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Math. Slovaca 36,1986, No. 1,69—83 

ON AN ASYMPTOTIC BEHAVIOUR 
OF SOLUTIONS OF THE DIFFERENTIAL 

EQUATION OF THE FOURTH ORDER 

JOZEF MIKLO 

In the paper presented an asymptotic behaviour of solutions of the linear 
differential equation of the fourth order of the form 

y(iv)+p(t)y"+q(t)y'-(-i)mr(t)y=o, m = i,2 (E) 

is investigatesd. Five Theorems and five corresponding Corollaries and two 
examples are shown. 

Throughout the paper the functions p(t), r(t) and q(t) will be supposed 
continuous and continuously differentiable to the order which stands in the 
Theorems and r(t)>0 on the interval [a, <»). 

Asymptotic and oscillatory properties of the differential equation 

y(iv) + a(t)y' + b(t)y = 0 (a) 

were studied in papers [5, 6, 8, 9] and elsewhere. The form (a) is the so-called 
second canonical form of the linear differential equation of the fourth order 
(see [4]). 

The aim of the present paper is to show asymptotic formulae of the first 
canonical form 

y(iv) + p(t)y,, + q(t)y' + r(t)y = 0 (b) 

of the linear differential equation of the fourth order. Equation (E) is a special case 
of equation (b). 

In paper [4] it is proved that if the differential equation 

z' + ±p(t)z = 0 (c) 

has a solution z(f)=£0, then the differential equation (b) can be transformed into 
the form (a). Since such functions p(t) will be considered that will not be known 
whether the equation (c) has a nonzero solution, the asymptotic behaviour of 
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solutions of the equation (b) will be studied. Some results can be found in [3] under 
the condition \p(t) — a\-+0 as f-»oo, where a is a positive constant. 

The paper gives new results on the asymptotic behaviour of solutions of equation 
(b). Some of them (Theorem 1 and 4) generalize the results in [8]. 

The equation (E) is equivalent to the system of linear differential equations of 
the first order 

z'(t) = A(t)z(t) (S) 

where 

A(t) = 

0 
0 
0 

1 
0 
0 

0 
1 
0 

(-l)"r(í), - (Ù, ~p(t), 0 

and z(t) = (y(t), y'(t), y"(t), y'"(t)Y. 
Let T(t) be a diagonal and nonsingular matrix. If we change z(t) by setting 

z(t) = T~l(t)w(t) and subsutitute in (S), we obtain 

w'(t) = [T(ř)A(f)T-(0 + T'(t)T-Қt)]w(t) (1) 

The form of system (1) depends on the matrix T(t). For the following purpose we 
choose the matrix T(t) in the form 

T(r) = dia [r3/4(0, r1/2(0, r1/4(r), 1] . 

Then the system (1) has the form 

w'(t) = [A0r
1/4(0 + Aiq(t)r-»\t) + A2p(t)r~^(t) + A3r-l(t)r'(t)]w(t) , (2) 

where A3 = dia -, -j, -, 0 and A0 = (ai;), Ai = (6„), A2 = (Cij) are the matrixes of 

the fourth degree such that a12 = a23 = a34 = 1, a4i = ( - l)m and all the others a,7 = 0; 
bn = 0 for i-/=4, ;-£2, b42 = - l ; ciy = 0 for i £ 4 , 1 ^ 3 and c43 = - l . 

Let r1/4(f) dr = oo; then the function s = o(t) = rl/4(x) dT has the derivative 

w'(t) = r1/4(r)>0, and so w(t) has an inverse function t = a(s) defined on [0, oo). 
Putting t = a(s) we get 

where 

x'(s) = [A0 + A1f(s) + A2g(s) + A3h(s)]x(s), 

x(s) = w(a(s)), f(s) = q(a(s))r-»<(a(S)) , 

g(s) = p(a(s))r-"2(a(s)) 

(3) 
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and 

h(s) = r'(a(s))r->"(a(s)). 

