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LINEAR MODEL WITH VARIANCES
DEPENDING ON THE MEAN VALUE

GEJZA WIMMER

ABSTRACT. The paper shows locally best linear unbiased estimators and uni-
formly best linear unbiased estimators in a linear model, where the dispersions
depend quadratically on the mean value.

Introduction

The process of observing the linear combinations of unknown parameters is
characterized by the well-known regression model (Y, X3, ¥). The result of
the observations is a realization of a random vector Y, ;, whose mean value
is Eg(Y) = XB (Xu,x is a known design matrix and Bx,; € R* the vector of
unknown parameters). The covariance matrix of the vector Y in that model
does not depend on 3.

The last assumption cannot be satisfied in many situations. In the case when
the measuring device has its dispersion characteristic of the form

o?(a + b|E3(e£Y)|)2, where 02, a and b are known positive constants, e!

is the transpose of the ith unity vector, and observations are independent, we
get the linear model

(Y, X8, ),
where
o2(a + ble;Xg|)’ 0 0
S=0?8(8)= X oo+ Hexal)
6 0 ... o*(a+ble,Xg])’

(1)
AMS Subject Classification (1991): 62J05.

Key words: Linear model, Locally best unbiased estimators, Uniformly best linear esti-
mators.
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GEJZA WIMMER

The aim of the paper is to find the By -locally best linear unbiased estimator
(Bo-LBLUE) of a linear function of the parameter 8 (in Section 2) and also
the uniformly best linear unbiased estimator (UBLUE) (in Section 3).

The necessary and sufficient condition for the existence of the B¢- LBLUE
is in Lemma 2.4, where also the expression of it can be found.

In Section 3 there are three main results: Necessary and sufficient conditions
for the existence of the UBLUE of a linear function of the parameter 8 in
the case when only one additional linearly dependent measurement is made
(Corollary 3.9 and Corollary 3.10) and also a solution to that problem in the
case of two additional measurements (Corollary 3.11).

These results enable us to find a solution in the case when none or several
additional measurements are made.

1. Preliminaries
Let us denote
Oin = {b'Y: Eg(b'Y)=0 V{8 € R*}}
the class of all linear unbiased estimators of the function g(-): RF — {0}.

DEFINITION 1.1. The linear statistic p'Y 1is said to be
1. the By -locally best linear unbiased estimator (By-LBLUE) of its mean

value Eg,(p'Y) if for any other linear statistic q'Y having the property
V{B€eR'} E(p'Y)=Es(q'Y) (%)
the relation
D, (p'Y) = Fa, ((p'Y = Bao(p'¥))") £ Dpo(a'Y)
holds;

2. the uniformly best lincar unbiased estimator (UBLUE) of its mean value
Eg(p'Y) if for any other linear statistic q'Y having the property (*) there
holds

V{BER"} Da(p'Y)<Da(q'Y).

THEOREM 1.2. In model (1), p'Y is the Bo-LBLUE of its mean value if
and only 1f
V{b'Y € Oin} Es,(b'YY'p)=0.

The statistic p'Y 1s the UBLUE of its mean value of and only if
V{bY € O} V{B R} Esb'YY'p)=0.

Proof. See [1], Theorem 3.1 and the following Corollary.

224



LINEAR MODEL WITH VARIANCES DEPENDING ON THE MEAN VALUE

DEFINITION 1.3. X~ s a matriz satisfying the equation XX "X =X. [t a
g -inversion of X.

For any fixed positive definite matrix W the matrix G satisfying the equa-
tions

XGX =X, (GX)'W = WGX
is said to be the minimum W -norm g-inverse of X. For G we use the notation
X oWy -
2. 3,-LBLUE
LEMMA 2.1. The statistic b'Y belongs to Oyn if and only if b € Ker X' =

{ceR™: X'e=0}={(1-(X")"X)u: ueR", (X) is an arbitrary but fized
g-inverse of X'}.

