Mathematic Slovaca

Pavol Híc; Daniel Palumbíny
Isomorphic factorisations of complete graphs into factors with a given diameter

Mathematica Slovaca, Vol. 37 (1987), No. 3, 247--254
Persistent URL: http://dml.cz/dmlcz/136450

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ISOMORPHIC FACTORISATIONS OF COMPLETE GRAPHS INTO FACTORS WITH A GIVEN DIAMETER

PAVOL HÍC - DANIEL PALUMBÍNY

1. Introduction

F. Harary, R. W. Robinson and N. C. Wormald have proved that the complete graph K_{n} is decomposable into m isomorphic factors if and only if m divides $n(n-1) / 2$. See [5, Divisibility Theorem]. The papers [6], [8] and [10] deal with the same problem, but the factors are required to have a prescribed diameter d. Just this additional requirement is of interest to us. Using the results in [2], [5] and [7] we give the answer for $d=2$ and m sufficiently large and for $3 \leqq d \leqq 2 m-1, m \geqq 3$, too.

We give some definitions, remarks and previous results. Let G be a graph and $V(G)(E(G))$ its vertex (edge) set. The subgraph F of G is called a factor of G if $V(F)=V(G)$. The system $\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ of factors of G forms a factorisation (a decomposition into factors) if

$$
\cup E\left(F_{i}\right)=E(G) \text { and } E\left(F_{i}\right) \cap E\left(F_{i}\right)=\emptyset \text { for } i \neq j
$$

J. Bosák, A. Rosa and Š. Znám [4] initiated the studies of decompositions of complete graphs into factors with given diameters. Many papers deal with the problem of [4] or with various modifications of this one. The papers [1], [2], [3], [7], [9] and [12] are devoted to the case when all factors have the same diameter. Note that the isomorphism of factors is not required. It is convenient (cf. [4]) to denote by $F_{m}(d)$ the smallest integer n such that the complete graph K_{n} can be decomposed into m factors with diameter d; if such an integer does not exist, then we put $F_{m}(d)=\infty$. The significance of the function $F_{m}(d)$ resides in the validity of the following assertion (proved in [4]): K_{n} is decomposable into m factors with equal diameter d if and only if $n \geqq F_{m}(d)$.

An interesting case is $d=2$. The results $F_{2}(2)=5$ and $F_{3}(2)=12$ or 13 were proved already in [4]. In [3], [9], [2] and [1] there were found lower and upper bounds for $F_{m}(2)$ if $m \geqq 4$. The best upper bound was stated by J. Bosák who in [2] proved that for every integer $m \geqq 2$ there holds $F_{m}(2) \leqq 6 m$. Let us
remark that the factors of his construction of the decomposition of $K_{6 m}$ are isomorphic. B. Bollobás in [1] proved that for $m \geqq 6$ we have

$$
\begin{equation*}
F_{m}(2) \geqq 6 m-9 . \tag{1}
\end{equation*}
$$

A significant reslut on $F_{m}(2)$ was achieved by S . Znám (see [12]) who proved that $F_{m}(2)=6 m$ if m is sufficiently large ($m>10^{17}$).

The second author of the present paper proved in [7] that $F_{m}(d)=2 m$ for $m \geqq 3$ and $3 \leqq d \leqq 2 m-1$. Proving this assertion a construction was used in which the factors are isomorphic for d odd. This fact was noticed by P . Tomasta who began to study the problem of decompositions of complete graphs and hypergraphs into isomorphic factors with a given diameter systematically (see [10] and [11]). Indepedently, the same problem was studied by the authors of [6]. Clearly, K_{n} can be decomposed into m isomorphic factors only if $n(n-1) / 2$ is divisible by m. (In this case we shall say that n is admissible with respect to m.) As we noted above, in [5] it was proved that this necessary condition is also sufficient. Denote by $G_{m}(d)$ the smallest integer n such that the complete graph $K_{n}(n>1)$ has an isomorphic factorisation into factors of diameter d; if such an integer does not exist, then put $G_{m}(d)=\infty$. Because an isomorphic factorisation of K_{n} does not exist for an integer $N>G_{m}(d)$, which is not admissible with respect to m, it is convenient to define a function $H_{m}(d)$ to be the smallest admissible integer n such that for all admissible $N \geqq n$ the complete graph K_{N} has an isomorphic factorisation into factors of diameter d. If such an integer does not exist, put $H_{m}(d)=\infty$. It is obvious that

$$
\begin{equation*}
F_{m}(d) \leqq G_{m}(d) \leqq H_{m}(d) \tag{2}
\end{equation*}
$$