The system (3) is a special case of the linear system 

JC' = ( A 0 + V ( 5 ) + R(5))JC. (4) 

There is proved a following theorem for the system (4) in [1], p. 92: 
Theorem I. ([1], p. 92) Let A0 be a constant matrix with characteristic roots \ih 

/ = 1, 2, ..., n, all of which are distinct. Let the matrix V be differentiable and 
satisfy 

P|V'(5) |ds<oo 
Jo 

and let V(5)—>0 as 5—>oo. Let the matrix R be integrable and let 

P |R(s ) | d5<oo . 
Jo 

Let the roots of det (A0+ V(s)-AE) = 0 be denoted by A7(s), / = 1, 2, ..., n. 

Clearly, by reordering the JU; if necessary, lim A7(S) = JU,. For a given k, let 
- _ » 0 0 

Dki(s) = Re(kk(s)-ki(s)). 

Suppose all /', 1^/ l in , fall into one of two classes U and I2, where 

jeh if Dkj(o)do-
Jo 

• oo a s 5—> oo 
Jo 

and 

rDkí(o)do>-K (52Š=s,^0), 
Jsi 

jeh if í'2Dkl(o)do<K ( s^s .žO), 
Jsi 

where k is fixed and where K is a constant Let pk be a characteristic vector of A0 

associated with /xfc, so that 

A0pk = \ikpk . 

Then there is a solution q)k(s) of (4) and a s0, 0^50<oo such that 

lim q>k(s) exp [ - J A*(CT) dal =pk 
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If the hypothesis is satisfied for all k, \=\k1=n, then q>k(s), k = \,2, ..., n form 
a fundamental system of solutions of (4). 

The following theorem will also be needed. 
Theorem II. (Hinton [2]) Let r(t)>0 on an interval [a, oo) and r"(t)/r ,+1 n(t) be 

in L[a, oo), where the symbol L[a, oo) will refer to the set of all complex-valued 
functions which are Lebesgue integrable on the interval [a, oo), for n = 1, 2, ... 
Then 

(i) r1/n(t) is not in L[a, oo) 
(ii) [r'(t)/rl + l'"(t)]' is in L[a, oo) 

(iii) [r'(t)/rl+l/2n(t)]2 is in L[a, oo). 

Applying Theorem I to the system (3) we obtain the following theorems. 
Theorem 1. (i) Let r"(t)lr5/4(t), q'(t)/r3/4(t), q2(t)/r5/4(t), p'(t)/rl2(t) and 

p2(t)/r3/4(t) be in L[a, oo). 
Then there is a fundamental system of solutions zk(t), k = 1, 2, 3, 4 of the system 

(S) and t0 = a such that 

lim T(t)zk(t)r~3/*(t) exp [ - £ ^ ^ - ^ ^ ^ - ( - ^ f j ^ ) dr] =pk . 

(5) 

(ii) If in addition we suppose that r'(t)lr(t) is in L[a, oo), then there is 
a fundamental system of solutions zk(t), k = 1, 2, 3, 4 of the system (S) and t0 = a 
such that 

lim T(t)zk(t) exp [ - £ W\x) - f -£&--

-(-irf^))dr]=P t , (6) 

where |Ufc are the roots of the characteristic equation pL4 — (—\)m = 0 of the matrix 
A0 and pk = (1, \ik, [ik, p,3k)

T are the characteristic vectors of the matrix A0. 
Proof. We show that all hypotheses of Theorem I for the system (3) are 

satisfied. 
The characteristic equation of the matrix A0 is 

/ x 4 - ( - l ) " = 0, m = i , 2 . (7) 

The roots of (7) are ^ i . 2 = -7=±-7=» ^ 4= -—=±-7= for m = \ and ux 2 = ± 1, 
V2 V2 ' V2 V2 

ju3,4= ± i for m = 2. So the characteristic roots of the matrix A0 are distinct. The 
vectors pk = (\, \ik, \i\, p%)T, k = 1, 2, 3, 4 are characteristic vectors of A0 corres
ponding tO jUk. 
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(i) Denote 

V(s) = AJ(s) + A2g(s) + A3/i(s) and R(s) = 0 

in the system (3). 

