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Math. Slovaca 33, 1983, No. 2 , 1 6 5 — 1 8 0 

0 N THE FACE-VECTORS OF TRГVALENT 
CONVEX POLYHEDRA 

STANISLAV JENDROĽ 

1. Introduction 

Let 5 be a convex polyhedron and let Pk(S), or Vk(S) denote the number of its 
k-gonal faces, or k-valent vertices, respectively. We shall call the sequence (j>k(S)) 
the face-vector of S and the sequence (vk(S)) the vertex-vector of S. A polyhed
ron S is said to be trivalent if vk(S) = 0 for all k=£3. Consider a sequence of 
nonnegative integers (pk). The present paper deals with necessary conditions for 
(pk) to be the face-vector of some trivalent convex polyhedron 5, i. e. conditions 
for the existence of a trivalent convex polyhedron S such that Pk(S) — pk for all 
k^3. (Evidently/?i=/?2 = 0). 

The well-known Euler formula leads for a trivalent convex polyhedron to the 
condition 

3/?3 + 2/?4 + /?5 = 12 + ]>](-'-6)/?* (1) 
13*6 

for the terms of the sequence (pi). The equality (1) gives no information about p6. 
Thus the above problem is equivalent to the following problem: 

Let /? = (/?, | 3 ^ i - £ 6 ) be a sequence of nonnegative integers satisfying (1). 
Denote by P(p) the set of all nonnegative integers p6 such that if p6 is added to /?, 
then the face-vector of a trivalent convex polyhedron S is obtained. Characterize 

p(j>)-

For any sequence /? = (/?.\3^i¥= 6) of nonnegative integers let 

a = 2/?, for 3^/^=6 

a n d Q = Xpj for 3 < / - £ 0 ( m o d 3 ) . 

As far back as 1891 E b e r h a r d [1] proved the following theorem 
(cf. G r u n b a u m [4, p. 254], Jucovic [9, p. 64]): 

Theorem 1. P(p) is nonempty for any sequence of nonnegative integers p = 
(pk\3^k£6) satisfying (1). 

In 1974, F i she r [2] proved the following assertion. 
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Theorem 2. For any sequence p = (pk\3^kJ=6) of nonnegative integers satis
fying (1) there exists an integer d^3o such that P(p) contains the number 
p6= d + 2t for any nonnegative integer t. 

Theorem 3 (Fisher [2, 3]). For any sequence p = (pk\3^k^6) of nonnega
tive integers with p5^2 or p4^2 which satisfies (1) there exists an integer d^3o 
such that P(p) contains every integer \^d. 

G r u n b a u m [4, p. 272] proved 

Theorem 4. Let p = (pk\3^k£6) be a sequence of nonnegative integers with 
Q^2. 

(i) 7/(7 = 0 (mod 2), then no odd integer is an element of P(p)-
(ii) If (7= 1 (mod 2), then no even integer is an element of P(P). 
For detailed references to results concerning this problem, see the works of 

G r u n b a u m [4, 6], Jendrol '—Jucovic [7] and Jucovic [9]. 
The purpose of the present paper is to prove that this assertion of G r u n b a u m 

characterizes all' sequences p = (pk | 3 ^ k=£6) for which the set of nonnegative 
integers not belonging to P(p) is infinite. 

More precisely, we shall prove the following 

Theorem 5. Let a sequence p = (pk \ 3 ̂  k£ 6) of nonnegative integers satisfy 

(i) If g^2 and cr = 0 (mod 2), then there exists an integer d such that P(p) 
contains every even integer ~~~z d and no odd integer. 

(ii) If Q^2 and o=\ (mod 2), then there exists an integer d such that P(p) 
contains every odd integer ^ d and no even integer. 

(iii) If Q ̂  3, then there exists an integer d such that P(p) contains every integer 
\^d. 

The existence part of the proof comprises the construction of a planar map with 
a trivalent 3-connected graph and the prescribed number pk of k-gonal faces. The 
existence of a convex polyhedron combinatorially equivalent to such a map is 
guaranteed by the S te in i tz theorem (see [5, p. 235] or [9, p. 30]). 

2. Basic construction elements and some existence lemmas 

In this chapter we prove some existence lemmas which are valid for all maps with 
the 3-connected graph and on the orientable surface of genus g for any g ^ 0 (i. e. 
not only for planar maps with a trivalent graph). 