In [6] it is conjectured that

$$
\begin{equation*}
G_{m}(d)=H_{m}(d) \tag{3}
\end{equation*}
$$

for any $m \geqq 2$ and $d \geqq 2$. (The cases $m=1$ and $d=1$ are trivial.) Clearly, if we find the value $H_{m}(d)$ and prove the conjecture (3), then the problem of decomposition of K_{n} into m isomorphic factors of diameter d will be solved (cf. [6]). The truth of the conjecture (3) has been verified in some special cases. Namely, in [6] for $m=2$ and any d, and for $m=3$ if $d=3,4,5,6$. For $d=\infty$ there has been proved that if m is a power of an odd prime, then $G_{m}(\infty)=H_{m}(\infty)=m$. This result was improved in [8], where the following assertion was proved: Let $m>1$ be an integer. Let $r>1$ be the smallest integer which satisfies the congruence $n(n=1) \equiv 0(\bmod m)$ if m is odd or the congruence $n(n-1) \equiv 0(\bmod 2 m)$ if m is even. Then $G_{m}(\infty)=H_{m}(\infty)=r$.

Note that the assertion solves the problem of the existence of an isomorphic factorisation of K_{m} into factors of diameter ∞ completely.

2. Results

Theorem 1. Let $m \geqq 3$ be an integer. Then

$$
\begin{aligned}
& G_{m}(2) \leqq H_{m}(2) \leqq 6 m \\
& G_{m}(2)=H_{m}(2)=6 m \text { if } m \geqq 46
\end{aligned}
$$

Proof. Let $n \geqq 6 m$ be any integer which is admissible with respect to m. To prove the first assertion, it is sufficient to prove that there exists an isomorphic factorisation of K_{n} into factors of diameter two. If $n=6 m$, we use Bosák's construction from [2]. As we note above, all factors of this construction are isomorphic. Thus, we can suppose $n>6 m$. We choose an arbitrary complete subgraph of K_{n} with $6 m$ vertices and denote it by $K_{6 m}$. The complete subgraph of K_{n} generated by the set $V\left(K_{n}\right)-V\left(K_{6 m}\right)$ will be denoted by $K_{n-6 m}$. It is easy to see that also $n-6 m$ is admissible with respect to m. Hence, according to the Divisibility Theorem (see [5]) there exists an isomorphic factorisation of $K_{n-6 m}$ into m factors. We denote them by $G_{1}, G_{2}, \ldots, G_{m}$. Now, we use a simple extension of Bosák's construction (cf. [2, p. 60]). We define the sets:

$$
\begin{array}{lll}
A_{1}=B_{2}=\{1,3,4\}, & A_{2}=B_{1}=\{2,3,4\}, & A_{3}=B_{4}=\{3,5,6\}, \\
A_{4}=B_{3}=\{4,5,6\}, & A_{5}=B_{6}=\{5,1,2\}, & A_{6}=B_{5}=\{6,1,2\}
\end{array}
$$

The vertices of $K_{6 m}$ will be denoted by $a_{i, s}$, where $1 \leqq i \leqq m, 1 \leqq s \leqq 6$ and the vertices of $K_{n-6 m}$ by $v_{1}, v_{2}, \ldots, v_{n-6 m}$. We decompose K_{n} into factors $F_{i}(i=1$, $2, \ldots, m$) as follows: Factor F_{i} contains the edges $a_{i, s} a_{i, t}$, where $1 \leqq s<t \leqq 6$, the edges $a_{i, s} a_{j, t}$, where $1 \leqq s \leqq 6, i<j \leqq m, t \in A_{s}$, the edges $a_{i, s} a_{j, t}$, where $1 \leqq s \leqq 6.1 \leqq j<i, t \in B_{s}$, the edges of G_{i} and the edges $a_{i, s} v_{k}$, where $1 \leqq s \leqq 6$, $1 \leqq k \leqq n-6 m$.