Proof.
b'Y € Ojn <= Eg(b'Y)=0V{B R — bXB=0V{BecR) <
b'X=0 <= beKerX'.

The proof of the last equation in Lemma 2.1 is in [2], Theorem 2.3.1.

LEMMA 2.2. p'Y s the (B¢-LBLUE of its mean valuec if and only if

= Iy . n - : : -, e
p e {(X )m(z(ﬁo))x z: zeR* (X )m(E(Bo)) 18 an arbitrary but fized mins

mum 3(Bo)-norm g-inverse of X'}.

Proof. According to Theorem 1.2 and Lemma 2.1 p'Y is the 3y-LBLUE
of its mean value if and only if

V{beKerX'} o’b'E(Bo)p=0

& Y{ueR") u'(l - X(x');(mo)))z(ﬁo)p =0
for an arbitrary but fixed (X’);(E(ﬁo)) . The last assertion is valid if and only if
(| —X(X)7 BO)))p = 0 (3(Bo) is a p.d. matrix). According to [2], Theorem
2.3.1, (1- X(X');(E(ﬁo)))p = O if and only if
pef{[t-0- X (a0 X) (1 (x’);(z(ﬁo))"')}’: zERN (1= (X)X
is an arbitrary but fixed g-inverse of matrix 1= (X) (. x'} 4
One choice of (1= (X') (o X') ™ is 1= (X') o X', that is why

P e {(X)] (5 X7 ZER").
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The lemma is proved.

COROLLARY 2.3. One choice of (X');(E(ﬂo)) is T7HBo)X(X'E71(Bo)X)

and that 13 why the class of By -LBLUEs of its mean value in model (1) i3

{p'Y: p e (B (Bo)X(X'E""(Be)X) X'z: zeR"}}.

LEMMA 2.4. For the linear function f'B of parameter B = (By,...,Pr) € RF
there exists a B¢ -LBLUE if and only if f e u(X') = {X'u: vueR"}.

Proof. If f e pu(X'), then there exists a vector uy € R" so that

f =X'uy and ujX (x,)r—n(E(Bo))] Y is the 8o-LBLUE of f'3.

Conversely, if p'Y is the B-LBLUE of f'3, then
V{BeR}) Eg(p'Y)=F13, ie
V{BeR'} p'XB="Fp.
The last assertion yields p'’X = £/ <= f € u(X'). The lemma is proved.
Remark 2.5 One version of the Bo-LBLUE of £8, B € R* (for
feuX)is £(XB7(Be)X) X'ET(Bo)Y .
3. UBLUE

LEMMA 3.1. The statistic p'Y 1is the UBLUE of its mean value if and only
of
V{BeR} (1-XX")Z(B)p=0 (2)

for an arbitrary but fired g -inverse X~ .

Proof. The assertion is a consequence of Theorem 1.2 and Lemma 2.1 and
is omitted.

LEMMA 3.2. If the statistic p'Y 1is the UBLUE of its mean value, then
p € u(X).

Proof. If in (2) we take 8 = O, then the fact that p'Y is the UBLUE

of its mean value implies
AN=XX")p=0 < (1-XX")p=0 < peuX).

The proof is complete.
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LINEAR MODEL WITH VARIANCES DEPENDING ON THE MEAN VALUE
LEMMA 3.3. The statistic p'Y s the UBLUE of its mean value if and only

if there erists a vector w® € R* so that for every B € R* there exists an
a(B) € R* that the relations

$(8)Xw® = Xa(B)  and  p=Xw' (3)

hold.

