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WEAK RIESZ GROUPS 

BOHUMIL ŠMARDA 

ABSTRACT. In this paper a modification of the Riesz decomposition property is 
investigated on directed po -groups. Namely, a lattice characterization of the set 
of all directed convex subgroups of a directed po -group with this decomposition 
property is described. 

Riesz groups are directly partial ly ordered groups (po-groups , briefly) which 
have the well-known interpolat ion proper ty (or the decomposit ion property, 
equivalently - see [8] and [3]). P e d e r s e n [6] proved tha t a weak variant 
of the Riesz decomposition proper ty holds in C*-algebras. In this paper a simi­
lar modification of the Riesz decomposition proper ty is investigated on directed 
po-groups. Namely, a lattice characterization of the set of all directed convex 
subgroups (o- idea ls , respectively) of a directed po-group with this decomposi­
tion proper ty is described . 

1. D e c o m p o s i t i o n o n C*-algebras 

P e d e r s e n in [6] shows tha t the following decomposit ion p roper ty is t rue 
in a C*-algebra A: 

If x, a, b G -A"1", 0 < x < a-f-6, then u, v G A exist such tha t x = u*-u-\-v*-v 
and u • u* < a, v • v* < b. 

In the case tha t u, v are normal we obtain the Riesz decomposit ion prop­
erty. All unexplained facts concerning C*-algebras can be found in D i x m i e r 
[1]. The set of all hermi t ian elements (positive elements) in a C*-algebra A is 
/ i 

denoted by Ah (-4 ). Let us denote \a\ = (a* -a)2 for a G A (see [2], preceding 
T h . 2.4). 

P R O P O S I T I O N 1 .1 . If A is a C*-algebra, then the following assertions are 
equivalent: 

1. A has the Riesz decomposition property. 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06F20. 
Key w o r d s : Decomposition property, C*-algebra, Directed po-group, Directed convex 

subgroups. 
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2. a A 6 = 0 in Ah if and only if a A 6 = 0 in A + , for a, 6 G A. 
3. A is commutative. 

P r o o f . 

1 = > 2 : If a A 6 = 0 in A + and c G 4 exists such tha t c < a, b, c ^ 0 , 
then c || 0 , c, 0 < a, 6 and the Riesz interpolation proper ty implies an existence 
of z G A wi th 0, c < z < a, a contradiction. 

2 = > 3 : If a, 6 G -A and |a| A |6| = 0 in Ah , then* with regard to [10, 2.11] 
there holds a- 6 = 0 and |a| A |6*| = 0 in A+ . We have a*-6 = 0 => 6*-a = 0 
= > |6*|A|a*| = 0 i n A+ = > |6*|A|a*| = 0 in Ah = > 6*-a* = 0 =>> a-6 = 0 . 
Fur ther , a • 6 = 0 = > (a*)* -6 = 0 and the previous consideration implies 
a* • 6 = 0 . Finally, a* • 6 = 0 <=> a • 6 = 0 holds, for each a, 6 G A and 
according to [10, 2.13] A is commutat ive. 

3 => 1 is clear. 

COROLLARY 1.2. 1/ A w non-commutative C*-algebra, then A has the Pe-
dersen decomposition property but not the Riesz decomposition property. 

P R O P O S I T I O N 1.3. A C*-algebra A has the following decomposition property: 

If x, a, b G A + , 0 < x < a + 6. then k, I G A exists such that k, I > 0 , 

x = k + I and k G AaA, I G A6A (AaA is the closed ideal in A generated by 

a). 

P r o o f . T h e Pedersen decomposition property implies an existence of u, v G 

A such tha t x = \u\2 + \v\2, | u * | 2 < a , |tY*|2 < 6 hold. If k = \u\2 , 1= H 2 , then 

k, I > 0 and x = k + l. We have |tz|4 = u*-u-u*-u = u*-\u*\2-u < u*-a-u G AaA 

and thus k = \u\2 G AaA holds (see [2, 2.2]). Similarly / = \v\2 G A6A. 

This decomposit ion property is a generalization of the Riesz decomposit ion 

property. 

P R O P O S I T I O N 1.4. A C*-algebra A has the following interpolation property: 

If x\, x2, y\, y2 € A, Xi < yj for i,j G { 1 , 2 } , then elements z, h, k G A 

exists such that x\ < z < h + y\ , x2 - k < z < y2, h, k < 0, h e (x\,y\), 

k G (x2,y2), where (xi,yi) is the ideal in A generated by Xi, u, (i = 1. 2 ) . 