In order to be | V'(s)\ ds<oo it is sufficient to prove that 
Jo 

P|/'(5)|ds<«>, f \g'(s)\ds<<* and f \h'(s)\ds«». 
Jo Jo Jo 

If we put a(s) = t, then from the definition of the functions f(s), g(s) and h(s) 
there follows 

f"|/'(s)| ds= f"|[«7(o(s))r-^(o(s))]'| ds = 
Jo Jo 

= [^q'(a(s))r-3'\a(s))-^q(a(s))r-^a(s))r'(a(s))y(s)\ds^ 

^{a"k'(t)t-3/4(0l dt+l[\q(t)r-™(t)r'(t)\ dt. 

The first integral is in L[a, oo) by hypothesis. By apply the Cauchy inequality to the 
second integral we get 

\"\q(t)r'(t)r-™(t)\ dt = \~ \q(t)r~5/*(t)\ • \r'(t)r~9/\t)\ df_§ 

s [r^2(°r"5 /4 (o dt\1/2 • [f(rfwr"9,8w)a H i/2' 
since q2(t)r~5/4(t) is in L[a, oo) by hypothesis and r'(t)r~9/8(t) is in L[a, oo) by 

Theorem II of point (iii). Therefore f |/'(s)| ds<oo. 
Jo 

Similarly (by hypothesis and by Theorem II) we get 

f"|0'(s)| ds= f"|lp(o(s))r-"(o(s))]'| ds=g 
Jo JO 

s|jp'(,)r-"2(0| dt+\\~\p(t)r'(t)r-»\t)\ df_£ 

^/jp'(0r-1/2(0l dr+| [ J V(0t-3/4(0 dt] "* • 

•~l"(r'(t)r-9>*(t)ydt\' 
I 1/2 

<oo 
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and 

/• 00 

Consequently I |V'(5) |ds ' 
Jo 

di i \[rs'*(t)\ dt<co . 

> < o o . 

Similarly we get 

r/2(s)ds=ra2(ř)r-5/4(í)dř< 

\~g\s)ds=£p\t)r-*\t)át< 

(°°h2(s) dí = í"[r'(0t-"9/8(0]2 dí < 0 0 

Since f'(s) and f2(s) are in L[a, oo) then /(s)-->0 as s-> oo. By the same way we get 
g(s)—>0 and rz(s)-->0 as s—>oo. Therefore V(s)—>0 as s—>oo. 

Evidently \R(s)\ ds<oo because R(s) = 0. 
Jo 

The characteristic equation of the matrix A0+ V(s) is 

P(A) = A4 + дД3 + a2X
2 + a3A + a4 = 0 , (8) 

where 

aí=~2h' 
fl2=Jg « +0 > 

3 5 3 3 
a3=-j^h3--gh+f , a4 = -gh2--fh-(-l)m . 

Since /(s)->0, g(s)->0, A(s)->0 as s-*oo we get that flj-^0, a2-»0, a3-->0, 
a4->-(-l)m and P(A(s))-->^4-(-l)m as s->oo. Hence the roots A*(s) of (8) 
converge to the roots of (7). Thut we may write for s e[0, oo) 

k(s) = p + 6(s), 

where 5(s)—>0 as s-» oo. In order to find whether the hypotheses of Theorem I are 
satisfied we show that the function 6(8) may be written as a sum 

8(S) = P(S) + Y(S)9 (10) 

where (3(s) = df(s) + c2g(s) + c3h(s) f° r s o m e numbers cl9 c2, c3 and y(s)—»0 as 
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s->oo and y(s) is in L[0, oo), Then /3(S)—>0 as s->oo (because /(8)->0, g(s)-*0, 
ri(s)->0 as s->oo) and y(s)->0 as s->oo (this follows from (10)). 

