ and v in Go has the length a; this path 1s the
longest path connecting « and v in G, and is longer than P, hence elc(u, v)=a.
The supposed inequalities imply that the length of P is at least 2 and therefore the
vertex w of P adjacent to u is distinct from v. There exists a Hamiltonian path of G
connecting u and w ; it is the union of a Hamiltonian path of G, connecting v and v
and the path obtained from P by deleting the vertex u and the edge uw. Hence
elc(u, w)=b. Evidently the elongation of any two distinct vertices of G lies
between a and b, therefore ined(G)=a, ed(G)=b. If a b, then the required
graph is a complete graph with a + 1 vertices.
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Proposition 4. Let a, b be two positive integers, a=b. Then there exists a finite
connected graph G with the diameter a and the elongation diameter b.

Proof. If a=1, then a complete graph with b+ 1 vertices has the required
property. If a =2, we take a complete graph with b —a + 2 vertices and a path of
the length a — 1 disjoint with it and identify one terminal vertex of this path with an
arbitrary vertex of this complete graph. The graph thus obtained has the required

property.

Theorem 3. For the elongation radius and the elongation diameter of a finite
connected graph G the inequalities

ed(G) = ed(G)=2er(G)

hold. If a, b are two positive integers such that a = b =2a, then there exists a finite
connected graph G such that er(G)=a, ed(G)=b.

Proof. Let a finite connected graph G be given. The inequality er(G) = ed(G)
follows immediately from the definition of er(G) and ed(G). Let ¢ be an
elongation centre of G. Let u, v be two vertices of G such that elc(u, v) = ed(G).
Then elg(c, u)=er(G), els(c, v)=(G). From the triangle inequality we have

ed(G) =els(u, v)=els(c, u) + el(c, v)=2er(G).

Now let two pos tive integers a, b be given such that a =5 =2a. If a = b, then for
a complete graph G with a+1 vertices er(G)=ed(G)=a=>b. If a<b, take
a graph G with two blocks (with a common vertex) which are both complete
graphs, one with a + 1 vertices, the other with b —a + 1 vertices. This graph has
a Hamiltonian path, therefore ed(G)=>b. The cut vertex of G is evidently an
elongation centre of G and a maximal elongation of a vertex of G from this vertex
is a, hence er(G)=a.

Proposition 6. Let a, b be two positive integers, a=b. Then there exists a finite
connected graph G such that ined(G)=a, er(G)=b.

Proof. Let G be a graph with two blocks (with a common vertex) which are
both complete graphs, one with a + 1 vertices, the other with b + 1 vertices. The
elongation of any two vertices of the first (or second) block is a (or b respectively).
The elongation of two vertices not belonging to the same block is @ + b. Hence
ined(G) = a. The cut vertex of G has the elongationa (or b)fromeach other vertex
of the first (or second, respectively) block, while to each other vertex there exists
a vertex having the elongation a + b from it. Hence the cut vertex of G is an
elongation centre of G and er(G)=b.

When we study some numerical invariants of a graph, it is usual to relate them to
other numerical invariants. In the sequel we shall relate the invariants concerning
the elongation with the vertex connectivity, the domatic number and the Hadwiger
number of a graph. Obviously it would be possible to relate them also to other
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invariants However, for example for the chromatic number of a graph it seems that
the results would not be interesting. By subdividing each edge of a graph by one
vertex we obtain a bipartite graph, i.e. a graph with the chromatic number 2.
Therefore we may have graphs with the chromatic number 2 and arbitrary large
values of ed(G), er(G), ined(G).

If G is not a complete graph, then the vertex connectivity of G is the minimal
number of vertices by whose deleting from G a disconnected graph is obtained. If
G is a complete graph with #n vertices, then its vertex connectivity is by definition
n—1.

Theorem 4. The elongation radius of a finite connected graph is greater than or
equal to its vertex connectivity.

Proof. Let G be a finite connected graph, let ¢ be its elongation centre, let « be
a vertex of G such that el.(c, u) = er(G). Let P be a path of the length er(G)
connecting ¢ and u. If P is a Hamiltonian path of G, then G has er(G) + 1 vertices
and its vertex connectivity is at most er(G). If P is not a Hamiltonian path of G,
then there exists a vertex w of G not belonging to P. Let G, be the graph obtained
from G by deleting all vertices of P except u; suppose that G, is connected. Then
there exists a path P, in G, connecting u and w. The paths P, P, have no common
vertex except u, therefore their union is a path in G connecting ¢ and w and having
the length at least er(G) + 1, which is a contradiction with the assumption that ¢ is
an elongation centre of G. Hence G, is not connected and the vertex connectivity
of G is at most er(G). In the case of a complete graph the equality occurs.

The domatic number d(G) of a graph G is the maximal number of classes of
a partition of the vertex set of G, all of whose classes are dominating sets in G. (A
dominating set in a graph G is a subset D of the vertex set V(G) of G with the
property that to each x € V(G)— D there exists y € D adjacent to x.)

Theorem 5. For the elongation radius er(G) and the domatic number d(G) of
a finite connected graph G we have

er(G)Zd(G) 1.