Proof. If p'Y isthe UBLUE of its mean value, then according to Lemma
3.1 and Lemma 3.2 there exists a vector w® € R¥ that p = Xw® and

V{BeRY (1-XX")Z(B)Xw’ =0.
The last assertion is equivalent to
V{BeR}  E(B)Xw’=XX"Z(8)Xw",
which is satisfied, according to Lemma 2.2.4 in [2], if and only if
V{BeRY)  Z(B)Xw’ € u(X),
that is if and only if
V{8 € R*} 3{a(B) € RF} that X(B)Xw" = Xa(3).
Conversely, from the equivalence of the assertions

V{BERY} (1-XX")Z(B)p=0
< Y{B € R"} I{a(B) e R*} that X(B8)p = Xa(B)

and Lemma 3.1 we easy complete the proof.

COROLLARY 3.4. If p 13 such a vector from R" that for each 1 =1,2,...,n
elp =0 or XX e; = e; or simultancously e/p =0 and XX e; = e; (i.e. if
for 1 =1,2,...,n the tth component of the vector p is not zero but e; € u(X)
( < XX~e;, =e; and it does not depend on the choice of X7 )), then p'Y 1is
the UBLUE of its mean value.

The condition in Corollary 3.4 is only a sufficient one for w® XY to be the
UBLUE of its mean value. The next example shows it.
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Example 3.5.

1 1 1 -1
Let X=11 2],then XXT =10 2 -1 | ie XX"e #e€ 1=23.
1 2 0 2 -1
The statistic
, 111 (B Y
Y;; Y3

is the UBLUE of its mean value in spite of ejp and ejp being different from
zero. This fact can be seen from the assertion

V{BER") (1-XX7)X(B)p

0 -1 1\ [ (a+blB +82))° 0 0 9
:(0 -1 1) 0 (a + 6|8 +28,)* 0 <3>:0

0oz 2 0 0 (a+ b8 + 282))°
and Lemma 3.1.

. . . . X
Let us rearrange the rows in the matrix X to obtain the matrix (X] ) , where
2
X; is a matrix of order R(X) x k (R(X) is the rank of X) and X, = EX,,
where E = X, X (X, X{)™" is of order (n — R(X)) x R(X).
In the same way we rearrange the coordinates of Y and the rows of the
matrix 3(3). We obtain the vector Y and the matrix

(2](:3) 0 )
0 208))°

where
(a + ble}X:8])* 0 0
0 (a+ bletX,8])°
(B) = ' sXuB)
0 (a + blekx, X18])°
and ‘ ' '
(a +blelEX, B])° 0 0
0 (a + blejEX, 8])°
2:(8) =
0 (a + ble!,_ pox EX18))°

From Lemma 3.3 we immediately obtain the next
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LINEAR MODEL WITH VARIANCES DEPENDING ON THE MEAN VALUE
COROLLARY 3.6. The statistic p'? 18 the UBLUE of its mean valuc if and

only if there exists such a vector w® € R¥ that for every B € RX there erxists
an ofB) € R¥ so that the relations

(% sis) (§z> v = (X))

_ (% 0
= (%)

and

hold.

Finally we have
THEOREM 3.7. The statistic p'? 18 the UBLUE of its mean valuc if and
only if p= (l E’) a, where

ac ﬂ Ker[E,(B)E — EEl(ﬁ)]

BER*
n—R(X)
= m (ﬂ Ker{e}[zg(ﬁ)E—Ezl(ﬂ)}}>
J=1 BERK
- (esfu)” o
=N () Ker{ (a+ble/Eul)’e]E - e/E
j=1 ueRRX) 0 (a+l>|e;z(,()UI)2
n—R(X)
= [ Mj=M.
j=1

Proof. From the equality
e} (£2(B)E — EX1(B)) = (a + b|elEX,B])"e}E — e!EX;(B)

and the fact, that p(X;) = RRX) we obtain

M; = () Ker[el [S.(B)E - E(9)] )

BER*
(a+blelu))? 0 0
0 (a+blejul)®
= ﬂ Ker (a+b{e;Eu|)2e‘;E— ejE ) ' ? . (4)
uerR(X) : ’
0 (a+b|e;i(x)ul)2
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Let now p = ( E') a,where a€ (| Ker[Z2(8)E - EX(8)]. The ranks
BER*
of the matrices X; and (Xl s X1(8)X, [X’I(X]X'l)’la]) are the same for every