Substituting A(s) = ji + |3(s) + y(s) into (8) we get 

P(li 4-/3(5) + Y(S)) = Y* + [4(|i + |8) + njy3 + 

4- [6(^ + |3)2 + 3(ii + |8)fli + a2]y
2 + 

+ [4(fi + i3)3 + 3(f/ + (3)2a1 + 2(/i + i3)fl2 + a3]y + P(^ + i3) = 0 , (12) 

where 

P(li + P) = P4 + (4/i + ai)j33 4- (6/x2 + 3 ^ + a2)j8
2 + 

+ (4\x3 + 3{i2a1 + 2\ia2 + a3)j3 4- P(\i) . 

The equation (12) may be written as 

Y(s)H(s) = -P((i + p(s)), (14) 

where 

H(s) = y3 4- [4(fi +18) + iijy2 4- [6Qi + j3)2 4- 3(fi + j3)a1 + a2]y + 

+ 4(JI + j3)3 4- 3(fi 4- j8)2fl, 4- 2((i + |3)a2 4- a3. 

Since <ii(s)->0, a2(s)->0, a3(s)->0, |3(s)->0, y(s)-»0 as s-»oo then H(s)-»4ju3 

as s—> oo. If jLik, k = 1, 2, 3, 4 are the roots of the equation (7), then Hfc(s)->4/x* as 
5—>oo. 

Thus for every e > 0 there is a number soe[0, oo) such that 

\4n3
k-Hk(s)\<e for se[s0, » ) . 

From this it follows that 

|H f c (s )>4 |^ | -e = 4 - e (16) 

because 1̂ *1 = 1. If we put s = 1, then from (14) and (16) we get 

3\Yk(s)\<\P(iik + pk(s))l * = 1,2,3,4 for se[s0,«>). (17) 

Put pk(s) in P(iik + fik(s)) such that 

4ii3
kpk(s)~h(s)ii3

k + g(s)ii2
k + f(s)iik=0, 

i.e. 

(ik(s) = lh(s)-&g(s)-(-iri£f(s), 

then P(n* + |3*(s)) is in L[0, oo); (because each term of P(fik + (ik(s)) consist of 
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functions f2 or g2 or h2 or fg or hg or h/, which are in L[0, co)) and consenquently 
from (17) it follows that yk(s) is in L[0, oo). 

The roots kk(s) of the equation P(A) = 0 may be written as 

h(s) = iik+lh(s)-&g(s)-(-irff(s) + n(s), 

where \xk are the roots of the equation /i4 — (—l)m = 0, m = 1, 2. 
Then Dky = Re (Afc(s) — A7(s)) for all k,/ = l, 2, 3, 4 may have the following 

forms 

a) Dki = G(s) 
b) Dkj = c + F(s) + G(s) 
c) Dfc, = - c + F(s) + G(s) 

where c > 0 is a constant, F(s), G(s) are functions such that F(s)-->0, G(s)—>0 as 
s—>oo and G(s) is in L[0, oo). 

In the case of a ) ; e J2, because of G(s) being a continuous function on [0, oo) and 

f Dfc;(s) d s = f G(s)ds<oo 
Jo Jo 

it follows that there exists a number K>0 such that 

f52Dfc7(5)ds<K for all 0^Sl^s2. 
Jsi 

In the case of b) jelu since F(s)—>0 as s—>oo, the exists a number s' G[0, OO) 
such that for every number s>s' there is 

c + F(s) + G(s)Ш±+G(s) 
2 

Then 

since 

and 

rDki(s) ds= Í"(c + F(s) + G(s)) ds = 
Jo Jo 

00 

Г ( f + G ( s ) ) љ - 0 0 

I 2Dkj(s)ds>-K for all s2^s^0 and some K > 0 . 
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In the case of c) / e I2, because from F(s)—>0 as s -» oo it follows that there exists 
a number s"e[0, oo) such that 