P r o o f . We have yj — Xi > 0 for i,j G {1,2} and y2 — x\ = (y2 — x2) + 

(x2 — x\) < (y\ — x\) + (y2 — x2). According to the Pedersen decomposi t ion 
proper ty there exist elements u, v G A such tha t y2 — x\ = \u\2 + \v\2 and 
|u*|2 < y\ —'xi , \v*\2 < y2 — x2 . If we put z = \u\2 + x\ , then z > x\ , 

y\ > \u*\2 + x\ = \u*\2 -\u\2 + z and z < h + y\ for h = \\u\2 - \u*\2\ . Fur ther , 

y2 = \U\2 + \V\2+Xl > \U\2+X\ =Z,X2< - | v T + y 2 = -\V*\2 + \U\2 + \V\2+X\ = 

— \v*\2 + \v\2 + z hold. Thus we have x2 - k < z for k = \-\v\2 + \v*\2\ . Finally, 
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W*\2 G (x i ,y i ) , \u\4 = u*-|w*|2-u G (xi,yi) and [2, 2.2] implies \u\2 G (x a , y i ) , 
i.e., b G (x i ,y i ) . Similarly we prove that k G (x2,y2) • 

2. Weak decomposition property on po-groups 

E f f r o s [2] in Theorem 2.8 describes a bijection between closed ideals of 
a C*-algebra A and closed invariant order ideals in A. If I is an ideal in A, 
then IC\ Ah is an o-ideal (i.e., a directed convex normal subgroup) in a directed 
po -group Ah . These considerations give the following generalization. 

DEFINITION 2.1. Let G be a directed po-group with the following property: 

If x, a, b G G + , 0 < x < a + 6, t/ten elements k, I £ G exist such that 
fc, I > 0, x = fc + / , fc G (a) and / G (6), unWe (a) ((b), re^p.) w a directed 
convex subgroup in G generated by a (b, resp.). Then we say that G is a weak 
Riesz group (or G has the weak decomposition property). 

Weak Riesz groups fulfil a theorem similar to the theorem of S t o r m e r [9] 
for C*-algebras. 

PROPOSITION 2.2. Let G be a directed po-group. Then G is a weak Riesz 
group if and only if i"+ + J+ = (I + J)+ holds for arbitrary directed convex 
subgroups 7, J in G. 

P r o o f . 

=->: Clearly 7+ + J+ C ( J + J ) + and if x G (I+«7)+ , then 0 < x < a + b for 
suitable elements a G J+ and b G J+ . Thus k, / G G exist such that fc, / > 0, 
x = k + / , k G (a), / G (6) and it implies x G L+ + J+ . 

4 = : If x, a, 6 G G + , 0 < x < a + 6 then there holds x G (a + 6)+ = 
(a) + + (6)+ . Finally, k G (a)+ and I G (6)+ exists such that x = k + l. 

PROPOSITION 2.3. If G is a weak Riesz group, 0 < x < y\ + y2 + • • • + yn 

for x, t/i, T/2 - . . . , 2/n £ G + , tfftera elements x\, X2, . . . , x n G G + exwt jsucfc tAatf 
x = x\ + X2 H + x n and xt- G (y*) /or i = 1,2, . . . , n . 

P r o o f can be done by induction. 

PROPOSITION 2.4. If G is a weak Riesz group, then a sum of directed convex 
subgroups in G is again a directed convex subgroup in G. 

P r o o f . If {Xi;: i G / } is a set of directed convex subgroups in G and 
X = 53 Xi, then X, is generated by X + for i G I and thus K" is generated 
by a subset in G + , i.e., X is directed. I f 0 < y < x , x G - K , y G G, then 
x < 53 x . - ° r suitable x,- G -K+ and K C I finite. With regard to 2.3 we 
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have y = ^2 yi for y, G ( ^ i ) + Q K\ ( i E I\ ) . Finally, X is a directed convex 
ieK 

subgroup in G . 

P R O P O S I T I O N 2 . 5 . Let G be a weak Riesz group. Then there holds: 

1. If H is a directed convex subgroup in G, then H is a weak Riesz group. 

2. If H is an o-ideal in G, then G/H is a weak Riesz group. 

P r o o f . 

1. If x, a, b G II+ , 0 < x < a + b, then elements k, / G G+ exist such tha t 
x = k + I, k G (a), I G (b) and it implies tha t k, / G II. 