B € R*. According to the well-known Cronecker’s theorem, for every 8 € R¥
there exists an a(8) € R* that

i(B)X: [Xi(Xi X)) a] = Xy e(B). (5)
The equality (5) together with the fact that
52(8)X: [X) (X, X{) " a] = £5(B)EX, [X|(XiX{) " a] = 5,(B)Ea
= EX(B)a = EX,(8)X; [X{ (X, X]) 'a] = EX;a(B) = Xp(B)

imply that for every 8 € R¥ there exists an a(3) € R¥ so that

(z,ém z;zm) (m)xf(x X!)~1a = (§) a(B)

. ! . ! . ]
and p = (l : E') a= (l : E') X, [X{ (X X)) a] = (x'1 : x;) X! (X, X))~
According to Lemma 3.6, p'Y is the UBLUE of its mean value.

Conversely, if p'Y is the UBLUE of its mean value, then, according to
Corollary 3.6, there exists a vector w® € R¥ that for every B € R¥ there exists
an a(B) € R* so that the relations

(P sier) (%)= (30 ) e
= (%)

hold. That is why for every 3 € R there exists an a(3) € R* that the equations

Ti(B)a=X(p)
¥,(B)Ea = EX;a(B)

and

. ' . '
and p = (l : E') a are valid, where a = X;w?. That is why p = (l : E') a,

where a € () Ker[Ez(ﬁ)E - EX, (ﬁ)] . The theorem is proved.
BERK
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LEMMA 3.8. Let e/E =te] (i.e. the (R(X)+j)th row of the matriz X 13 118
ith row maultiplied by t), where t # 0, j € {1,2,...,n — R(X)},
i€ {1,2,....,R(X)}.
1. M;= REX) 4 and only if It =1
(c.f. the notation from Theorem 3.7).
2. If [t| # 1, then M; = {aec RRX): ela=0}.

Proof. If we denote X;3 = u, then

(a+blelu))® 0 L 0
, 5 , 0 (a+blesul)
(a+ blejEul)“e;E — e'E
J J J o
0 (a+b‘e;(x)u|)2

=t(a+ bltu;|)’ e} — t(a + blui])’e!

=e! {t(a2 + 2ab|tu;| + b*(tu;)?) — t(a® + 2ablui| + b2u?)]

Il

e [2ab|ui|t(|t| —1) + bPule(t? - 1)]

=e;(|t| — 1)tb [2a[u,-| + b2ul (] + 1)] .

Thus
(a+bleu))? o - 0
(a + bleEu|)?eE — e E : (esiegul ©)
0 (a+b|e;¢(x)ul)2

=e!(lt| - 1)tb[2alui| + bRl (Jt]+ 1)] .
From (4) and (6) we have
a€M; < V{ucR) [(|t| — 1)tb(2alus| + b2u?(|t] + 1) )] ela=0. (7)

Both assertions of the lemma are a simple consequence of (7).

COROLLARY 3.9. Let n= R(X)+1, E=te! (t#0 and i€{1,2,...,R(X)}).
1.If |t| =1, p'Y is the UBLUE of its mean value if and only if

. '
p= (|R(X),R(X) - e,-) a,
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where a € RRX) | It means in this case that p’? = a'(l tei)? 18 the UBLUE
of 1ts mean value if and only if it belongs to the class

{aYi+- - +aiYit )+ +appx)Yrox: @ €R, i=1,2,...,R(X)}.

2. If |t| # 1, the UBLUE s of its mean value are all the linear functions of

Y which do not contain Y; and }N’,,.
We only remark that in this case the mean value of the nth measurement 1s
equal to t times the mean value of the 1th measurement.