Consider such a map M with sequences q = (q,\ i^3) and v = (vi\i^3) as 

a face-vector and vertex-vector, respectively. From the trivial equality V iv, = 2 ' # ' 

there follows a useful relation 
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J \.3*3 /^4 / 
(2) 

Bas ic construct ion e lements : The face-aggregate of a map Ma s in Fig. la 
(or its mirror image), or 2a, or 3a, called configuration Am, or Bm, or Cm (confAm, 
confBm, conf Cm in the sequel) consists of an m-gon, m ̂ 6 , two hexagons and one 
quadrangle, or of an m-gon, m ^ 6 , two hexagons and two quadrangles, or of an 
m-gon, m ^ 6 , two hexagons and three quadrangles, respectively. (We note, that /, 
/, k, m, n, t, w mean nonnegative integers in the sequel.) 

m+2 

Fig.1 

m 
/ 

m + 2 

Fig. 2 

Bas ic cons truc t ion s teps : The number of edges of the m-gon in conf Am of 
M is increased by inserting new edges into the "middle" hexagon so that two edges 
are divided to form three edges, see Fig. lb. This gives rise to a conf Bm+2 or 
(m + 2)-gon and a conf B6 (considering the "bottom" hexagon). Two new hexa
gons appear in the map M. If it is necessary to increase the number of edges of the 
(m 4- 2)-gon, then conf Bm+2 is used in further constructions; otherwise we use 
conf B6. 
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Analogously we obtain a conf Cw+2 (or an (m 4- 2)-gon and conf Q ) and three 
new haxagons from conf B w ; this transformation is shown in Fig. 2b. Finally, 
Fig. 3b shows how to transform conf Cw into conf Aw+2 (or (m 4- 2)-gon and 
conf A6) with one additional conf C6. Six new hexagons appear in the map. 

m +2 

Fig. 3 

If it is necessary to change an m-gon in conf Aw to an /-gon, / ^ m 4- 6, it can be 
done by constructing gradually a conf Bw+2 , conf Cw+4, conf Aw+6 etc. In the sequel 
we shall call this transition from conf Aw to conf Aw+6 (in the course of which an 
m-gon is changed into an (m + 6)-gon, one conf A6 and ten new hexagons are 
created) an A-step. Analogously a B-step (C-step) consists in increasing by six the 
number of edges of an m-gon in conf Bw (conf Cw) with a conf G> and ten hexagons 
as a by-product. 

LetM= M(q, v, g, a, b, c) be a map on the orientable surface of genus g having 
the following properties: 
(i) Its graph is 3-connected. 

(ii) Sequences q = (qt\i^3) and v = (v,\i^3) are the face-vector and the 
vertex-vector, respectively, of M. 

(iii) M contains as submaps at least a configurations A6, a ^ 0 , b configurations B6, 
b^O, and c configurations Ce, c^O. Mentioned configurations are pairwise 
disjoint. 

Lemma l.a. ( Inse r t ion of an / -gon , j'^1.) If there exists a mapM(q, v, g, a, 
b, c), then there exists a map M(q', v', g, a', b', c') withq' = (q\\ q', = q, + st), 

v' = ( v'i\ v'i=Vi for all / ^ 4 ; V3 = zz\J£,iq)-^iv'ij\, 

where s, = 0 for all /=£ 3, 4, 5, 6, j ; / ^ 7 , sy = 1 and for the values j , s3, s4, s5, s6, a', 
b', c' see Table 1, lines 1—9 if a£0, or lines 10—18 if b-hO, or lines 19—27 if 
CT-=0, respectively. 
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Table 1 

a j sз sд sѕ sб ď b' c' 

1. 6k 0 З k - 3 0 10k-10 a b c + k - 1 
2. 6 k + 1 1 З k - 4 0 10k-8 a-1 b c + k - 1 
3. 6k + 1 0 З k - 3 1 10k-9 a-1 b c + k - 1 
4. 6k + 2 0 З k - 2 0 10k-8 a-1 b + 1 c + k-1 
5. бk + 3 1 З k - 3 0 10k-5 a b c + k - 1 
6. бk + 3 0 З k - 2 1 10k-8 a-1 b + 1 c + k - 1 
7. 6k + 4 0 З k - 1 0 10k-5 a-1 b c + k 
8. 6k + 5 1 З k - 2 0 10k + 1 a-1 b + 1 c + k - 1 
9. 6k + 5 0 З k - 1 1 10k-5 a-1 b c + k - 1 