It is easy to check that the factors F_{i} form an isomorphic factorisation of K_{n} into factors of diameter two. The proof of the inequality $H_{m}(2) \leqq 6 m$ is finished.

To prove the second assertion of the theorem we suppose that $G_{m}(2)=6 m-x$ for $m \geqq 46$, where x is a positive integer. Because $6 m-x$ is admissible with respect to m, we have $(6 m-x)(6 m-x-1) / 2=m y$, where y is an integer. Therefore (as we can easily verify) $x^{2}+x=2 m z$, where z is a positive integer. From this we have $x=(\sqrt{1+8 m z}-1) / 2$. According to the inequality (1) which holds for $m \geqq 6$, we can write $6 m-9 \leqq F_{m}(2) \leqq G_{m}(2)=6 m-x$ i.e. $x \leqq 9$ which implies $m \leqq 45$, a contradiction. Thus $G_{m}(2)=H_{m}(2)=6 m$ for $m \geqq 46 .{ }^{*}$)

[^0]Remark 1. It is easy to check (examining the equality $x^{2}+x=2 m z$, where $1 \leqq x \leqq 9$) that the equality $H_{m}(2)=6 m$ holds also for $3 \leqq m \leqq 45$ if $m \neq 3,4,5,6,7,9,10,12,14,15,18,21,28,36,45$. In particular $H_{8}(2)=48$. It is known that $H_{3}(2) \leqq 13<18=6 \cdot 3$ (see [6]). From this the following problem arises.

Problem 1. Which is the smallest integer m for which $H_{m}(2)=6 m$?
We can see that such m is equal to one of the numbers $4,5,6,7,8$.
Theorem 2. Let m, d be integers such that $m \geqq 3$ and $3 \leqq d \leqq 2 m-1$. We have

$$
\begin{equation*}
2 m=F_{m}(d) \leqq G_{m}(d)=H_{m}(d) \leqq 2 m+1 \tag{i}
\end{equation*}
$$

Moreover.
(ii) $F_{m}(d)=G_{m}(d)=H_{m}(d)=2 m$ if at least one of m, d is odd.
(iii) $F_{m}(4)=G_{m}(4)=H_{m}(4)=2 m$,
(iv) $F_{4}(6)=G_{4}(6)=H_{4}(6)=8$.

Proof. (i) The equality $F_{m}(d)=2 m$ (proved in [7]) together with the condition (2) imply $2 m=F_{m}(d) \leqq G_{m}(d) \leqq H_{m}(d)$. Let m, d be integers under the conditions of the theorem and $n \geqq 2 m+1$ be an admissible integer with respect to m. To show $H_{m}(d) \leqq 2 m+1$ it is sufficient to decompose K_{n} into m isomorphic factors of diameter d. We choose an arbitrary complete subgraph of K_{n} having $2 m$ vertices and denote it by $K_{2 m}$. The vertices of $K_{2 m}$ will be denoted by $v_{1}, v_{2}, \ldots, v_{2 m}$. For $j>2 m$ we define $v_{j}=v_{s}$ with $s \equiv j(\bmod 2 m)$, where $1 \leqq s \leqq 2 m$. The complete subgraph generated by the set of the remaining vertices will be denoted by $K_{n-2 m}$ and its vertices by $u_{1}, u_{2}, \ldots, u_{n-2 m}$. Clearly, $n-2 m$ is also admissible with respect to m. Thus, according to the Divisibility Theorem (see [5]), there exists an isomorphic factorisation of $K_{n-2 m}$ into \boldsymbol{m} factors (we denote them $G_{1}, G_{2}, \ldots, G_{m}$). To decompose K_{n} we use a certain extension of the construction from [7]. Let us consider two cases:
(I) The diameter d is odd, i.e. $d=2 k-1$. We decompose K_{n} into isomorphic factors $F_{i}(i=1,2, \ldots, m)$ as follows:

$$
E\left(F_{i}\right)=E\left(G_{i}\right) \cup A_{i} \cup B_{i},
$$

where the set A_{i} is formed by the edges $v_{i} u_{j}$ and $v_{i+m} u_{j}$, where $1 \leqq j \leqq n-2 m$. For the set B_{i} we have two posibilities:
(a) If k is odd, we consider the path

$$
\begin{equation*}
v_{i} v_{i+1} v_{i-1} v_{i+2} v_{i-2} v_{i+3} \ldots v_{i-(k-3) / 2} v_{i+(k-1) / 2} \tag{4}
\end{equation*}
$$

and the path

$$
\begin{equation*}
v_{i+m} v_{i+m+1} v_{i+m-1} v_{i+m+2} v_{i+m-2} v_{i+m+3} \ldots v_{i+m-(k-3) / 2} v_{i+m+(k-1) / 2} . \tag{5}
\end{equation*}
$$

The set B_{i} consists of the edges of the paths (4) and (5), of the edge $v_{i} v_{i+m}$. of the edges $v_{i+(k-1) / 2} v_{s}$, where $s=i-(k-1) / 2, i-(k+1) / 2, i-(k+3) / 2, \ldots$ $\ldots, i-(2 m-k-1) / 2$, and of the edges $v_{i+m+(k-1) / 2} v_{t}$, where $t=i+(k+1) / 2$. $i+(k+3) / 2, i+(k+5) / 2, \ldots, i+(2 m-k-1) / 2$.
(b) If k is even, we consider the path

$$
\begin{equation*}
v_{i} v_{i+1} v_{i-1} v_{i+2} v_{i-2} \ldots v_{i+(k-2) / 2} v_{i-(k-2) / 2} \tag{6}
\end{equation*}
$$

and the path

$$
\begin{equation*}
v_{i+m} v_{i+m+1} v_{i+m-1} v_{i+m+2} v_{i+m-2} v_{i+m+3} \ldots v_{i+m+(k-2) / 2} v_{i+m-(k-2) / 2} . \tag{7}
\end{equation*}
$$

The set B_{i} consists of the edges of the paths (6) and (7), of the edge $v_{i} v_{i+m}$, of the edges $v_{i-(k-2) / 2} v_{s}$, where $s=i+k / 2, i+(k+2) / 2, i+(k+4) / 2, \ldots, i+-$ $+(2 m-k) / 2$, and of the edges $v_{i+m-(k-2) / 2} v_{t}$, where $t=i+m+k / 2$, $i+m+(k+2) / 2, i+m+(k+4) / 2, \ldots, i+m+(2 m-k) / 2$.
(II) The diameter $d(4 \leqq d \leqq 2 m-2)$ is even. In order to define the factor F_{i}^{*} of a decompositon of K_{n} into m isomorphic factors of diameter $2 k-2(k \geqq 3)$ we take the factor F_{i} of an isomorphic factorisation of K_{n} into factors of diameter $2 k-1$ defined in (I) and replace the set A_{i} by the set A_{i}^{*}, which is formed by the edges $v_{i+1} u_{j}$ und $v_{i+m+1} u_{j}$, where $1 \leqq j \leqq n-2 m$.

In all these cases we can check that the factors of the systems $\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ or $\left\{F_{1}^{*}, F_{2}^{*}, \ldots, F_{m}^{*}\right\}$, respectively, form an isomorphic factorisation of K_{n} and that all the factors have the required diameter. For instance in the case (I) (a) the distance $d=2 k-1$ in the factor F_{i} is realized by an arbitrary path of the greatest length (having $2 k$ vertices) of the tree generated by the set B_{i}. See Fig. 1, where the factor F_{i} (without edges of G_{i}) is drawn.