The proof is a consequence of Theorem 3.7 and Lemma 3.8.

t
THEOREM 3.9. Let elE = ~', where v = vies., t 2 2, v 0
1 2 i
1=

i=1,2,...,t SR(X), s; €{1,2,...,R(X)}, € {1,2,...,n=R(X)} . Then

Mi={aecRM: e a=0,i=12,...t}.

Proof. From (4) we have

M, =
(u+b|e{u|)2 0 e 0
ﬂ Ker { (a + ble]Eul)’e]E ~ e[E 0 (a+blejul) | _
ueBR(X) 0 : (a+b|e’ﬂ(x)“|)2

t t
n K('r{(a+biZ'y,e;‘u|>227,—e;i
i=1 i=1

ueRR(X)
(a+ble]uy)® 0 0
t , 0 (a+b|e;m)2
= el , _ =
i=1 : -
0 (a+ble;,{(x)u|)2

= ﬂ l\'er{i e;‘.‘y,’[(a+bli’y,’usil)2 _ ((l+blus,~‘)2]} .

ug €N qE{l.Z,. ,R(X)}
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That is why

)2 —(a+ b[us,.|)2 =0

t t
ae M Ze;‘a'y,‘[(a+blZ'y,’u“ ®)
1=1 =1

forallu,, e R 1=1,2,...,¢.

1. Let t =2.
From (8) it is easy to see that in this case if a € M, then for an arbitrary

choice of u(,l,), u(,],), u(,f) and u(2)

R( %)=
as,
2 2 2
[(a+b|‘nu( )+‘72u(1)|) (“+"|“£1,)|) ]» ‘72[(a+bl‘nu£'l)+72"(,l,)|) —(a+b|u(,‘,)|) ] ((l )
2]

2 2 U2 Qey
O (G R R D AR G RR E R CEDN

la. Case 71| # |72]-
For us 79 0, A‘,’ = 1,m uh) # 0 and um Zzu(si) the determinant
Y2 N

Ug, "

of the matrix R in (9) is

detR =

7 nbzlu(all)llug?l{(% b 1) (20 + b)) — (20407
2

“81)|) 2a +b|”]]u§, }
= ’71’72b2|u“)[Iu(2)|2ab[|u(”|<1 - ‘1&’) + |u(2) (1 - ‘BI )} #0
. Y2
it [ulD]y] # [l
and that is why, according to (9),
if acM; = a, =e,a=a,, =€,a=0.

The converse implication is trivial and the theorem is in the case |y1| # |y2|
proved.

1b. Case |y11| = |72|
For wu, ) # 0 and wu, ) # 0 satisfying the inequality Iu(l)l > |u,2)l and for
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2
u.,,) # 0 and u,} # 0 satisfying the equation ’ylun +727 (”)

nant of the matrix R in (9) is

= 0 the determi-

det R = v17v2 { [Z(Lb|'y|u£,f) + ’ygu_g]z)l + b¥( 111(') + ’Vzu“))z 2&1)]“(3]])]
- 1)2(1121))2] [—2(1,I)|11,(3i)| - I)Q(Ug))z] [2(tl)|7lu + 'y;u(l)l

+ 02 () 4 youl)? = 2abull)| - b2 (ulD)?] [~2ablulP| — 67 (uP)? ]}

Because of ]u,z)| =

[u(,i)l we obtain that
detR =
= — b1 { (20 + o)) [ 2]l - bV +2afu)] + buld)?] }

= — 7,721)2|u |(9a+b|u(2)|)(|u“)| |u“)|)[2a+b(|u(”| + Iu“)l)] #0

That is why, according to (9),
if ae M| = as, = e:'na:asz = e;za:O'

The converse implication is trivial again and the theorem for ¢t = 2 is proved.

