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CODOMAIN OF THE TENSOR PRODUCT
OF SEMIGROUPS

JANA GALANOVA

In this paper we prove that every commutative semigroup is a c-tensor product
of some commutative semigroups and there exist semigroups (finite and infinite)
which are not tensor products of any semigroups. The last fact follows from the
properties of indecomposable elements.

1. Introduction

Let J be the class of all semigroups and J. be the class of all commutative
semigroups. The tensor product X) in the class J and the tensor product X)* in the
class 7. have been defined in [1—3]. The tensor product X in the class 7. will be
called a c-tensor product.

Definition 1. Let A and B be semigroups and A X B be the Cartesian product of
A and B. A semigroup S together with a bilinear map w: A X B— S is called
a tensor product of A and B if the following condition is satisfied:

For any semigroup C and for any bilinear map fB: A X B— C there exists
a homomorphism a: S— C such that f = wa.

The semigroup S will be denoted as A X) B.

The c-tensor product R is defined analogously as the tensor product X), we
require that the semigroups A, B, C, S be commutative semigroups.

It is proved in [1] that for any A, B € J the semigroup A X) B is isomorphic to
Faxs/t, where Faxp is the free semigroup on A X B and t is the smallest
congruence over the relation 7o, which is defined on A X B in this way:

For any a, ai, a2€ A and b, by, b, e B the relations

(a, b]bz)To(a, b])(a, bz)
(aiaz, b)to(ai, b)(az, b) hold.

The relation 1, will be called the tensor relation and t will be called the tensor
congruence (on Faxs). The class of the tensor congruence which contains the
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element (a1, b1)(az, b2) ... (a., b,) € Faxg will be denoted by (a:® b1)(a:® b,) ...
(a, X b,). This is an element of AX) B.

The function w: A X B— A ® B in the Definition 1 is given by w = 1w’, where
t: AXB—>Faxp is the embedding and w': Faxs— A®B is the natural
homomorphism. The function @ will be called the tensor function.

The c-tensor product is given analogously. For any A, Be 7. we have
A X B=F4x«s/t, where Fiaxpis the free commutative semigroup on A X B. The
relations 7o, T and the element (a, X by) ... (a.Xb,) € AX)° B are defined in the
same way.

Definition 2. A semigroup Se€ .7 will be called an N-semigroup, if for any
x, y €S and any natural number n the condition (xy)" = x"y" holds.

Let A €. 7. We will denote:

C(A) — the greatest commutative homomorphic image of A.

N(A) — the greatest homomorphic image of A which is an
N-semigroup.

F — the free semigroup with one generator.

|X| — the cardinality of a set X.

Grilet proved in [1] and [2] the following properties:

Gl. If A, Be 7., then AR*B=C(AXB).
G2. If AeT, then AQF=N(A).
G3. Forany A,Be7 is AQB=N(A)X N(B).

The following corollaries are consequences of G1—G3.

Corollary 1. Any N-semigroup is the tensor product of some semigroups.
Proof. If A is an N-semigroup, then A=N(A)=AXF.

Corollary 2. Any commutative semigroup is the c-tensor product of some
commutative semigroups.

Proof. Every commutative semigroup A is an N-semigroup and we have
AR F=C(A®F)=C(N(A))=A.

The natural question arises. Is any semigroup the tensor product of some
semigroups ? The answer is negative and this fact will be proved in the third part of
this paper.

2. Indecomposable elements

Definition 3. Let A € 7. An element a € A is indecomposable (in A) iffae A —
A2 If ae A%, then a is called decomposable (in A).
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The connection between indecomposable elements in A, B and indecomposable
elements in A B and AX)°B is given in the following Theorems 1—3.

Theorem 1. Let A, Be J. Then a® b is an indecomposable element in A QB
iff a is an indecomposable element in A and b is an indecomposable element in B.

Proof. Let a®b be an indecomposable element in A (X)B. Suppose that the
element a or b is decomposable, say a = a;a;. Then a®b = (a1®b)(a:® b) and
this shows that a® b is decomposable in A ® B. This is a contradiction.

Conversely suppose that a € A and b € B are indecomposable elements. We have
to show that a@®b is an indecomposable element.

It is clear that |A|>1 and |[B|>1. Let T={x, 0} be the zero semigroup and
0 the zero of T.

Let B: A X B— T be the function defined by

B(a, b)=x
B(a', b')=0, if (a', b')# (a, b).