Fig. 1.
(ii) To prove (ii) we must show that $K_{2 m}$ is decomposable into m isomorphic factors if at least one of m, d is odd. If d is odd, then we use the construction of [7], i.e. the factors $F_{i}(i=1,2, \ldots, m)$ are defined by $E\left(F_{i}\right)=B_{i}$, where B_{i} is the set defined in (I). It remains to decompose $K_{2 m}$ into m isomorphic factors of
diameter d if $m \leqq 3$ is odd and d is even. First we suppose $d \geqq 6$. We decompose $K_{2 m}$ into m isomorphic factors $F_{1}^{*}, F_{2}^{*}, \ldots, F_{m}^{*}$ of diameter d as follows. In the case $d=2 k-2$, where k is odd, we take the set B_{i} from (I) (a). If $i=1,3, \ldots, m$, we add to it the edge $v_{i+(k-1) 2} v_{i+(k+1), 2}$ and remove from it the edge $v_{i} v_{i+1}$. If $i=-$ $=2,4, \ldots, m-1$, we add to it the edge $v_{i-(2 m-k-1) / 2} v_{i+m+(k-1) / 2}$ and remove from it the edge $v_{i+m} v_{i+m+1}$. In the case $d=2 k-2$, where k is even, we take the set B_{i} from (I) (b). If $i=1,3, \ldots, m$, we add to it the edge $v_{i-(k-2) / 2} v_{i+m+(2 m-k) / 2}$ and remove from it the edge $v_{i+m} v_{i+m+1}$. If $i=2,4, \ldots, m-1$, we add to it the edge $v_{i+(2 m-k)} 2_{i+m-(k-2) 2}$ and remove from it the edge $v_{i} v_{i+1}$. In both cases we get from the set B_{i} a set B_{i}^{\prime}. Put $E\left(F_{i}^{\prime}\right)=B_{i}^{\prime}$ for $i=1,2, \ldots, m$. It is easy to verify that the system F_{i}^{\prime} forms an isomorphic factorisation of $K_{2 m}$ into m factors of diameter d. It remains to decompose $K_{2 m}$ into m isomorphic factors of diameter four. We shall do it in

Fig. 2.

Fig. 3.
(iii). An isomorphic factorisation of $K_{6}\left(K_{8}\right)$ into 3 (4) factors of diameter four can be seen in Fig. 2 (Fig. 3). Hence, we may suppose $m \geqq 5$. As above, we denote the vertices of $K_{2 m}$ by $v_{1}, v_{2}, \ldots, v_{2 m}$. We decompose $K_{2 m}$ as follows. The factor F_{1} contains the edge $v_{1} v_{m+1}$, the edges $v_{1} v_{s}$, where $2 \leqq s \leqq m-1$, the edge $v_{m} v_{2 m-1}$, the edges $v_{m+1} v_{t}$, where $m+2 \leqq t \leqq 2 m$. The factor F_{2} contains the edge $v_{2} v_{m+2}$, the edges $v_{2} v_{s}$, where $3 \leqq s \leqq m+1$, the edge $v_{1} v_{m}$ and the edges $v_{m+2} v_{l}$, where $m+3 \leqq t \leqq 2 m$. The factor $F_{i}(i=3,4, \ldots, m-1)$ containts the edge $v_{i} v_{i+m}$, the edges $v_{i} v_{r}$, where $i+1 \leqq r \leqq i+m-1$, the edge $v_{i+m-1} v_{1}$, the edges $v_{i+m} v_{s}$, where $i+m+1 \leqq s \leqq 2 m$ and the edges $v_{i+m} v_{t}$, where $2 \leqq t \leqq i-1$. The factor F_{m} contains the edge $v_{m} v_{2 m}$, the edges $v_{m} v_{s}$, where $m+1 \leqq s \leqq 2 m-2$, the edge $v_{2 m-1} v_{1}$ and the edges $v_{2 m} v_{t}$, where $1 \leqq t \leqq m-1$. One can verify that F_{i} form a desired factorisation.
(iv) To prove $F_{4}(6)=8$ we decompose K_{8} into 4 isomorphic factors of diameter 6, which is done in Fig. 4.