2. Let t 2 3.
From (8) it is casy to see that if @ € M, then for an arbitrary choice of

1 1

u(,],), u(gz), cey ug,)
2 2 2
u(,,), 1122’, cey L_(.,l)
3 3 3
uE,), ugz), RN ug,)

2
) — a+()iu(c)')2 =0, c=1,2,3. (10)

t t
Z e;‘. ay; [(a + b‘ Z 'y,-ug"-f)
i=1 =1

2a. Case t =3¢ (c21).

For
u() D — _JGv+2) () (1)
Usiaorny 700 Ysiauia Ytz U =0 q¢{3v+2, 3v+3}
e . (2) __JBv+3) (2) (2)
9(3,+3) ?é 0 US(;,,,+1) - 7(3U+1)u3(3u+3)’ =0 q ¢ {31) + 1 3v + 3}
w3 3 JBv+1) (3) (3)
"("l+l) #0’ ig('3.;4-2) == ((1(+1) ’ =0 q¢ {3v+1 3U+2}
Y(3v+2)
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we obtain from (10) that

a € M; = for an arbitrary choice of u(,:gu“) # 0, ull) # 0 and

S(3v+2)
(2)
3(3u+3) # 0
a3(3u+1) . . a3(3u+1)
S As(3y42) = (51 1S, 53) As(3p42) = 03’1 ,
a-’(au+s) a’(au+3)
where
0
Y3v+3) |} (2) A3v+3) |1,,(2)
S = _7(3U+l) Ysvi1) l 3('!(:+3)|(2 + b| JGEl Yset1) lu‘-’(au+3)|) s
3) (3)
_7(3v+1)b|u!(au+1)l(2a + b|u3(au+n) |)
(1) (1)
_'7(3v+2)b|ua(3u+z)‘(2a + b|u3(3u+z) I)
S, = 0
Yav+1) {1, (3) A@vs) |y, (3)
_7(3v+2) YEvt2) I’ S(su+1)|(2 + b| el Y3vt2) iu"(3v+l)l)
and
Y(3u42 (1) ABv+2) |1, (1)
"7(3v+3)b m Iit3(304A2)|(2(l + b JBut2) Yov o) Ius(30+2) )
S; = (2)
_7(3v+3)b|”8(3.,+3)|(2“ + b|u3(3u+3)|)
0
Because of

(3) (1) (2) .
’(a-r+1)H 3(3v+2)“u3(av+s>|

‘ {(2a + oD ) (2a+ bul® | [)(2a + bul®). )

detS = —Y(3uv+1)YBv+2) Y343y 0 U

S(3v+42) 3(3v43) S(3uv41)
(2a+b 7(3v+2)\ 12:3 , |) 2a+b TGv+3) u“’); . l)
Y(3v+3) vt+2) Y31yl TEUED
YBu+1) | (s

(2a + b‘ ’ ) #0

( Y(3v+2) | ('3v+l)1

we obtain for v = 1,2,...,c—1 the implication
. / — ] - .
aeEM = es(q A =6, ,a=e,  a=0. ic

aeer—ive‘,l,a:O 1=1,2,...t
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The converse implication is trivial and we have proved the theorem in the case
t=3c (c21).
2b. Case t =3c+1 (c21).

If we proceed as in 2a., we get the implication

aeM = e,a=0 1=1,2,...,3c=t-1.

#

¢
If we choose ug,, us,,...,us in such a way that us # 0 and ‘E Yius,

|us‘ |, we have from (8) that if a€ M, e; a =0 is also valid.
The converse implication (i.e. e;.a =0, 7 = 1,2,...,t = a€ M) is
trivial and we have proved the theorem in the case t =3c+1 (¢ 21).

2c. Case t =3c+2 (c=1).
If we proceed as in 2a., we get the implication

aeM; = e, a=0 1=1,2,...,3c=t—2.

