Mathematic Slovaca

Dalibor Fronček
 Locally linear graphs

Mathematica Slovaca, Vol. 39 (1989), No. 1, 3--6

Persistent URL: http://dml.cz/dmlcz/136481

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

LOCALLY LINEAR GRAPHS

DALIBOR FRONČEK

In the article presented we shall study some local properties of graphs. P. Erdös and M. Simonovits [1] have shown the maximal number of edges of a locally acyclic graph, Z. Ryjáček and B. Zelinka [2] have constructed a locally disconected graph with a large number of edges. A survey article on local properties was written by J. Sedláček [3].

We shall describe one class of locally disconnected and locally acyclic graphs and show the bounds of number of edges in these graphs. All graphs are considered finite undirected without loops and multiple edges.

Let G be a graph and x be its vertex, then by $N_{G}(x)$ we denote the subgraph of G induced by the set of all vertices adjacent to x. If $N_{G}(x)$ is a linear graph (i.e. $N_{G}(x)$ is regular of degree 1) for each vertex x of G, then G is called locally linear. It is evident that each vertex of G is of an even degree.

Theorem 1. A graph G is locally linear if and only if each edge of G belongs to exactly one triangle.

Proof. (\Rightarrow) Let G be a locally linear and let e be an edge with end vertices x_{1}, x_{2}. As each vertex of $N_{G}\left(x_{1}\right)$ is of degree 1 , then there is exactly one vertex x_{3} adjacent to x_{1} and also to x_{2}. Hence the edge e belongs to exactly one triangle with vertices x_{1}, x_{2}, x_{3}.
(\Leftarrow) Let x_{1} be any vertex of G, let x_{2} be a vertes of $N_{G}\left(x_{1}\right)$. The edge e with the end vertices x_{1}, x_{2} belongs to exactly one triangle; let its third vertex be x_{3}. Then the vertex x_{2} (and analogously x_{3}) is in $N_{G}\left(x_{1}\right)$ of degree 1. As x_{2} was chosen arbitrarily, the graph $N_{G}\left(x_{1}\right)$ is a linear graph.

Theorem 2. Let G be a locally linear graph. Let T be a triangle with the edges e_{1}, e_{2}, e_{3}. Let G_{0} be the graph resulting from G by omitting the edges $e_{1}, e_{2} . e_{3}$. Then each component of G_{0} is either a locally linear graph or an isolated vertex.

Proof. The assertion of this Theorem follows easily from Theorem 1.
Now we describe the construction of a regular locally linear graph.
Construction. Let k be an even integer. We denote by H_{k} a regular locally linear graph of degree k.

The graph H_{2} is a triangle. Now let us have a graph H_{k}. Then we construct H_{k+2} in the following way:
$H_{k+2}=H_{k} \square C_{3}$, where \square denotes the cartesian product of the graphs. In this
graph every edge belongs to exactly one triangle. Hence H_{k+2} is a locally linear graph.

By this we have proved the following
Theorem 3. Let k be an even integer. Then there exists a regular locally linear graph of degree k.

Now we give the bounds for the number of edges contained in a locally linear graph.

Theorem 4. Let G_{n} be a connected locally linear graph with n vertices and m edges. Then

$$
\begin{equation*}
3\left[\frac{n}{2}\right] \leqq m \tag{1}
\end{equation*}
$$

Proof. Let in G_{n} exist the vertex x_{n} of degree 2 (in the opposite case the number of edges is at least $2 n$). Let x_{n} be adjacent to x_{1} and x_{2}. Now we omit the vertex x_{n} and the edges $e_{1}=\left(x_{1}, x_{n}\right), e_{2}=\left(x_{2}, x_{n}\right), e_{3}=\left(x_{1}, x_{2}\right)$ from G_{n}. Thus, a graph G_{n-1} consisting of one or two components results. Now the inequality (1) is easy to prove by induction with respect to n and can be left to the reader.

To determine the upper bound of the number of edges we prove the following lemmas.

Lemma 1. Let G be a locally linear graph with n vertices and let d_{i} be a degree of the vertex $x_{i}(i=1,2, \ldots, n)$. Let

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i}=n k \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i}^{2} \geqq n k^{2} \tag{3}
\end{equation*}
$$

and the equality holds if and only if G is k-regular.
Proof. Let $d_{i}=k+z_{i}(i=1,2, \ldots, n)$. Then $\sum_{i=1}^{n} d_{i}=n k+\sum_{i=1}^{n} z_{i}$ and hence

$$
\begin{equation*}
\sum_{i=1}^{n} z_{i}=0 \tag{4}
\end{equation*}
$$

Then $\sum_{i=1}^{n} d_{i}^{2}=\sum_{i=1}^{n}\left(k+z_{i}\right)^{2}=n k^{2}+2 k \sum_{i=1}^{n} z_{i}+\sum_{i=1}^{n} z_{i}^{2}$. From (4) we can see that $\sum_{i=1}^{n} d_{i}^{2}=n k^{2}+\sum_{i=1}^{n} z_{i}^{2} \geqq n k^{2}$. It is evident that $\sum_{i=1}^{n} z_{i}^{2}=0$ if and only if $z_{i}=0$ for each $i \in\{1,2, \ldots, n\}$.

