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CODOMAIN OF THE TENSOR PRODUCT 
OF SEMIGROUPS 

JANA GALANOVÁ 

In this paper we prove that every commutative semigroup is a c-tensor product 
of some commutative semigroups and there exist semigroups (finite and infinite) 
which are not tensor products of any semigroups. The last fact follows from the 
properties of indecomposable elements. 

1. Introduction 

Let ST be the class of all semigroups and Sfc be the class of all commutative 
semigroups. The tensor product (x) in the class ST and the tensor product ® c in the 
class :Tc have been defined in [1—3]. The tensor product (x)c in the class Sfc will be 
called a c-tensor product. 

Definition 1. Lef A and B be semigroups and AxBbe the Cartesian product of 
A and B. A semigroup S together with a bilinear map co: AxB-+S is called 
a tensor product of A and B if the following condition is satisfied: 

For any semigroup C and for any bilinear map )3: A xB—>C there exists 
a homomorphism a: S-+C such that f} = coa. 

The semigroup S will be denoted as A(g)B. 
The c-tensor product (x)c is defined analogously as the tensor product®, we 

require that the semigroups A, B, C, S be commutative semigroups. 
It is proved in [1] that for any A, B eSF the semigroup A®B is isomorphic to 

FAXB/T, where FAxB is the free semigroup on A x B and T is the smallest 
congruence over the relation T0, which is defined on A x B in this way: 

For any a, au a2sA and b, bu b2eB the relations 

(a, bxb2)x0(a, bi)(a, b2) 

(axa2, b)r0(au b)(a2, b) hold. 

The relation T0 will be called the tensor relation and T will be called the tensor 
congruence (on FAXB). The class of the tensor congruence which contains the 
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element (ax, b\)(a2, b2) ... (an, bn)e FAxB will be denoted by («i(x)bi)(a2®b2) ... 
(an®bn). This is an element of A®B. 

The function a>: A x B^>A(x)B in the Definition 1 is given by CD = tco', where 
i : A x B - • F A X B is the embedding and uV: FAxB-+ A®B is the natural 
homomorphism. The function co will be called the tensor function. 

The c-tensor product is given analogously. For any A,BeJc we have 
A(x)c

 B = FAXB/T, where FAxB is the free commutative semigroup on A x B. The 
relations T0, T and the element («i(x)c b\) ... (an®

cbn) e A(x)c B are defined in the 
same way. 

Definition 2. A semigroup S £ .T will be called an N-semigroup, if for any 
x, y e S and any natural number n the condition (xy)n = xnyn holds. 

Let A e J. We will denote: 

C(A) — the greatest commutative homomorphic image of A. 
N(A) — the greatest homomorphic image of A which is an 

N-semigroup. 
F — the free semigroup with one generator. 
|X| — the cardinality of a set X . 

Grilet proved in [1] and [2] the following properties: 

G l . If A, BeJc, then A(y)cB = C(A®B). 
G2. If AeJ, then A®F=N(A). 
G3. For any A,BeJ is A®B = N(A)®N(B). 

The following corollaries are consequences of Gl—G3. 

Corollary 1. Any N-semigroup is the tensor product of some semigroups. 
Proof. If A is an N-semigroup, then A = N(A) = A®F. 

Corollary 2. Any commutative semigroup is the c-tensor product of some 
commutative semigroups. 

Proof. Every commutative semigroup A is an N-semigroup and we have 
A®CF=C(A®F) = C(N(A)) = A. 

The natural question arises. Is any semigroup the tensor product of some 
semigroups? The answer is negative and this fact will be proved in the third part of 
this paper. 

2. Indecomposable elements 

Definition 3. Lef A e ST. An element a e A is indecomposable (in A) iff a e A — 
A2. If aeA2, then a is called decomposable (in A). 
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The connection between indecomposable elements in A, B and indecomposable 
elements in A(x)B and A®CB is given in the following Theorems 1—3. 

Theorem 1. Let A, B e ST. Then a®b is an indecomposable element in A®B 
iff a is an indecomposable element in A and b is an indecomposable element in B. 

Proof. Let a®b be an indecomposable element in A®B. Suppose that the 
element a or b is decomposable, say a = axa2. Then a® b = (ax®b)(a2®b) and 
this shows that a®b is decomposable in A®B. This is a contradiction. 

Conversely suppose that a e A and b e B are indecomposable elements. We have 
to show that a®b is an indecomposable element. 

It is clear that | A | > 1 and | B | > 1 . Let T={x, 0} be the zero semigroup and 
0 the zero of T. 