Proof. Let G be a finite connected graph, let its domatic number be 4. Then
there exists a partition {D,, ..., D,} of the vertex set V(G) of G such that D, for
i=1, ..., d are dominating sets in G. Let u be a vertex of G; without loss of
generality we may suppose that u € D,. Now we construct a sequence of vertices
v, ..., vs. We put v; = u, hence v, € D,. If v, is constructed for some i=d —1 and
v, € D,, then as D,., is a dominating set in G and D,nD,., — @, there exists at least
one vertex of D,,, adjacent to v,. Choose one of them and denote it by v,.,. Then
the vertices v, ..., vs are vertices of a path of the length d 1, one of whose
terminal vertices is u. As u was chosen arbitrarily, we have er(G)=d — 1. In the
case of a complete graph the equality occurs.
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The Hadwiger number (or contraction number) 7(G) of a connected graph G is
the maximal number of vertices of a complete graph onto which G can be
transformed by successive contractions of edges. The vertex set of G can be
partitiones into 7(G) classes such that each class induces a connected subgraph of
G and to any two of them there exists at least one edge joining a vertex of one of
them with a vertex of the other.

Theorem 6. The elongation radius er(G) of a finite connected graph G is greater
than or equal to n(G)— 1, where n(G) is the Hadwiger number of G.

Proof. Instead of n(G) we shall write only 5. Then there exists a partition
{V1, ..., V,,} of V(G) with the above described properties. Let u be a vertex of G;
without loss of generality we may suppose u e V). We shall construct a finite
SEQUENCE V1, Wi, U2, W2, ..., Un—1, Wy—1, Uy. Put v, = u. If we have constructed v; for
some i =9 -1 and v; € V,, then choose a vertex w, € V; which is adjacent to a vertex
of V...; this vertex of V., will be denoted by w;.,.. By P: denote the path
connecting v; and w; in the subgraph of G induced by V; fori=1, ..., n—1. Now
take a path consisting of edges w,v;.. for i=1, ..., n — 1 and paths P.. This is a path
outgoing from « and having the length at least n — 1. As « was choosen arbitrarily,
er(G)Zn —1. For a complete graph the equality occurs.

Concluding the present paper we shall consider the direct product of graphs.

If G and H are undirected graphs with the vertex sets V(G) and V(H)
respectively, then their direct product G x H is the graph whose vertex set is
V(G) x V(H) and in which the vertices [u,, 4], [v1, v2] (for u; € V(G), u.e V(H),
vi € V(G), v € V(H)) are adjacent if and only if either u; = v, and the vertices u,
vz are adjacent in H, or u,= v, and the vertices u, v, are adjacent in G.

Theorem 7. Let G, H be two finite connected graphs, let u,, v, be two vertices of
G and uz, v, be two vertices of H. Then

eloxu([u,, w2], [vy, v2]) =
Z elo(ur, v1)- elu(uz, v2) + max(elg(us, v1), elu(uz, v2)).

Proof. For each vertex x of G let H(x) be the subgraph of G x H induced by
the set of vertices whose first coordinate is x. For each vertex y of H let G(y) be
the subgraph of G x H induced by the set of vertices whose second coordinate is y.
Evidently H(x)=H, G(y)=G for each x € V(G) and y € V(H). Let P be a path
of the length elo(u1, v1) connecting u; and v, in G, let Q be a path of the length
elu(uz, v;) connecting . and v, in H. Let the vertices of P be u; = xo, X1, --+» X = ¥4
and let the vertices of Q be w2 =yo, yi,..., Y, =v2, where r=els(u, v1),
s = elu(uz, v2). Suppose r=s. For i=0, 1, ..., s let P, be the path in G(y:) whose
vertices are [xo, y:}, [x1, ¥}, --., [x:, y:]. If 5 is even, then the vertices and edges of all
paths P, for i=0, 1, ..., s together with the edges connecting [x,, y;] with [x., y,.1]
for j even and [xo, ] With [xo, y;.1] for j odd form a path connecting [u1, 4] with
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[vi, v-] in G x H of the length rs + r+ s, which is greater than or equal to rs+ s
= elg(ui, v1) elu(uz, v2) + max(elg(u, v1), elu(us, v2)). If s 15 odd, then the
vertices and edges of all paths P, for i=0, 1,..., s 1 together with the above
described edges form a path connecting [u,, u:] with [v,, v;] in G X H of the length
rs+s=els(u, vi) elu(uz, v2) + max(ele(ui, v1), elu(uz, v2)). This implies the
inequality. If r>s, we proceed analogously, interchanging G and H.

Corollary 3. For any two finite connected graphs G, H the following inequalitics
hold :

ed(G x H)~ ed(G)- ed(H) + max(ed(G), ed(H)),
ined(G x H)> ined(G)- ined(H) + max (ined(G), ined( H)),
er(G x H)= er(G)- er(H) + max(er(G), er(H)).

In the further investigation of the elongation it would be interesting to relate it to
other numerical invariants of graphs (e.g. clique number, thickness) and to apply
considerations analogous to those for the distance in a graph (e.g. to characterize
metric spaces which are isometric to the metric space formed by the vertex set of
a graph and the elongation on it).
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Vysohej skoly strojney a textinej
Komenskeho 2
460 01 Liberec

MPOTAXEHHOCTb B 'PAPE
Bornau 3enunka
Pesiome
IMycTs 4, v NBe BepLUMHBI KOHEYHOTO CBA3AHOTO HEOPHCHTHPOBaHHOTO rpada G. Ecan u# v, To
MPOTAXKEHHOCTD el (U, v) BEPUIMH 4, v €CTh MAKCHMYM [I1HH BceX Lenci B G, COeHHHSAIOLINX U U U.
Ecan u= v, 1o els(u, v)=0. BBeicHbI NOHATH OHAMETPa NPOTHKEHHOCTH, BHYTPEHHETO IHaMeTpa

MPOTSKEHHOCTH M Pafinyca NPOTAXKEHHOCTH U HCCIIENOBAHBI UX CBOWCTBA. ITH NOHATHA TOXE H3yueHnl
B CBA3M C IPYTHMH YHCIIEHHBIMK MHBAPHAHTaMK rpacdoB
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