-c + F(s) + G(s)<-^+G(s) on the interval [s", oo) 

and 

Jo~D*,(s)ds=JVc + F(^^^ 

and also 

Dk ;(s)ds<K for every s2==s1 = 0 
Jsi 

and some K>0. 
Thus all assumptions of Theorem I are satisfied, so that there are four linearly 

independent solutions xk(s), k = 1,2, 3, 4 of (3) and a number s0, 0^s0<oo such 
that 

xk(s)exp \ — \ Xk(o)da\—>pk as s—>oo, i.e. 

xmcxnT f7i i l 3 r ' ( a ( a ) ) ^ P ( a ( a ) ) 
xk(s) exp L j s o (»k + g r 5 / 4 ( a ( a ) ) - j r l / 2 ( a ( a ) ) -

"("1)m f ^ ^ + ^ ( a ) ) d a ] ^ P k BS S^°°-
Denoting exp yk(s) ds =bfc, the formula (18) may be written as 

MOr-M «P [-£ (^"W-f;^-<-»- d ^ j ) d r ]^ 
-+pkbkr

 3/s(t0) as s-->oo . 

Since w(f) = T(t)z(t) and the system (3) is a linear one, there are solutions zk, 
k = l, 2, 3,4 of the system (S) with properties (5). Hence part (i) is proved 
completely. 

(ii) To prove the second part of Theorem 1 we denote 

V12(s) = A1f(s) + A2g(s) and R3(s) = A3h(s) 

in the system (3). 
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The integral J |R3(s)| ds is in L[0, »), because 

JjAWldj-.Jjr'iOr-'iOldr <CC 

by hypothesis. 
The matrix V12(s) is the special case of the matrix V(s), therefore 

|V;2(s)| ds<oo and V12(s)-»0 as s->°°. 
Jo 

The characteristic roots of the matrix A0+ V12(s) have the form 

lk(s) = vk-^g(s)-(-ir^f(s) + Yk(s), 

k = \, 2, 3,4. 
Thus all assumptions of Theorem I are satisfied. Then there are four linearly 

indespendent solutions xk(s) of (3) and a number s0, Ogs0<oo such that 

s—>oo . 

By a similar procedure as the assertion (5) we get the assertion (6). 
Putting in the system (3) 

(i) V13(s) = A1/(s) + A3/i(s) and R2(s) = A2g(s) 
(ii) V1(s) = Alf(s) and R23(s) = A2g(s) + A3h(s) 

we obtain 
Theorem 2. (i) Let r

,f(t)r~
5/4(t), q'(t)r~3/4(t), q2(t)r~

5/4(t) and p(t)r~l/4(t) be in 
L[a, oo). 

Then there is a fundamental system of solutions zk(t), k = 1, 2, 3, 4 of the system 
(S) and a number t0, t0^a such that 

lim T(t)zk(t)r-*(t) exp [ - £ (ftr"*(T)-(-l)" f$fe) dr] =pk . 

(ii) If in addition we suppose that r'(t)r~l(t) is in L[a, oo), then there is 
a fundamental system of solutions zk(t), k = 1, 2, 3, 4 of the system (S) and t0^a 
such that 
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Jim T(t)zk(t) exp [ - £ 0 . tr"*(T)-(-l)" ^ ^ y ) dr=p*, 

where \ik and pk are the same as in Theorem 1. 
Denoting in the system (3) 

(i) V23(s) = A2g(s) + A3h(s) and Ki(s) = Aj(s) 
((H) V2(s) = A2g(s)'and R13(s) = A1f(s) + A3h(s) 

we get 
Theorem 3. (i) Let r"(t)r~5/4(t), p2(t)r~*/4(t), p'(t)r'V2t) and q(t)r'1/2(t) be in 

L[a, oo). 
Then there are four linearly independent solutions zk(t), k = 1, 2, 3, 4 of the 

system (S) and a number f0 = a such that 

lim T(t)zk(t)r~™(t) exp [ - £ ( ^ 1 / 4 ( T ) - | ^ y ) dr] =pk . 