Let P: A X B-» T be the function defined by 

(3(a, b) = x 
P(a',b') = 0, if (a',b')±(a,b). 

For any au a2eA and b\, b2eB we have (axa2, bi) ^(a, b) 
and (ai, bib2)±(a, b). This implies 

j3(flifl2,6i) = 0 = /3(fli,&i)/3(fl2,fci), 
j8(fli, 6i62) = 0 = j3(fli, 6i)0(fli, b2). 

Hence /3 is a bilinear map Ax B to T. 
By Definition 1 there exists a homomorphism a: A®B-*T and (3 = coa, where 

a) is the tensor function. 
Let us remark that for any homomorphism / if f(y) = z and z is indecomposable, 

so is y. 
We have (5(a, b) = x and this implies a(a®b) = a(co(a, b)) = P(a, b) = x. 

Since x is indecomposable element, so is a®b. 
This completes the proof of Theorem 1. 
Since T is commutative, the same proof implies 

Theorem 2. Ler A,Be3~c. Then a®cb is an indecomposable element in 
A®CB iffaeA-A2 and beB-B2. 

Corollary 1.1. Let a,aieA- A2, b,bieB- B2. Then (a, b) * (au bx) 
iff a®b+ai®bi. 

Proof. Let T, a be the same as in the proof of Theorem 1. If (a, b)±(ai, bi) 
then a(a(x)fe) = x±0 = a(ai(x)6i) and it follows that a®b±ai®bi. 

The converse is obvious. 

Theorem 3. Lef A, Be ST and au a2, ..., an e A - A2, bu b2, ..., bneB - B2, 
where a.^a.+i, bx± &.+i for i = 1, ...,n - 1. The class (ai(x)6i) ... (an®bn) of the 
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tensor congruence on FAXB contains a unique element, namely (a\, b\) ... (an, bn) 
Proof. Let C\, ..., ck be all different elements of au ..., an and d\, ..., ds all 

different elements of b\, ..., bn. By Corollary 1A the elements c,(x)d, for / = 
1, ..., k and 7 = 1, ..., s are different indecomposable elements of A®B. 

Let X= {x;,7: / = 1, ..., k, 7 = 1, ..., s} be a set with \X\ = ks._ 1. Let 5 be 
a semigroup with the generating set X and a zero 0 £ X. The operation on 5 for 
non-zero elements is defined in the following way: 

For any xitj, xkt!eX we have 

_ / 0 if / = k or 7 = /, 
1,1 k'! \ *,,,•**,/ if ií k and jí l. 

Let I be the ideal of 5 consisting of 0 and of all words from S of the lenght 
greater than n. 

Let T\ = SI I be the Rees factor semigroup. Elements of T\ will be denoted in the 
following way: 

0 denotes the zero of T\. The class of the Rees congruence which contains the 
non-zero element xeS will be denoted by x. 

The set T\ - T\ = {xiyj: i = 1, ..., k, j=l,...,s) is the set of indecomposable 
different generators of T\. 

Let the function ]3: A xB-->Ti be defined in the following way: 

P(ci9 dj) = Xi,} for / = 1, ..., k and 7 = 1, ..., s, 
/3(c, d) = 0 otherwise. 

For any u, U\, u2e A and v, V\, v2eB we have: 

P(u\U2, v) = 0 since U\U2eA2. 

($(u\, v)P(u2, v) = 0 since one of (3(u\, v), (3(u2, v) is equal to 0 or (5(u\, v) = xt, , 

P(u2, v) = xktj and Xij- xk,j=0. 

In both cases we have P(u\U2, v) = (3(u\, v)/3(u2, v). 
In the same way we prove P(u, V\V2) = (5(u, v\)(3(u, v2). 
This means that the function /? is bilinear function. 
Let o) be the tensor map co: A x B—> A®B and (o, i, r be the same as in the 

Definition 1. 

Let P': FA*B^>T\ be the natural extension of j3, j3=i |3 ' . According to the 
definition of the tensor congruence T and the construction of the semigroup T\ it is 
clear r = ker co' c ker 0 ' . All classes of ker /V contain only one element except one 
class, namely the class whose image by ()' is 0. 

Since a{+ ai+l, and bi^bi+1 for / = 1, ..., n - 1 we have P'[(a\, b\) ... (an, bn)] 
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= j3(ai, bi) ... P(an, bn) = JC,-,,;, ... xinJn^0, where xik,jk e T\ - T2 for k ~ 1. .. n 
The class of ker j3', which contains the element (a\, b\) ... (an, bn) is a one-elem­

ent class and this fact implies that the class (a\®b\) ... (an®bn) of the tensor 
congruence T is the same element. 