10. 6k 0 з k - з 0 Ю k - 1 0 a b c + k - 1 

11. 6k + l 1 З k - 4 0 10k-7 a + 1 b-1 c + k-1 

12. 6k + l 0 з k - з 1 Ю k - 1 0 a b-1 c + k - 1 

13. 6k + 2 0 З k - 2 0 Ю k - 7 a b-1 c + k 

14. бk + 3 1 З k - 2 0 Ю k - 1 a b c + k - 1 

15. бk + 3 0 З k - 2 1 Ю k - 7 a b-1 c + k - 1 

16. 6k + 4 0 З k - 1 0 10k-2 a + 1 b-1 c + k 

17. 6k + 5 1 З k - 2 0 10k a b-1 c + k 

18. 6k + 5 0 З k - 1 1 10k-3 a b-1 c + k 

19. 6k 0 З k - 3 0 Ю k - 1 0 a b c + k - 1 

20. 6 k + l 1 З k - 4 0 10k-4 a b + 1 c + k - 2 
21. 6k + l 0 З k - 3 1 Ю k - 1 0 a b c + k - 2 
22. 6k + 2 0 З k - 2 0 Ю k - 5 a + 1 b c + k - 1 

23. бk + 3 1 З k - 3 0 Ю k - 3 a b c + k - 1 
24. бk + 3 0 З k - 2 1 Ю k - 6 a b c + k - 1 
25. 6k + 4 0 З k - 1 0 Ю k - 3 a b + 1 c + k - 1 
26. 6k + 5 1 З k - 2 0 Ю k - 1 a+1 b c + k - 1 
27. 6k + 5 0 З k - 1 1 Ю k - 3 a b c + k - 1 

Proof. To obtain the map M(q', v', g, a', b', c'), the required I'-gon, I'^7, is 
inserted into one of the configurations A6 (in the cases a = 1, 2, ..., 9), or of the 
configurations B6 (in the cases a = 10, ..., 18), or of the configurations C6 (in the 
cases a = 19, ..., 27) of the map M(q, v, g, a, b, c), respectively. We use only 
basic constructions described in the previous part. 

A 6£-gon, k^l, is inserted into conf A6, conf B6, or conf Ce by (k — 1) 
repetitions of an A-step, B-step, or C-step, respectively. The starting step for 
constructing a (6k + 2)-gon, or a (6k + 4)-gon, k ^ 1, is the insertion of an 8-gon or 
a 10-gon into the appropriate configuration. This is followed by the necessary 
number of A-steps, B-steps, or C-steps. 

A (2m + l)-gon, m ^ 3 , is inserted into conf A* (conf B6, conf G>) as follows: we 
start by inserting a 2m-gon which will appear in conf A2m, conf B2m, or conf C2m. By 
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adding edges as in Figs. 4, 5, or 6, respectively, we obtain the (2m+l)-gon. 
Figures " a " are considered if s5 = 0; figures " b " are taken in the opposite case. 

2m«M ; 2m«м 

Fig. 4 

2m + l 

4 4 

5 

Fig.5 

2m-И 2m + i 

S 
4 

4 

4 4 

5 

4 

Fig. 6 
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Lemma 2.a. (Insertion of a pair of odd-gons .) Let m^7, n ^ 7 . If there 
exists a mapM(q, v, g, a, b, c)f then there exists a map M(q', v', g, a', b', c') 
with 

q' = (q'i\qfi = qiforalli±4,6, m, n\ q\ +s4, q'6=q6 + s6, qm=qm + l), qn=qn + l, 
if m^hn, or 

l' = (q'i\q'i = <li for all /V=4,6, m; q4 = q4 + s4, q6 = q6 + s6, q'm=qm + 2), if m = n, 
and 

v' = (v;| v\ = Vi for all i£3, ^3=^ (2'9'~ .2 ," , ; ' ))-

Table 2 

а m n s4 а b' c' 