For any a;, a,€ A and by, b,€ B we have (aia,, b)) #(a, b)
and (ai, b1b;) # (a, b). This implies

B(aiaz, by) =0=B(ai, br)B(az, b1),
B(ai, bib)=0= B(as, b1)B(as, b>).

Hence f is a bilinear map A X B to T.

By Definition 1 there exists a homomorphism a: AQB— T and § = wa, where
o is the tensor function.

Let us remark that for any homomorphism f if f(y) = z and z is indecomposable,
so is y.

We have B(a, b)=x and this implies a(a®b) = a(w(a, b)) = B(a, b)=x.
Since x is indecomposable element, so is a X b.

This completes the proof of Theorem 1.

Since T is commutative, the same proof implies

Theorem 2. Let A,Be J.. Then a®°b is an indecomposable element in
AQrBiffacA—A? and be B— B~

Corollary 1.1. Let a, a;e A — A? b, bye B— B? Then (a, b)+# (a1, b1)
iff a@b# al®b1.

Proof. Let T, a be the same as in the proof of Theorem 1. If (a, b) # (a1, b,)
then a(a®b) = x#0 = a(ai®by) and it follows that a @ b # a1&) b1.

The converse is obvious.

Theorem 3. Let A,BeJ and ai, az, ...,a.€ A—A? by, b, ..., b, e B— B2,
where a;i# ai+1, bi# bivy fori=1, ...,n — 1. The class (a:® b)) ... (a.Xb,) of the
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tensor congruence on Fa s contains a unique element, namely (a;, b;) ... (a., b.)

Proof. Let cy, ..., c« be all different elements of ay, ..., a, and d,, ..., d, all
different clements of by, ..., b,. By Corollary 1.1 the elements ¢.&®d, for i=
1,..., k and j=1, ..., s are different indecomposable elements of A () B.

Let X={x;;:i=1,...,k, j=1,...,s} be a set with [X|=ks=1. Let S be
a semigroup with the generating set X and a zero 0¢ X. The operation on S for
non-zero elements is defined in the following way:

For any x; ; x«:€ X we have

. _<Oifi=korj=l,
PRI X, xe if i# k and j# 1
Let I be the ideal of S consisting of 0 and of all words from S of the lenght

greater than n.
Let T, = S/I be the Rees factor semigroup. Elements of T, will be denoted in the

following way:
0 denotes the zero of T,. The class of the Rees congruence which contains the

non-zero element x € S will be denoted by x.
The set Ty—T3={x;;:i=1,..., k, j=1, ..., s} is the set of indecomposable

different generators of T;.
Let the function 8: A X B— T be defined in the following way:

B(c, d)=x:, for i=1,...,kandj=1, .., s
B(c, d)=0 otherwise.

For any u, w,, u;€ A and v, v, v2€ B we have:

B(uuz, v)=0 since wue A2

B(u1, v)B(uz, v) =0 since one of B(us, v), B(uz, v) is equal to 0 or B(us, v)=x,.,
B(uz, v) = xi; and x;,- xx,;=0.

In both cases we have B(uiuz, v)=B(u, v)B(uz, v).

In the same way we prove f(u, vivz)=B(u, v1)B(u, v,).

This means that the function § is bilinear function.

Let w be the tensor map w: A X B> A®B and @, t, T be the same as in the

Definition 1.

Let B': Faxs— T: be the natural extension of f, B=18'. According to the
definition of the tensor congruence t and the construction of the semigroup T it is
clear T =ker w’ cker B'. All classes of ker ' contain only one element except one

class, namely the class whose image by B’ is 0.
Since a;# ais1, and bi# b,y for i=1, ..., n—1 we have B'[(ai, b1) ... (a., b,)]
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= B(as, b1) ... B(an, b)) = X111 ... xin. %0, where x5 o€ Ti— Tifork—1. .. n
The class of ker ', which contains the element (a,, b,) ... (a., b,) is a one-clem-
ent class and this fact implies that the class (aiXb) ... (a.X b,) of the tensor
congruence T is the same element.
This proves Theorem 3.

3. Semigroups which are not tensor products

By G3 we have N(A)X N(B)= A ® B and denote by a this isomorphism. By
the definition of the tensor product the tensor function w: N(A)x N(B)—
N(A)®N(B), for any fixed b e B, determines a homomorphism ¢,: N(A)—
A ®B defined by g,(a)=a®b.

