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Math. Slovaca 41 , 1991. No. 4. 393—399 

ON THE EXISTENCE OF HOMOCLINC POINTS 
MICHAL FECKAN 

ABSTRACT. It is shown the existence of transversal homoclinic points for cer
tain perturbed diffeomorphisms if an unperturbed diffeomorphism has a nonhy-
perbolic fixed point with a homoclinic orbit. 

Introduction. Recently the author of this paper has developed a method 
[1] for the study of bifurcation of homoclinic points of diffeomorphisms. An es
sential assumption was that the fixed point of an unperturbed diffeomorphism is 
hyperbolic. The purpose of this paper is to present a similar method as in [1] for 
special mappings when an unperturbed one has a nonhyperbolic fixed point having 
a homoclinic orbit. As a model problem we study the existence of a transversal 
homoclinic point of the following n -dimensional mapping 

( x \ / 2x — z - f - e - x - f e 3 - y(x, y, e) \ 
z U x , (1) 

yj \ / (y) + eT(x,y,e) / 
where x,z E R , y £ R n ~ 2 , e E R is a parameter, n > 4 . 

Let us recall some definitions [3], [4]. Consider a C 1 -mapping F: R m —> 
R m . A fixed point x of F is hyperbolic if the eigenvalues of D F(x) lie off the 
unit circle. If F is a diffeomorphism and x is a hyperbolic fixed point of F, 
then the stable, unstable manifold of x TVs(x), TVu(x) is defined to be the set 
of those y such that F*(y) —> x as j —> oo, j —> — oo, respectively. A point 
y is said to be a transversal homoclinic point if y E lV s (x )p | TVu(x) for some 
fixed point x ^ y of F and R m is the direct sum of the tangent spaces to 
W9(x) and TVw(x) at y. 

S m a 1 e [2] shows that if F has a transversal homoclinic point, then there is 
a Cantor-like set near it on which some iterate of F is invariant and isomorphic 
to the Bernoulli shift on a finite number of symbols. This invariant set contains 
a countable infinity of periodic orbits, an uncountable set of bounded nonperiodic 
orbits, and a dense orbit. 

Now we return to our problem (1). 
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Let us assume for the mapping (1): 

(i) g e C\R x Rn"2 x R,R), r e C\R x Rn"2 x R,Rn"2) 
/ e Cl(Rn~2,Rn-2), r l e C H R ^ R " - 2 ) 

(ii) / (0) = 0 and 0 is the hyperbolic fixed point of f 
(iii) there is a homoclinic point yo of f such that 

fJ(yo) —* 0 as j —> oo or j —» — oo. 
(iv) The equation 

vH1 =Dfi(y0)vj , j e Z , vj G Rn""2 

Aâ  on/y </ie trivial bounded solution. 

Proposition 1. Under the above conditions Ge has a small fixed point for 
each small e. 

P r o o f . From the equation 

x = z, x + e • y(x, y, e) = 0 

/ (y) + e - r (x ,y ,e ) = y 

we have 

Ge(*,z,y) = (x,z,y) . 

Using the implicit function theorem to the first equation we obtain a small fixed 
point (x(e),2r(e),y(e)) of Ge for a small e. 

By Proposition 1 we can suppose 

Ge(0,0,0) = (0,0,0) 

for a small e. 

We see that the unperturbed mapping Go has a fixed point (0,0,0) 
which is not hyperbolic and moreover, Go has the trivial homoclinic orbit 
r = { ( O ^ j / ^ y o ) ) } ? ^ . Hence a general theory from [1], [5] cannot be applied. 
On the other hand, the mapping 

Qe : R2 —* R2 (x, z) —> (2x — z + e • x, x) 

has the eigenvalues 
2 + e ± v ^ T I ) 

ai .2 = g ' 

We see that for e > 0, a\}2 do not lie on the unit circle. The purpose of this 
paper is to present a method which allows us to study the above degenerate 
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Theorem 1. If the mapping Ge satisfies the above conditions (i)-(iv), then 

for each small positive e, Ge has a homoclinic point we such that 

(i) the orbit {G{(we)}_oo is near T 

(ii) Jim G{(w€) = (x(e),z{e),y(e)). 
j—»±oo 

Now we introduce the following Banach spaces 

X = UxA-oojXj 6 R 2 , s u p | i i | < o o l 

Y = Uyj}~oo,y, e R n - 2 , s u P | y i | < c o | 

Lemma 1. The operator Ae : X —• X 

{-ilS.-.{-«-(* f "o)"'}l 
is invertible for e > 0 and 

иг^S, 
where K > 0 is a constant. 

P r o o f . In the basis 

the matrix 

has the form 

Í2 + e+y/(4 + e)e \ 
e, = l * 'V 

« - e r -o1) 

= (au 0 \ 
\0, a2J-

The mapping Ce: X —> X 

K ) - o o - {Wj+1 - ***>,}-
oo 

oo 
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is invertible and \Ce

 1\ < I\/e. Indeed, the equation 

Wj+\ = BeWj + hj, h = {hj} e X 

has a general solution 

w) = h)_x -f h)_2ai + • • • + brX'1 + c - a ' J > 1 

w) = -h)/a{ - h)+l/a] h_\/a~j + cVaf' j < - 1 , 

where i = 1,2, Wj = (iv j , tv | ) , bj = (h^hj), c; E R . 