1. 6 t + l б w + 1 3 ( t + w ) - 5 а-\ b + \ c+t+w-2 

2. 6 t + l бw + 3 3 ( t + w ) - 4 а-\ b c + t + w - 1 
3. б t + 1 6w + 5 3 ( t + w ) - 3 а b c + t+ w - 1 
4. бt + 3 бw + 3 3 ( t + w ) - 3 а b c + t + w - 1 
5. бt + 3 6w + 5 3 ( t + w ) - 2 а-\ b + \ c + t + w - 1 

6. 6t + 5 6w + 5 3 ( t + w ) - l а-\ b c + t+ w 

7. б t + 1 б w + 1 3 ( t + w ) - 5 а b-\ c + t + w - 1 

8. б t + 1 бw + 3 3 ( t + w ) - 4 а + \ b-\ c + t + w - 1 
9. б t + 1 6w + 5 3 ( t + w ) - 3 а b c+t+w-\ 

10. бt + 3 бw + 3 3 ( t + w ) - 3 а b c+t+w-\ 

11. бt + 3 6w + 5 3 ( t + w ) - 2 а b-\ c+t+w 

12. 6t + 5 6w + 5 3 ( t + w ) - l а + \ b-\ c + t+w 

13. б t + 1 б w + 1 3 ( t + w ) - 5 а + \ b c+t+w-2 
14. б t + 1 бw + 3 3 ( t + w ) - 4 а b + \ c + t+w-2 

15. б t + 1 6w + 5 3 ( t + w ) - 3 а b c+t+w-\ 
16. бt + 3 бw + 3 3 ( t + w ) - 3 а b c + t+w-\ 
17. бt + 3 6w + 5 3 ( t + w ) - 2 а + \ b c+t+w-\ 
18. 6t + 5 6w + 5 3 ( t + w ) - l а b + \ c+t+w-\ 

For the values m, n, s4, a', b', c' see Table 2 lines 1—6 ifa^O, or lines 7—12 if 
b =£ 0 or lines 13—18 if c=/= 0 (in the second case consider m = nin the Table 2 ) , s6 

is a constant depending on m and n. 
Proof. Inserting into the one from among the configurations A<> (cases a = 1, 2, 

..., 6), or configurations B6 (cases 7, ..., 12). or configurations G, (cases 13, ..., 18) 
of the map M(q, v, g, a, b, c) a pair of odd-gons we obtain a map M(q', v', g, a', 
b', c'). Insertion of a pair (6f+-jt)-gon, (6w + >>)-gon, t^l, w^l, JC = 1,3, or 5, 
y = 1,3, or 5 into conf A*,, conf B6, or conf G> is described in JendroT—Jucovic 
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[7]; we shall therefore give only a sketch of their construction. If t = 1, or w = 1 we 
start by inserting a (6 + x)-gon and a (6 + y)-gon in such a way that the (6 + y)-gon 
(or the (6 + x)-gon if t£\) was a part of conf A6+y, conf B6+y or conf C6+y 

(conf A6+x, conf B6+JC or conf C6+*) and that only hexagons with at most some 
configurations G are formed. 

Ift^2 and w ^ 2 , we start by inserting a (12 + x)-gon and a (12 + y)-gon in such 
a way that a conf G2+^, one of the conf Ai2+>, conf Bi2+r and conf G 2 + r and neither 
conf A6 nor conf B6 are formed. This is followed by an appropriate number of 
A-steps, B-step, or C-steps. Fig. 7 shows the initial positions for the insertion of 
a (6t + l)-gon and a (6w + l)-gon into conf A6. 

Fig.7 

Lemma 3.a. Let f = (/, \i^l) be a sequence of nonnegative integers with a finite 
number of nonzero elements and let 

, = 6 + 2(.-6)/ , . 

If there is a map M=M(q, v, g, a, b, c) with a + b + c4-0, then there is 
a mapM' =M(q, v', g, a, b', c') with 

q =(q'i\q'3 = qi + S3, q4=qr4+s4 , q's=q5+s5, q'e=qe+ s6, q', = q, + fforall i^l), 

v' = Cv'i\v'i = Vi for all i * 3 ; ^3 = x ( ^ ' Y t - S ^ ' M ; 

for the values s^, s4, s5, a', b', c' see Table 1, lines 1—9 if a ^ O ; lines 10—18 if 
b-/=0, lines 12—27 ifc4=0. The value s6 is a constant depending on the sequence f. 