Let 0: A—> N(A) and 1: B— N(B) be the natural homomorphism. We have

AxB -5 N(A)x N(B) — N(A)®N(B) —> A®B.

The set X={a®b:ae A, be B} is the set of generators of A® B. For any
a€A we have (o x1)(a,b) = (a(a), (b)) and by the proof of G3 we have
a®b = a(a)R1(b).

The set X contains the homomorphic image of N(A), because a(X) b = 0,(a) for
a € N(A). Similarly for N(B).

A homomorphic image of an N-semigroup is an N-semigroup and this implies
the existence of an N-semigroup in the tensor product A X B.

Every semigroup contains an N-semigroup, namely the subsemigroup generated
by one element. These N-semigroups will be called trivial N-subsemigroups.

Theorem 4. ‘Let S be a semigroup and |S — S?| > 1. Suppose that for every x, y €
S —S?, x+#y, there exists a natural number ne N, n>1, such that (xy)"# x"y".
Then S is not a tensor product of semigroups.

Proof. Let us suppose for an indirect proof that S= A &) B for some A, Be
and let a be this isomorphism. If |S—S?|>1, then there exist two elements
X1, X2€ S — S? and x; # x,. Since x; and x, are indecomposable elements, a~'(x;)
and a~'(x;) are indecomposable, too. Let a™(x;) =a:® b; and a~'(x2) = a.X) b,
then by injectivity of a we have a:®b;# a;®b,. By Theorem 1 we have
a;, a2€ A — A*and by, b, € B — B? and by Theorem 3 we have (a1, b:) # (az, b2).

Let, e.q., a1 # a». Then by Theorem 1 the elements a;&)b;, a.X) b, are inde-
composable and by Theorem 3 a;®b:# a:® b;. Let a(a:&®b,)=x;. Clearly
we have x;eS—S?% xi#x; and for any natural number n=1 we have
(x1X3)" = [a(a;@bl)a(az@)bl)]" = [(I(alaz®bl)]’I = a(am;@bi‘) =
a(ai®bi)a(a:@b7) = [a(a:@b1)]" [a(a2@b1)]" = xix5.

This is a contradiction with the assumption and Theorem 4 is proved.
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Corollary 4.1. Let S be a semigroup having only trivial N-subsemigroups and
|S — S?|>1. Then S is not a tensor product of semigroups.

Proof. This corollary follows immediately from Theorem 4 and the definition
of an N-semigroup.

Corollary 4.2. Let Fx be a free semigroup on a set X, where |X|>1. Then Fx is
not a tensor product of some semigroups.
Proof. This corollary follows immediately from Theorem 4 by putting S = Fx.

Corollary 4.3. Let Fx be a free semigroup on a set X, |X|> 1. Let J be the ideal
of all words of Fx the lenght of which is greater then fixed natural number k, k =4.
Then the Rees factor semigroup Fx/J is not a tensor product of semigroups.

Proof. Corollary 4.3 follows from Theorem 4 for n=2 and S =Fx/J. It is
IS — 87 = |X|>1.

Corollary 4.4. There exist infinitely many finite semigroups which are not tensor
products of semigroups.

Proof. We use the notations of Corollary 4.3. If the set X is a finite set, then
Fx/J is finite. If the set X have different finite cardinalities or natural numbers k
are different, we obtain different finite semigroups.
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KOOBJIACTb TEH30PHOI'O IMPOU3BENEHUSA IMOJOIPYIII
Jana Galanova
Pe3ome

B aroii paGoTe MblI MOKa3anu, YTO BCSAKAss KOMMYTAaTHBHAasi MOJYIpynna sBASETCS TEH30PHBIM
npon3BefieHHeM HEKOTOPbIX KOMMYTaTHBHbIX Monyrpynn (B Kiacce BceX KOMMYTAaTHBHBIX MOJYTpym).

CymecTByIoT nonyrpynns! (KOHeYHble M GeCKOHEYHbIE), KOTOPbIE HE ABIAAIOTCH TEH30PHBIM NPOHU3-
BefleHMeM HUKakux monyrpynn. Takoil siBaseTcs, Hanpumep, cBoGoaHas nonyrpynna Fx, |[X|>1 u
cdakrop-noayrpynna Pucca Fx/J, rae J-upean Bcex cnoB u3 Fx annHa KoTopbix Goablue, 4eM
HaTypanbHoe yucno k, k=4,
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