(ii) If in addition we suppose that r'(Or"J(0 is in L[a, oo), there are four linearly 
independent solutions zk (t), k = 1,2,3,4 of the system (S) and t0=a such fhat 

lim T(Oz*(0 exp [ - £ ( ^ r ^ T ) - | ^ y ) dr] =p* , 

where jti* and pk are the same as in Theorem 1. 
If in system (3) we denote 

V3(s) = A3h(s) and Ri2(s) = Atf(s) + A2g(s) we get 

Theorems Let r"(t)r-5/4(t), q(t)r'1/2(t), p(t)r~1/4(t) be in L[a, ~) . 
Then there is a fundamental system of solutions zk(t), k = 1,2, 3,4 of the system 

(S) and t0 = a such that 

lim T(0z*(0r"3/8(0 exp [ - £ ^r , /4(r) dr] =pk , 

where \ik and pk are the same as in Theorem 1. 
If in the system (3) we put 

Vo(s) = 0 and Ri23(s) = Axf(s) + A2g(s) + A3h(s) we obtain 

Theorem 5. Let q(t)r~1/2(t), p(t)r-1/4(t) and r'tOr"1^) is in L[a, oo) and 

^r1/4(t)dt = oo. 

Then there is a fundamental system of solutions zk(t), k = 1, 2, 3,4 of the system 
(S) and a number l0 = « such that 
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lim T(t)zk(t) exp [ - í џкr
ш(x) di = Pк , 

where jufc and pk are the same as in Theorem 1. 
Theorms 2, 3, 4 and 5 may be proved in the same way as Theorem V 
Theorems 1—5 result in Corollaries 1—5 respectively. The hypotheses of 

Corollaries are the same as in the Theorems. 
Corollary 1. (i) There is a fundamental system of solutions yk(t), k = 1, 2, 3, 4 of 

the differential equation (E) and a number t0, t0 = a such that 

yV = W-™(t) exp [ £ ( ^ ' 4 ( T ) - | - ? & - -

- ( - D m f 7 ^ ) d T ] ( l + o(l)), y = 0 , l , 2 ,3 . (19) 

(ii) There is a fundamental system of solutions yk(t), k = 1, 2, 3, 4 of equation 
(E) and a number t0 = a such that 

yV = rir«-»"(t) exp [ £ (fV1M(T)-f - ^ ) -

- ( - l ) m f 7 ^ ) dT](l + o(l)), 7 = 0, 1, 2, 3 . 

Corollary 2. (i) There is a fundamental system of solutions y*(t), A: = 1, 2, 3, 4 of 
the equation (E) and t0 = a such that 

yl') = ̂ ir(2'-3>'8(t) exp [ £ (fi,r1/4(T)-

- ( - l ) m f ^ ) dt](l + o(l)), 7 = 0, 1, 2, 3 . 

(ii) There is a fundamental system of solutions yk(t), k = 1, 2, 3, 4 of equation 
(E) and fo = 0 such that 

yi') = fiir('-3>'4(t) exp [ £ (fi,rI/4(T)-

- ( - ! ) " f -$fc) dt](l + o(l)), 7 = 0, 1, 2, 3 . 

Corollary 3. (i) There is a fundamental system of solutions yk(t), k = 1, 2, 3, 4 of 
(E) and f0 = a such that 
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yV = tiltr*i-3»(t) exp [ £ (<4r"4(T)-

- f ^ ) d t ] ( l + 0(l)), / = 0,1,2,3. 

(ii) There is a fundamental system of solutions yk(t), k = 1, 2, 3, 4 of (E) and 
f0 = « such fhaf 

y^ = /xtr«-^(0 exp [ [ ' (^r1 / 4(r)-

- | ^ ) d r ] ( l + o(l)), ; = 0,1,2. 