This proves Theorem 3. 

3. Semigroups which are not tensor products 

By G3 we have N(A)®N(B) = A®B and denote by a this isomorphism. By 
the definition of the tensor product the tensor function (o: N(A)x N(B)-+ 
N(A)®N(B)y for any fixed beB, determines a homomorphism oh: N(A)^> 
A®B defined by ob(a) = a®b. 

Let o: A-+N(A) and T: B-*N(B) be the natural homomorphism. We have 

O X T 

AxB > N(A) x N(B) > N(A)®N(B) > A®B. 

The set X = {a® b: a e A, b e B) is the set of generators of A®B. For any 
aeA we have (oXr)(a, b) = (o(a), r(b)) and by the proof of G3 we ha\e 
a®b~n(a)®T(b). 

The set X contains the homomorphic image of N(A), because a®b = ob(a) for 
aeN(A). Similarly for N(B). 

A homomorphic image of an N-semigroup is an N-semigroup and this implies 
the existence of an N-semigroup in the tensor product A®B. 

Every semigroup contains an N-semigroup, namely the subsemigroup generated 
by one element. These N-semigroups will be called trivial N-subsemigroups. 

Theorem 4. Let S be a semigroup and \S - S 2 | > 1 . Suppose that for every JC, y e 
S-S2, x+y, there exists a natural number neN, n>l, such that (xy)"^xnyn. 
Then S is not a tensor product of semigroups. 

Proof. Let us suppose for an indirect proof that S = A®B for some A, B e ST 
and let a be this isomorphism. If | S - S 2 | > 1 , then there exist two elements 
JCI, jc2e S - S 2 and JCI=£JC2. Since JCI and JC2 are indecomposable elements, a_1(jci) 
and a-1(jc2) are indecomposable, too. Let a~1(x1) = a\®b\ and a~1(x2) = a2®b2, 
then by injectivity of a we have a\® b\ j= a2® b2. By Theorem 1 we have 
fli, a2 e A — A2 and b\, b2eB — B2 and by Theorem 3 we have (au b\) + (a2, b2). 

Let, e.q., a\ + a2. Then by Theorem 1 the elements a\®bu a2®b\ are inde­
composable and by Theorem 3 a\®b\ ± a2®b\. Let a(a2®b\) = JC3. Clearly 
we have JC3 e S - S2, JCI + JC3 and for any natural number n = 1 we have 
(jdjc3)

n = [a(a\®b\)a(a2®b\)]n = [a(a\a2®b\)]n = a(a\a2®M) = 
a(a\®b1)a(a2®bn\) = [a(a\®b\)]n [a(a2®b\)]n = JC7JC3\ 

This is a contradiction with the assumption and Theorem 4 is proved. 
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Corollary 4.1. Lef S be a semigroup having only trivial N-subsemigroups and 
\S — S2\ > 1. Then S is not a tensor product of semigroups. 

Proof. This corollary follows immediately from Theorem 4 and the definition 
of an N-semigroup. 

Corollary 4.2. Let Fx be a free semigroup on a set X, where |X| > 1. Then Fx is 
not a tensor product of some semigroups. 

Proof. This corollary follows immediately from Theorem 4 by putting S = Fx. 

Corollary 4.3. Lef Fx be a free semigroup on a set X, |X| > 1. Lef J be the ideal 
of all words of Fx the lenght of which is greater then fixed natural number k, k S 4. 
Then the Rees factor semigroup Fx/J is not a tensor product of semigroups. 

Proof. Corollary 4.3 follows from Theorem 4 for n = 2 and S = FX/J. It is 
| S - S 2 | = | X | > 1 . 

Corollary 4.4. There exist infinitely many finite semigroups which are not tensor 
products of semigroups. 

Proof. We use the notations of Corollary 4.3. If the set X is a finite set, then 
Fx/J is finite. If the set X have different finite cardinalities or natural numbers k 
are different, we obtain different finite semigroups. 
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КООБЛАСТЬ ТЕНЗОРНОГО ПРОИЗВЕДЕНИЯ ПОЛОГРУПП 

1апа Са1апоVа 

Р е з ю м е 

В этой работе мы показали, что всякая коммутативная полугруппа является тензорным 

произведением некоторых коммутативных полугрупп (в классе всех коммутативных полугрупп). 

Существуют полугруппы (конечные и бесконечные), которые не являются тензорным произ­

ведением никаких полугрупп. Такой является, например, свободная полугруппа Р х , | Х | > 1 и 

фактор-полугруппа Рисса Р х //, где /-идеал всех слов из Рх длина которых больше, чем 

натуральное число к, к^4. 
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