Proof. There exists a sequence of maps M0 = M, Mi, ..., Mh = M', h = 

2/.- such that the existence of a map M- follows from the existence of 

a map Mz_i, z = l , 2, ..., h, by some of Lemmas \.a or 2.|3 for suitable a or (3. 
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Inserting into the one from among the configurations A6 (for a = 1—9), or 
configurations B6 (a = 10—18), or configurations C6 (a = 19—27), respectively, of 
the map M0 an even-gon, or a pair of odd-gons required we obtain a map Mi. We 
obtain the map Mz, z = 2, ..., h, from the map Mz_i by inserting and even-gon, or 
a pair of required odd-gons with ^=7 edges (or a single odd-gon if z = h and 

2 / - i + 1 — 1 (mod 2)) into the new conf A6, or the new conf B6 of M--i. (A conf A6, 

or conf B6 is called a new conf A6, or a new conf B6, respectively, of M- if it 
contains a face, which has not appeared in the map M-_i. It should be remarked 
that at most one of new conf A6 or new conf B6 appears in the map M-, — see 
Lemmas \.a and 2./J). 

If neither new conf A6, nor new conf B6 appear in M-_i, one from among the 
configurations C6 is employed for creating an even-gon or a pair of odd-gons 
required. 

Lemma 4.a. If there is a map M=M(q, v, g, a, b, c) with CT-=0, then there is 
a map M' = (q', v', g, a', b', c'), where 

1. q' = (q'i\q'i = qi torall z-£6, p6 = p6 + 2t), 
v' = (v'i\v'i = Vi foralliJ=3, V3 = v3 + 4t), 

where t is a nonnegative integer and a' = a, b'b, c' = c, or 

2. q' = (q'i\q'3 = q3 + 2, q4 = q4~3, q\ = q{ for all i^5), 
v' = (v]\ t>3 = ^ 3 - 2 , v'i = Vi for all il=3) 
and a' = a, b' = b, c' = c — \, or 

3. q' = (q'i\q3 = q3+\, q'* = q*-2, q'5 = q5+\, q6 = q6-\, q\ = q( for all i^l), 
v' = (v'i\ t>3 = f 3 - 2 , v\= Vi for all /=£3) 
and a' = a, b' = b, c' = c—\. 

Fig.8 

Proof. Adding into the conf Q of the map M a pair of edges as shown in 
Fig. 8a (broken lines) we receive two new hexagons and a conf G,. Repeating the 
above procedure Mimes a map M' in the case a = 1 is obtained. 
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The transformation of a conf C6 of the map M as shown in Fig. 8b or 8c gives 
a map M' in the case a = 2, or a = 3, respectively. 

Lemma 5. If there is a map M=M(q, v, g, a, b, c) with bj=0, then there is 
a mapM' = M(q , v', g, a, b-\, c), where 

q' = (q'i\q3 = q3+ 1, q4 = q4-2, q'5 = q5 + \, q'6 = q6- 1, q\ = ql for all i^7) and 
v' = (v'i\v^V3-2, v', = v, for all i*3). 

Proof. It is sufficient to transform a conf B6 of the map Mas shown in Fig. 9. 

Fig.9 

Lemma 6. LetM= M(q, v, g, a, b, c) be a map and Ietf3, f4, f5 be nonnegative 
integers satisfying the following conditions 

(i) 3/3 + 2/4 + f5 = 3q3 + 2q4 + q5, 
00 /3^?3 , #5^/5^-75+1, 

(iii) f3^2c + q3 or f3 = 2c + q3+ 1 and b-hO. 

Then there is a map M' =M(q', v', g, a', b', c') with 

Q ' = (q'i\q'3=h, ? J= A, qs = fs, q6 = q6-(fs- q5), q\ = q, for all i=\7), 

v' = [v'i\v'i=:Vi for all z-£3, ij3 = - (^iq'i-^iv'M 

and a'=, b"^0, c'^0. 

Proof. According to the assumptions of the lemma, new triangles and (possib
ly) a pentagon of a map M' must be obtained from the quadrangles of the map M. 

As (iii) is valid, we can use Lemma 4.2 f ^-^--— -times) and, if /3 — q3 = 1 (mod 2) 

(and also f5- q5 = l), Lemma 4.3 (if f3^2c + q3), or Lemma 5 (if f3 = 2c+ q3+ 1 
and b-£0). 