Corollary 4. There is a fundamental system of solutions yk(t), k = 1, 2, 3, 4 of 
(E) and to = 0 such that 

yiy) = /iir(2^3)/8(0 exp [ J ^r1/4(r) dr](l + o( l ) ) , / = 0, 1, 2, 3 . 

Corollary 5. There is a fundamental system of solutions yk(t), k = 1, 2, 3, 4 of 
(E) and to = 0 such that 

y^ = ̂ r(>-3)/4(0 exp [ £ ^r1/4(r) dr](l + o(l)), 1 = 0, 1, 2, 3 . 

Proof of Corollary 1. (i) Since the system (S) is equivalent to the equation 
(E) for the fundamental system of solutions zk(t), k = 1,2, 3,4 of (S) it follows that 

zk = (yk,y'k,y"k,yk")T, 

where the functions yk(t), k = 1, 2, 3, 4 are four linearly indespendent solutions of 
the equation (E). From the formula (5) we get 

lim (r3/8(t)y*(0, r»*(t)y'k(t), r-»\t)y"y(t), r"3 / 8(0K'(0)T ' 
, - > c o 

= (i,iik,iil nW > 
OГ 

lim r<~'v-(0yi» exp [ - £ ( ^ r - ( t ) - | ^ -

- ( - 0 " f ^ ) ) d r ] = „ i , where ; = 0,1,2,3 

and so the formula (19) holds. 
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The proof of the second part of Corollary 1 is analogous to the first. 
In the same way we prove Corollaries 2, 3, 4, 5. 
R e m a r k . Theorems 1 and 4 generalize the result in [8] in which p(r) = 0 is 

supposed. 
E x a m p l e 1. Let q(t)/t2 and p(t)/t be in L[a, oo), a>0. Then the differential 

equations 

a) y^ + p(t)y" + q(t)y' +6At4y = 0 , 

b) y^ + p(t)y" + q(t)y'-\6t4y = 0 

satisfy the assumptions of Corollary 4 and therefore their solu tions are 

a) y(t) = r3/2[e t2(c, cos t2 + c2 sin r2) + e"'2 (c3 cos r2 + c4 sin r2)](l + o ( l ) ) , 

b) y(r) = r-3/2(c1cr2 + c2e-'2 + C3cos r2 + c4 sin r 2 ) ( l + o ( l ) ) , 

where cu c2, c3, c4 are arbitrary numers. 
E x a m p l e 2. Let p(t) be in L[a, oo), a>0. 

a) Then the differential equation 

where a and f3>0 are constants satisfies the hypotheses of Corollary 2 and so its 
solutions have the form 

y(t) = [ra/4p2(Cle
fit + C2e~fit) + ta,4p2(c3 cos (it + c4 sin 0r)](l + o(l)), 

where cu c2, c3, c4 are arbitrary numbers. 

b) The function 

y(t) = [e^2(Cl cos ((5t/V2-(a/4f32) In r) + 

+ c2 sin (/3r/V2-(a/4j32) In r)) + c-^ /V2(c3 cos (|3r/V2 + 

+ (a/4j32) In t) + c4 sin (/3t/V2 + (a/4)82) In r))](l + o( l ) ) , 

where cu c2, c3, c4 are arbitrary numers is the solution of the differential equation 

y(iv) + p(t)y" + -y' + P4y = 0, 

because this equation also satisfies the assumptions of Corollary 2. 
From these examples we see that the coefficients do not satisfy the assumptions 

of theorems in [3], [4] and therefore this paper gives new results on the asymptotic 
behaviour of the differential equation of the fourth order. 
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УРАВНЕНИЯ ЧЕТВЕРТОГО ПОРЯДКА 

1оге( М1к1о 

Резюме 

В работа рассматриваются асимптотические поведения решений уравнения (Е) при I—•», если 
несобственные интегралы от некоторых дробей функций р, д и г являются конечными. 
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