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A NOTE ON INDECOMPOSABLE ELEMENTS
IN THE TENSOR PRODUCT OF SEMIGROUPS

JANA GALANOVA

Let J be the class of all semigroups. In [1] the tensor product ) is defined and
following property is proved:

For any A, B € J the semigroup A X B is isomorphic to Faxp/T, where Faxg is
the free semigroup on the Cartesian product A XB and 7 is the smallest
congruence over the relation 7o, which is defined on A X B in this way:

For any a, aia;€ A and b, by, b, € B the relations

(a, b;bz) To (a, b;)(a, bz)
(alaz, b) To (al, b)(az, b)
hold.

The relations 1o will be called the tensor relation and t will be called the tensor
congruence (on Faxg). The class of the tensor congruence which contains the
element (a1, by)...(a», b,) € Faxs will be denoted by (a1X b1)...(a. X b.). This is an
element of A B.

The following properties of AX B are proved in [1]:

Gl. If E is a one-element semigroup, then AQE = E(A) holds for any Ae J.
E(A) is the greatest idempotent homomorphic image of A.

G2.If A, BeJ, Aic A, B,cB and A, is a set of generators of A, B, a set of
generators of B, then the set

®(A1, B))={a®be ARB: ac A,, beB;}
is a set of generators of AX) B.

Definition 1. Let A € 7 and a € A. Then the element a is called indecomposable
(inA), if ac A— A? If a€ A? then a is called decomposable (in A).

The following properties are proved in [2]:

JI.Let A, BeJ, ae A and b e B. Then a®b is indecomposable in A B iff
aeA—A?and be B—- B~

R.LetA,BeT,aeA—A%, bbe B—B? i=1, ..., nand g # a;, bj+..# b, for
j=1, ..., n—1. Then the element (ai, b1)...(ax, b.) € Faxs is the only element of
the class (a1®b1)...(a.X b.) of the tensor congruence on Faxs.
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In particular we have (a1, b1) # (a2, b2) in Faxg iff a;® b1 # a2 b, in A X B.

If Iis an ideal in a semigroup A, then A/I denotes the Rees factor semigroup.

The cardinality of a set X will be denoted by | X|.

The purpose of this note is to prove the statements C1—C5 formulated below
which clarify the influence of the indecomposable elements of A and B on the
structure of A(X)B.

Statement C1. Let A, Be 9. Then
[(AQB)-(A®B)’|=|(A - A%) X (B - B’)|.

Proof. This follows from J1 and J2, since a®b e[(A X B) — (AR B)?] iff
(a, b)e[(A — A?) x (B — B?)].

Statement C2. If |A — A?|>1 and |B— B?*|>1, then the semigroup A ® B is an
infinite non-commutative semigroup.

Proof. Let ai, a,e A— A? by, be B—B? and a,# a,, b, # b,. Denote s, =
a1@ b1, s2 = a:@ b.. Since (a1, b1)(az, bs) # (az, b2)(ai, bi) we have s,s, # 5251 by J2
and A @ B is non-commutative semigroup.

The following elements are different (by J2):

S1, $2, S152, 515251, $1525152, $152515251, ....

Hence the semigroup A Q) B is infinite.

If A, B satisfy the conditions of the Statement C2 then A X)B contains
indecomposable elements and it is infinite. The question arises: If A X) B is finite
are there indecomposable elements in A (X) B. The answer is given in the Statement
C3.

Statement C3. let S be a finite semigroup, S—S*# @ and S be isomorphic to
a tensor product AQB (A, Be 7). If we denote |A — A?| = a and |B— B?| =,
then a =1 and B is a non-zero natural number or f =1 and « is a non-zero natural
number.

Proof. By C1 we have a#0, f#0, a and f finite. By C2 we have a=1 or
B=1.

Lemma. Let S = {s, 0} be a zero semigroup with zero 0 and T a zero semigroup.
Then ST is isomorphic to T.

Proof. Let 0’ be the zero of T. Then the set Ti=T— {0’} is the set of all
indecomposable elements of T. Further ®({s}, T:)={s®¢t: te T:} is a set of
generators of SQ T by G2. By J1 we have ®({s}, T))=(S®T) - (SXRT)>.

Let 6: T—>S®T be a mapping defined by 6(t) =s&t for any te T. We shall
show that § is an isomorphism:

By J2, § is injective function, since t#t, te T, ty€ Ty imply 6(1)=s@t#s
Rt =6(t).
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The function & is surjective: The elements of S&T have the form
(s®t)...s®t.), where t,...,t,€ Ty and n is a natural number. We have
(s®t)...sPt)=s@t...t. =s X0’ for n>1. The elements of SK) T are exactly
the elements s@t=6(t), teT.

The function & is a homomorphism: 8(tit)=sX(t:it) =(s@t)(s@t) =
6(t)d(t) for any 4, ,eT.

This proves our Lemma.

Statement C4. Let A, B be semigroups. Then (A/A%) & (B/B?) is isomorphic to
A®B/(A®BY): iff |A—A?e{0,1)} or |B—B?e{0, 1).

Proof. Let us remark that AQB=BXA.

If both |A — A%|>1 and | B — B?|>1, then, by C2, A/A*®) B/B? is non-comm-
utative, while (A X B)/(A ® B)? is commutative.

If |A - A?*=1,ie.|A/A? =2, then by the Lemmawe have A/A?>&® B/B*= B-
/B2 Using C1, we have |B/B?*| =|B—B?|+1=|A — A?| |B-B? +1=|(A®B)-
/(A®B)?|, whence B/B*=(A®B)/(AX® B)>

If |A—A?=0, ie. |A/A?|=1, then A/A*®B/B? is by G1 a one-point
semigroup, and so is (A ® B)/(A ® B)?, by C1.

This proves Statement C4.

Definition. A semigroup S is called globally idempotent if S = S>.

Statement C5. The semigroup A X B is globally idempotent iff A is globally
idempotent or B is globally idempotent.

Proof. The semigroup A®B is globally idempotent iff [(A®B)-
(A®B)?|=0. We have |A — A’||B— B?|=0 by Cl and that means A =A? or
B=B.
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NMPUMEYAHHE K HEPO3JIOXHBIM 3JIEMEHTAM TEH3OPHOI'O
IMPOU3BEJNEHUS IMOJIYTPYIIIT

Jana Galanovi
Pe3iome
Iycts A, B — nonyrpynnsi 1 (X) — TeH30pHOE NpOU3BeAeHHE B Kiacce Beex nonyrpynmn. Ecnus A u
B B cymecTByeT 60s1ee OHOTO HEPA3JIOXKUMOro 1eMENTa, TO A (X) B — GecKOHeYHasi HEKOMMYTAaTHB-
Has monyrpynmna.

®akrop-nonyrpynna Pucca A X B/(A® B)® uzomoppna (A/A*)®(B/B?) Toraa u ToabKoToraa,
Korga B A wiu B B cyuectByeT He 6oJiee OHOTO HEPa3NOXHMOro 3JIEMEHTa.
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