Lemma 7.a. 1. There exists a trivalent map M(q, v, 0, 0, 3, 0) with q = 
(qiIqi = 0 for all /-£ 4,6; q4 = 6, q6 = 9 or 12). 

174 



2. There exists a trivalent map M(q, v, 0, 6, 0, 0) with q = (q>I <7t = 0 for all 
!=£4,6; #4 = 6, q6 = t for all integers t^21). 

3. There exists a trivalent map M(q, v,0, 3, 0,0) with <? = ( # |-7»-= 0 for all 
i± 3, 4, 6, a3 = 2, q4 = 3, q6 = t for all integers t^ 18). 

Proof. For a = 1 see Fig. 10. Let a = 2 or 3 (see Malkev i tch [10]). We 
observe that if there exists a trivalent map L containing a circuit x as drawn in 
Fig. 11a, then there is a trivalent map Li with p6(Li) = p6(L)-\-2t, t^O and 
PJ(LI) = PJ(L) for ally =£6. 

Fig. 10 

ғ1 
r 2 ғз 

Fig. 11 
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The circuit x separates two submaps P and Q of the map L. If we add two 
hexagons to the submap P as shown in Fig. l i b , we obtain a submap Pi bounded 
by a circuit X\ which has the same properties as x. This properties of X\ allow to add 
two other hexagons to the submap Pi. After Mimes repetition of the above 
procedure, we obtain a submap Pt bounded by a circuit xt with the same properties 
as x. To receive the need map Li we join suitably the submaps Q and Pt along their 
boundary circuits. To obtain the propositions of the lemmas, it is sufficient to take 
as the submaps P and Q the suitable ones among F\, F2, F3 being drawn in Figures 
l ie—e. 

3. Proof of Theorem 5 

For the case g ^ 2 the Theorem is a direct consequence of Theorems 2 and 4, for 

/75^2 it is a consequence of Theorem 3. The case 2 /7,=0 has been treated in 
J=57 

Jucovic [8] and Ma lkev i t ch [10] (cf. G r u n b a u m [5] or Jucovic [9, p. 60]). 
There remains to be proved Theorem 5 in the remaining cases, i. e. for all 
sequences p = (/?,: | 3 ̂  /=£ 6) with 

Ps^h ^Pn^O, o ^ 3 . (3) 

We shall distinguish the following 16 cases: 

1. /7 4 ^5 . 
2. /74 = 2,3 or 4, /7 3^2. 
3. p4= 1, /73^4, /76r+i^l for some r ^ l . 
4. p4 = 1, /73^4, /76r+4-^l for some r ^ l . 
5. p4 = 0, p3^5, /76r+i^2 for some r ^ l . 
6. p4 = 0, /?3^5, p6r+4^2 for some r ^ l . 
7. p4 = 0, /7 3 ^5, p6r+\=p6s+i = 1 for some r, s, r > s ^ l . 
8. /74 = 0, /7 3 ^5, p6r+\=p6s+4 = 1 for some r, s, r ^ l , s^l. 
9. p4 = 0, /7 3 ^5, /76r+4 = p6s+4 = 1 for some r, s, r > s ^ l . 

10. /74=^1, /75 = 1, /7 3 ^5, /76r+2-^l for some r ^ l . 
11. / 7 4 ^ 1 , /75 = 1, /7 3 ^5, p 6 r+s^l for some r ^ l . 
12. /74=^1, /75 = 0, p 3 ^ 5 , /76r+2-^2 for some r ^ l . 
13. / 7 4 ^ 1 , /75 = 0, /7 3 ^5, p6r+5^2 for some r ^ l . 
14. p 4 ^ l , /75 = 0, /73-^5, /76r+2 = /765+2 = l for some r, s, r>s^l. 
15. p 4 ^ l , / 7 5 = 0,/73^5,/76r+2 = /765+5 = l for some r ^ l , s^l. 
16. / 7 4 ^ 1 , /75 = 0, /7 3 ^5, p6r+5 = p6s+5 = l forsome r > s ^ l . 