Lemma 2. Let G be a connected locally linear graph. Let

$$
\begin{equation*}
2 m=n k \tag{5}
\end{equation*}
$$

Then just one of the following assertions holds:
(i) G is k-regular,
(ii) G contains as a subgraph the triangle with vertices x_{1}, x_{2}, x_{3}, for which there holds

$$
\begin{equation*}
d_{1}+d_{2}+d_{3}>3 k \tag{6}
\end{equation*}
$$

Proof. Let (i) hold. Then the invalidity of (ii) is evident. The existence of a k-regular graph follows from Theorem 3.

Now let (i) be invalid. Denote by t the number of the triangles of G. From Theorem 1 it follows that $3 t=m$. As each vertex is of an even degree, then $m=\frac{n k}{2}$, and this yields $t=\frac{n k}{6}$. Denote by $T_{j}(j=1,2, \ldots, t)$ the triangles of G. Let $\sum_{x_{i} \in T_{j}} d_{i}=3 k+r_{j}$ for each T_{j}. We show that there exists a triangle T_{l}, for which $r_{l}>0$. We see that

$$
\begin{equation*}
\sum_{j=1}^{1} \sum_{x_{i} \in T_{j}} d_{i}=\frac{n k^{2}}{2}+\sum_{j=1}^{1} r_{j} \tag{7}
\end{equation*}
$$

In this sum the degree of x_{i} is included $\frac{d_{i}}{2}$ times, thus for every edge incident to x_{i} we have to subtract the expression $\frac{d_{i}}{2}-1$ from (7). As the vertex x_{i} is incident to d_{i} edges, we have to subtract the expression $\frac{d_{i}\left(d_{i}-2\right)}{2}$ for each vertex x_{i} from the sum (7). Hence

$$
\sum_{i=1}^{n} d_{i}=\frac{n k^{2}}{2}+\sum_{j=1}^{t} r_{j}-\sum_{i=1}^{n} \frac{d_{i}\left(d_{i}-2\right)}{2}=\frac{n k^{2}}{2}-\sum_{i=1}^{n} \frac{d_{i}^{2}}{2}+\sum_{i=1}^{n} d_{i}+\sum_{j=1}^{t} r_{j}
$$

This yields $\sum_{j=1}^{t} r_{j}=\sum_{i=1}^{n} \frac{d_{i}^{2}}{2}-\frac{n k^{2}}{2}$. However, as we have assumed that G is not regular, by our Lemma 1 there holds $\sum_{j=1}^{1} r_{j}>0\left(\right.$ as $\left.\sum_{i=1}^{n} \frac{d_{i}^{2}}{2}>\frac{n k^{2}}{2}\right)$ and there exists a triangle T_{l} for which $\sum_{x_{i} \in T_{l}} d_{i}>3 k$.

We simply prove that the sum of the degrees of the vertices belonging to one triangle is at most equal to $n+3$. Let us choose a triangle and denote it by $T\left(x_{1}, x_{2}, x_{3}\right)$. If $d_{1}+d_{2}+d_{3}>n+3$, then there exists a vertex $x_{j}(j \in\{4,5, \ldots$, $\ldots, n\}$) adjacent to two vertices of $T\left(x_{1}, x_{2}, x_{3}\right)$ (e.g. x_{1}, x_{2}). Thus the edge $\left(x_{1}, x_{2}\right)$ belongs both to triangles $T\left(x_{1}, x_{2}, x_{3}\right)$ and $T\left(x_{1}, x_{2}, x_{j}\right)$. Hence, G is not locally linear. From Lemma 2 it follows that in the graph where $m>\frac{n(n+3)}{6}$ there must exist a triangle $T\left(x_{i}, x_{j}, x_{k}\right)$ for which $d_{i}+d_{j}+d_{k}>n+3$.

Now we see that the following holds.

Theorem 5. Let G be a locally linear graph with n vertices and m edges. Then

$$
\begin{equation*}
m \leqq \frac{n(n+3)}{6} \tag{8}
\end{equation*}
$$

Remark. For $n>9$ no graph is known for which in (8) an equality holds.

REFERENCES

[1] ERDÖS, P. and SIMONOVITS, M.: A limit theorem in graph theory. Stud. Sci. Math. Hung. 1, 1966, 51-57.
[2] RYJÁČEK, Z. and ZELINKA, B.: A locally disconnected graph with large number of edges. Math. Slovaca, 37, 1987, 195-198.
[3] SEDLÁČEK, J.: Local properties of graphs. (Czech.) Časop. pěst. mat. 106, 1981, 290-298.

Katedra matematiky a deskriptivní geometrie Vysoké školy báňské tř. Vítězného února 70833 OSTRAVA

ЛОКАЛЬНО ЛИНЕЙНЫЕ ГРАФЫ

Dalibor Fronček
Резюме
Если G есть граф и x есть его вершина, то $N_{G}(x)$ обозначает подграф графа G, порожденный множеством всех вершин, смежных с x в G. Граф G называется локально линейным, если $N_{G}(x)$ является регулярным графом степени 1 для всех x из G. В статье изучаются основные свойства таких графов. Показаны тоже минимальное и максимальное числа ребер этих графов.