Remark 2. From Theorem 2 it follows that the problem of decomposition of K_{n} into m isomorphic factors of diameter d is completely solved for $m \geqq 3$ and $3 \leqq d \leqq 2 m-1$ with the only exception when both $m, d(\geqq 6)$ are even. In this case the value of $H_{m}(d)$ is equal to 2 m or $2 m+1$. To obtain the exact value of $H_{m}(d)$ it is necessary to solve the following

Fig. 4.

Problem 2. Let m, d be even integers such that $m \geqq 6$ and $6 \leqq d \leqq 2 m-2$. Is it possible to decompose $K_{2 m}$ into m isomorphic factors of diameter d?

Remark 3. It would by very interesting to find exact values or at least lower and upper bounds of $H_{m}(d)$ if $m \geqq 3$ and $d \geqq 2 m$. The only known value is $H_{3}(6)=9$ (see [4] and [6]). If m is a power of an odd prime, then $H_{m}(d) \leqq-$ $\leqq m d-2 m$ for $d \geqq 5$. These upper bounds were found in [10]. From results of [7] it follows that $H_{m}(2 m) \geqq 2 m+3$.

REFERENCES

[1] BOLLOBÁS, B.: Extremal problems in graph theory. J. Graph Theory 1, 1977, 117-123.
[2] BOSÁK, J.: Disjoint factors of diameter two in complete graphs. J. Combinatorial Theory 16, 1974, 57-63.
[3] BOSÁK, J.-ERDÖS, P.-ROSA, A.: Decompositions of complete graphs into factors with diameter two. Mat. časopis 21, 1971, 14-28.
[4] BOSÁK, J.-ROSA, A.-ZNÁM, Š.: On decompositions of complete graphs into factors with given diameters. In: Theory of Graphs, Proc. Colloq. Tihany, 1966, Akadémiai Kiadó, Budapest 1968, 37-56.
[5] HARARY, F.-ROBINSON, R. W.-WORMALD, N. C.: Isomorphic factoriasation. I.: Complete graphs. Trans. Amer. Math. Soc. 242, 243-260.
[6] KOTZIG, A.-ROSA, A.: Decomposition of complete graphs into isomorphic factors with a given diameter. Bull. London Math. Soc. 7, 1975, 51-57.
[7] PALUMBÍNY, D.: On decompositions of complete graphs into factors with equal diameters. Boll. Un. Mat. Ital., 7, 1973, 420-428.
[8] PALUMBÍNY, D.: Factorisations of complete graphs into isomorphic factors with a given diameter. In: Zborník Pedagogickej fakulty v Nitre, Matematika 2, 1982, 21-32.
[9] SAUER, N.: On the factorisation of the complete graph into factors of diameter 2. J. Combinatorial Theory 9, 1970, 423-426.
[10] TOMASTA, P.: Decompositions of graphs and hypergraphs into isomorphic factors with a given diameter. Czech. Math. J., 27, 1977, 598-608.
[11] TOMASTA, P.: On decompositions of complete k-uniform hypergraphs. Czech. Math. J., 28, 1978, 120-126.
[12] ZNÁM, Š.: On a conjecture of Bollobás and Bosák. J. Graph Theory, 6, 1982, 139-146.
Katedra matematiky Prevádzkovo-ekonomickej fakulty Vysokej školy poInohospodarskej

Mostná 16 94901 Nitra

> Katedra matematiky Pedagogickej fakulty Saratovská 19 94974 Nitra

ИЗОМОРФНАЯ ФАКТОРИЗАЦИЯ ПОЛНЫХ ГРАФОВ НА ФАКТОРЫ С ДАННЫМ ДИАМЕТРОМ

Pavol Híc - Daniel Palumbíny

Резюме

В статье рассматривается вопрос разложения полного графа на m изоморфных факторов с данным диаметром d. Задача полностью решена для случаев: $1 . d=2$ если $m \geqq 46,2 . \mathrm{m} \geqq 3$, если $3 \leqq d \leqq 2 m$ - и, по крайней мере, одно из чисел m, d нечетное.

[^0]: ${ }^{*}$) R. Neděla has recently proved (oral communication) that $F_{m}(2) \geqq 6 m-6$ if $m \geqq 22$. Using this result it can be proved that the equality holds already for $m \geqq 22$.