The conditions (1) and (3) guarantee that at least one of these cases will always 
hold. 
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Let J:(i-6)pt = 6(k-l) + z for some integers k, z, k^l, 0 ^ z ^ 5 . We shall 
i^i 

now prove Theorem 5 in the cases 2 and 14. 
Case 2. By Lemma 7.3 there exists a trivalent map M0 = M(q', v', 0, 3, 0, 0) 

with q' ~(q'i\q'i = 0 for all i=£3, 4, 6; 173 = 2, q'4 = 3, q'6 = t for any integer /^18 ) . 
Now we shall apply Lemma 3.a for suitable a. Consider a sequence / = (/ | / =/?, 

for all i^7 ) . Then y = 6 + 2 ( / - 6 ) / = 6 + 2 (i-6)pt=6k + z. If z = 0, 2 or 4 we 
»'=»7 / 3 B 7 

use Lemma 3.1, 3.4 or 3.7, respectively, if z = 1, 3 or 5 and p5 = 0 (p5 = 1), we shall 
continue by Lemma 3.2, 3.5 or 3.8 (3.3, 3.6 or 3.9), respectively. 

Let e. g. z = 3 and p5 = 1. By Lemma 3.6 there is a trivalent map Mi = M(q, v, 0, 
2, 1, k-1) with q = (qi\qt = Pi for all / ^ 7 , #3 = 2, <74 = 3k + 1, q5=l, q6=r6 + t, 
/ ^ 18). Consider M = Mi and /3 = p3, /* = /?4, /> = ps in Lemma 6. Since the terms of 
the face-vector # or Mi and the terms of the sequence p satisfy condition (1), we 
have fulfilled condition (i) of Lemma 6. Conditions (ii) and (iii) are evidently 
satisfied. Thus there exists a trivalent map M2 = M(p*, v*, 0, a*, b*, c*) with 
p* = (p* \p*i =Pi for all i±6, p% = t for any /, t^d=r6 + 18), a*^0, b*^0, 
c*^0. This map satisfies the assertion of Theorem 5. In the remaining subcases of 
this case we continue analogically. 

Case 14. By Lemma 7.1 and a repeated application of Lemma 1.13 we get 
a trivalent map Mi = M(q', v', 0, 0, 1, r + s) with q' = (q'i\q'i = 0 for all /T-=4,6, 

6r + 2, 6s + 2; q4 = 3(r + s) + 2, q6 = 10(r + s)-5 or q6 = 10(r + s)-2, q6r+2 = 
-I6-+2 = l ) . An application of Lemma 4.1 implies the existence of a trivalent 
map M2 = M(q, v, 0, 0, 1, r + s) with <7 = (<7.1 <7-= <?« r o r any i=£6, 
q6=10(r +s) — 2 +t for any nonnegative integer/). Consider a sequence / = 
(f\f=Pi for all / ^ 7 , i¥=6r + 2, 6s + 2, f6r+2 = p6r+2—l, f6s+2 = p6s+2- 1). Then 

y = 6 + 2 ( / - 6 ) / = 6+2( / -6 ) /7 I - (6r-4 ) - ( 6 s -4 ) = 6 ( k - r - s + l) 
, ' ^7 ,"2s7 

+ z + 2. It follows from (1) for this case that z = 0, 1, 3 or 4 only. If z = 0 (i. e. j = 2 
(mod 6)) we use Lemma 3.13 in the sequel; if z = 1, 3, or 5 we shall proceed by 
Lemmas 3.14, 3.17, or 3.10, respectively. To finish the proof of Theorem 5 in this 
case we use Lemma 6 as above. 

To prove Theorem 5 in the remaining cases we proceed similarly as above. In the 
following there are given Lemmas in the order in which they have to be used in 
order to prove the theorem. 

Case 1. 7 . 2 - 3 . 1 , 3.4, or 3.7 if z = 0, 2, or 4, respectively, 3.2, 3.5, or 3.8 (3.3, 
3.6 or 3.9) if _r = l, 3, or 5 and p5 = 0 (p5 = l), respectively —6. 

Case 3. 7.3 - 1.2 - 3.4 or 3.7 if z = 3, or 5, respectively, 3.2, or 3.8 (3.3 or 3.9) if 
z = 2 orO and p5 = 0 (p5 = l), respectively —6. 