Let us choose ugl,) =... = (,f) , =0, u (2) ce= (,?)2 = 0, and we get from

(8) that if a € M, then for an arbitrary choice of u,(t 1 ugft) o ug) and

u?
T ((181_1) — (T] TQ) (ast—l) — ()2,1 ,
as, as,
where
2
T Y(t-1) [(a + b|‘7(t—1)ugl.) N wug)l) (a + bi“’£:)—l)') ]
1= . 2
7(t-—1)|:(a'+b'7(l 1)u3¢ 1) +’}’¢1qu I) - (a+blugf¢)—l)|) ]
and
2
T [((l—}—bh(, 1)““(: 1) +'y,u3, |) ( +b|u(,1)|) ]
2 —_—

[((l-{-bl’yu 1)“‘3(: l)+7tu§’?)|) (a+b|u3 1)2]

If we proceed as in 1., we obtain that if a € M, also e;(t_!)a = e;‘a =0 is
valid.

The converse implication (i.e. e;,a =0 7 =1,2,...,t = a€ M) is
trivial again and we have proved the theorem for this last case as well.
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LINEAR MODEL WITH VARIANCES DEPENDING ON THE MEAN VALUE

COROLLARY 3.10. Let n = R(X)+1, E = 4" = i'y,-egl_, t 2 2, where
% #0, s;i€{1,2,...,R(X)} (¢=1,...,t £ R(X)). T;z_e]mndom variable p'?
is the UBLUE of its mean value if and only if p = ( ROX).R(X) —y)'a where
a'e,, =0, 1 =1,2,...,t. It means in this case that p 'Y is the UBLUE of 1its
mean value if and only if p 'Y does not contain Y, .. Ys,, Yn‘

The proof is an easy consequence of Theorem 3.7 and Theorem 3.9.

COROLLARY 3.11. Let

where 1 S ky S R(X), 1 S ky S R(X), 7vi; #0 for all i,5; s; and l; belong
to {1,2,...,R(X)} for all 7.

1. If k] = k2 = ]., e, = €, = €, l‘)’]][ = I‘)’Q]I = 1, then pl? 18 the
UBLUE of its mean value if and only if

PY=aYi+ +a,1Y,, +a3(}~/si}7n—l ii;n)"’as-i-li;s-f-] +-- '+GR(X)1~/R(X) )

where a; € R 1 =1,2,...,R(X) (the sign + or — corresponds to one of v,
and y21).

2. Ifky=ky =1, sy <li, |y1] = |ya1] = 1, then p'Y is the UBLUE of
1ts mean value if and only if
Pl? = ali;l + - +a31—1?s|—1 +asl(?s| iiz—1)+a31+l}?sl+] + ...
+ all—li\;ll_l + all(i;ll + }7") + all+1i\}ll+1 +---+ aR(X)?R(X) )

where a; ER 1=1,2,...,R(X).

(The case 1} < sy 18 a trivial modification.)

3.Ifky =1, ks > 1, |yul =1, e, # e, i =1,2,....ky, then p'Y
18 the UBLUE of its mean value if and only if p Y = a,)~/1 + -+ as,(}w’;l +

Yn 1)+ + aR(X)YR(X) does not contain Y[l,.. Yl,, ,Y,, and the coefficients
are arbztrary real numbers. (The case ky > 1, kp =1, |ya1| =1, e, # e,
1=1,2,...,ky 13 a trivial modification.)
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4. If by =1, but |711| £1, ky > 1, then P 'Y is the UBLUE of its mean
value if an only if p 'Y does not contain st Yz,,..., szz, Yoo1 and Y.

(The case ky > 1, ky =1 and |y| #1 is simalar.)

5. If k1 >1 and ky > 1, then p 'Y s the UBLUE of zts mean value if and
only if p 'Y does not contain Y,l,..., Yskl, Yl,,.- Ylk , Y, and Y,,.

The proof is an easy consequence of Theorem 3.7, Lemma 3.8 and Theo-

rem 3.9.

An easy generalization is for the case with E containing n — R(X) 2 2 rows.
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