Since ai > 1 we have only one c- such that {<D}}_ is bounded [5, p. 272] 

CO 

Ci---_>,7ai+1. 
0 

Hence 
CO ,-,-

| C , |<| ft | ._3l/a{ + 1 <-^. |A| 
0 

and for j < — 1 

A'i и i < i h i - ( - + - - - + 4 J ] + i c 1 i < i h i 
Vai °i / e 

In the same way we solve other cases. 
Finally, we note that | T ( e ) _ 1 | < A"/e, where 

T ( " = ( : : ! 

and also Ae = D~l • Ce • De , where 

De:X^X, {xJ}°!oo^{T{e)x]roo. 

P r o o f of T h e o r e m 1. We shall solve the following equation 

x J + 1 = 2XJ -Zj + e- Xj + e3 • g(xj,yj,e) 

Z j + 1 = Xj 

yj+i = fivj) + e • ~(~j > y>, e ) 
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in X x Y for a small e > 0. Using the operators 

5 C : X x X -> X, 

Se({(xj,Zj)},{yj})= {(g(xj,yj + fJ(y0),e),0)}, 

Re:X xY ->Y, 
Re({(xj,Zj)},{yj})= {y j + i - f(yj + fJ(yo)) - e • r(x3,yj + fJ(y0),e)} , 

we can write the above equation in the form 

Aex=e3Se(x,y) 

0=Re(x,y), xeX, yeY. 

Lemma 1 implies 

\A?\<K/e\ 
Hence the equation (3) has the form 

x = e3A~1Se(x,y) 

0 = Re(x,y), e > 0 . 

Since e3 • |>l~a J < K • e we apply the Banach fixed point theorem for the first 
equation of (4) and obtain a solution xe(y), where |y| < 1. Note that 

\xe(y)\ <e-M, \Dy xe(y)\ < e • M, 

where M is a constant, e is small positive and \y\ < 1. Thus we can extended 
xe(-) on [0,eo] in the following way 

x0(-) = 0. 

Finally, we solve 0 = Re (xe(y),y). We see that 

Ro(xo(0),0) = 0 

Dy Ro(x0(0),0){yJ}^00 = {y^i-Bf(f3(y0))yj} oo 

— oo 

Since the hypothesis (iv) holds, f3(y0) —> 0 as j —> i c o and D /(0) is hy
perbolic; DyR0(0) is invertible [1], [5]. Hence by the implicit function theorem 
Re(xe(y),y) = 0 has a unique small solution y(e) for a small positive e. We 
have shown that the mapping Ge has a unique orbit near F for a small positive 
e. It is not difficult to see that this orbit is homoclinic also [4, p. 106]. Indeed, 
let 

lim | ^ ( e ) | + \Zj(e)\ + |y >(e) | = d > 0, 
j - > o o 
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where {(xJ(e),Zj(e),yJ(e))}<^oQ is the above found homoclinic orbit of Ge for 
small positive e. We have by (2), (3) 

x3(e) = - (h) • a~l + J i } + 1 - a'2 + ...) 

z~j(e) =h2_x + h2_2a2 H \- hla3~l + c2a
J
2, 

wrhere 

(xJ(e),zi(e)) = T(e)(xj(e),zj(e)), 

(h),h*) =T(e)(e3g(xj(e),y](e)),0). 

Thus for j > jo , where jo is large fixed, we have |(M, hj)\ = 0(e3) • 2c? and 

M e ) | + |^(e)| = ote-'HMe)! + |f.(e)|) = 

ote"1) • (o(e3) • 2d • (a'1 + . . . ) + o(e3) • 2d • (1 + a2 + •..)+ 

o(l) • (a2-
J° + «r>0 + 1 + •' • + «2)) = o(e-1) • (o(e3) • 2d-0(e~1)+ 

o(e3) • 2d • o(e~1) + o(e3) • (af10 + • • • + a{)) = 

0(e) • 2d + 0(e2) • (a{-io + • • • + a{) 

and since \a2\ < 1 we have for j ^> 1 

\Xj(e)\ + \zj(e)\ = 0(e) • (2d + 0(e) • o(l)). 

On the other hand, 
y;+i(e) = /(y,-(e)) + 0(e) 

and we can apply the same arguments as in [5, p. 295] to show Hj(e) —• 0 . Hence 
for e small positive we obtain 

d = lirrT (\xj(e)\ + \z3(e)\ + \yj(e)\) < d. 
J—-oo 

Thus d = 0. In the same way we study the ca^e j —> oo. 
This completes the proof of Theorem 1. 

R e m a r k 1. The assumption (iv) for the mapping / is equivalent to the 
property that yo is a transveisal homoclinic point of / ( ee [1], [5]). From this 
it follows that the above found homoclinic point of Ge for a small positive e is 
a transversal homoclinic point. 
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