Case 4. 7 . 3 - 1 . 7 - 3 . 4 , or 3.7 if z = 0, or 2, respectively, 3.2, or 3.8 (3.3), 
or 3.9) if z = 5 or 3 and p5 = 0 (p5 = l), respectively —6. 
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Cases 5 and 7. 7.3 - 1.2 - 1.2 - 3.4, or 3.7 if z = 4, or 0, respectively. 3.2, or 3.8 
(3.3 or 3.9) if z = 3 or 1 and p5 = 0 (p5 = 1) - 6. 

Cases 6 and 9 . 7.3 —1.7 —1.7 — as in the case 5. 
Case 8. 7.3 - 1.2 - 1.7 - 3.4 or 3.7 if z = V or 3, respectively, 3.2, or 3.8 (3.3 or 

3.9) if z = 0, or 4 and p5 = 0 (p5 = l ) . 
Case 10. 7 . 1 - 5 - 1 . 1 3 - 4 . 1 - 3 . 1 6 , 3.17, 3.11, or 3.13 if z = 0, 1, 3, or 4, 

respectively. 
Case 11. 7 . 1 - 5 - 1 . 1 7 - 4 . 1 - 3 . 1 1 , 3.13, 3.16, or 1.17 if z = 0, 1, 3, or 4, 

respectively. 
Case 12. 7 . 1 - 1 . 1 3 - 1 . 1 3 - 4 . 1 - 3 . 1 3 , 3.14, 3.17, or 3.10 if z = 0, 1, 3, or 5, 

respectively. 
Cases 13 and 16. 7.1 - 1.17 - 1 .17-4 .1 -3 .10 , 3.13, 3.16, or 3.17 if z = 4, 0, 2, 

or 3, respectively. 
Case 15. 7 . 1 - 1 . 1 3 - 1 . 1 7 - 4 . 1 - 3 . 1 7 , 3.11, 3.13, or 3.14 if z = 0, 2, 3, or 4, 

respectively. 

Note . The values z, which had been considered in the Table, cannot occur in 
the corresponding cases. This follows from (1). 

This completes the proof of Theorem 5. 

4. Remarks 

1. The main result of this paper — Theorem 5 — is mentioned (without a proof) 
in the book of Jucovic [9, p. 92]. 

2. A minor modification of the construction presented in this paper and 
a detailed analysis of the number of hexagons formed (we omitted this because of 
the great number of possibilities) shows that 

d^Zipt for 3 ^ / ^ 6 . 

Fisher 's results (cf. [2] and also Theorems 2 and 3) give a substance to the 
conjecture that 

d^3a. 

For the sake of completeness Grunbaum ' s result [5] must be mentioned: If 
/?3 = F4 = 0, then d^8. 

3. To prove the existence part of Theorem 5 in the cases (i) and (ii) it is 
sufficient to start with a map in Fig. 12 and then proceed by Lemma 4.1, 
Lemma 3.a for suitable a from among a = 19—27, and Lemma 6. 

We omit the proof for p 5 ^ 2 because the paper in the present form is already 
rather extensive. 
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4. In this connection it is to be said that in the Theorem of F i s h e r [2, 

Theorem 3.4] there is a mistake. I am indebted to professor G r u n b a u m for his 

pointing out this mistake. By [3] the revised version of this result of F i sher is as in 

Theorem 2 of the present paper. 

Fig. 12 
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О ГРАНЕВЫХ ВЕКТОРАХ ВЫПУКЛЫХ МНОГОГРАННИКОВ 

С РЕГУЛЯРНЫМ ГРАФОМ ТРЕТЬЕЙ СТЕПЕНИ 

81 и К1ЛУ Лепол )1 

Р е з ю м е 

Граневим вектором выпуклого мнотгр нник! с ре!у!ярным грлфом третьей степени 

называется последовательность (р,(5)), где р,(5) чис ю грлнеи огрлниченных / ребрами. 

Каждой последовательности неотрицггельных целых чисел р ( р | 3 ^ / * 6 ) удов ет-

воряющей следствию теоремы Эй 1ер 1 (1), ставится в соответствие множество Р(р), п,е для 

любого рввР(р) последов .тельнс сть р дополненля рь является грлневым вектором некоторого 

выпуклого многогрлнника с регулярным гр.фом третьей степени. Злдлча Хс рлктеризации всех 

возможных гржевых векторов сводится к опиелнию множеств Р(р). В р*боте харлктеризуются 

множествл Р(р) для всех последов .тельностеи р ^ . иекпючением конечного количества чисел рь. 
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