2. If II < x + II < (a + II) + (b + H) for x, a, b G G+ , then elements 
c, d £ H+ exist such tha t 0 < x + c < a + 6 + a\ Fur ther , there exist k, / G G + 

such tha t x + c= k + l, k G (a) , I e (b + d). Thus x + II = (k + II) + (/ + H), 

k + H,l + H G G/II+ and k + II G (a + II), / + II G (b + II) hold. 

P R O P O S I T I O N 2 . 6 . 

1. If G is a weak Riesz group, then G has the following interpolation prop­

erty: If x\, x2, y\, y2 G G, Xi < yj (i,j G {1 ,2}) . then elements Z\, z2 G G 

exist such that x\ < z\ < y2 , x2 < z2 < y\ and z\, z2 G ((yi — Xi) + {x i}) fl 

((y2 ~x2) + { y 2 } ) . 

2. Let G be a commutative po-group. Then G is a weak Riesz group if and 
only if G has the following property: 
If x\, x2,y\,y2 G G + , x\ + x2 = y\ + y2 , then elements Zij G G + exist such 
that Xi = Zi\ + zi2 , yj = Z\j + z2j and z^ G (yj) for i,j G {1,2} . 

P r o o f . 

1. We have 0 < y2 - x\ = (y2 - x2) + (x2 - x\) < (y2 - x2) + (y\ - x x ) 

and thus there exist elements k, I G G such tha t k,/>0, y2 — x\ = k + I, 

k £ (y2—x2), I G (yi — x\). For z\ = l + x\ = —k + y2 there holds y2 > z\ > x\ , 
z\ € (y\ — x\) + {x\} , z\ G (y2 — x2) + {y2} . Similarly we can prove existence 

of an element z2 of required properties. 

2. =>: We have 0 < x\ < yx + y2 and thus there exist z\\, zl2 G G + such 

tha t x\ = z\\ + z\2 , z\\ G ( y i ) , z\2 G (y 2 ) . For z2j = -zXj + yj there holds 

yj = zij + z2j (j = 1,2) and x\ + x2 = y\ + y2 = zu + z2\ + z12 + z22 = 

x\ + z2\ + z22 . It implies x2 = zr21 + a:22 , where z2\ G (yi) , ^22 G ( y 2 ) . 

<==: If x, a, 6 G G + , 0 < x < a + 6, then we have a + b=(a + b-x) + x 

and thus there exist z2\, z22 G G"1" such tha t x = x 2 = 2:21 + ^22 , z2\ G (a) , 

z22 G (b). 
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DEFINITION. Let G be a directed po-group with the following property: 

If x, a, b G G + , 0 < x < a + 6, tfhen elements k, I € G exist such that 
fc, / > 0 , x = fc + Z, fc < a, Z E (6). Then we say that G is a semiweah Riesz 
group (an sw-Riesz group). 

P R O P O S I T I O N 2 .7 . 

1. An sw-Riesz group G has the interpolation property from Proposition 2.6 
and Z\ > X2 . 

2. If G is an sw -Riesz group, then a meet of two directed convex subgroups 
in G is again a directed convex subgroup in G. 

P r o o f . 

1. If we repeat the proof of P rop . 2.6, 1., then we receive tha t G has the 
interpolat ion proper ty and fc < 2/2 — #2 , i.e., z\ = — fc + 2/2 > x2 • 

2 . If A, B are directed convex subgroups in G, then A D B is a convex 
subgroup in G. If x G A 0 B, then p € A, q £ B exist such tha t 0, x < p , q. 

There exist elements z\, Z2 G {(q — x) + {#}) fl (p) such tha t x < z\ < p , 0 < 
22 < 5 , 21 > 0 . Finally, we have 01, 02 £ - 4 H B , z\ + 22 .> 0 , 21 + ^2 > z\ > ^ ? 
z\ + Z2 & Ad B . An B is a directed subgroup in G . 

3 . L a t t i c e c h a r a c t e r i z a t i o n 

T h e latt ice of all convex Z -subgroups of a latt ice-ordered group G was in­
vestigated by M . J a k u b i k o v a [4]. This latt ice is a complete distr ibutive 
lat t ice which is a complete sublatt ice of the lattice of all subgroups of G. This 
result was generalized b y J . R a c h u n e k [7] for the case of Riesz groups. Let 
us investigate a similar s i tuat ion for sw -Riesz groups. 

THEOREM 3 . 1 . If G is an sw-Riesz group, then the set C(G) of all directed 
convex subgroups in G is a locale. 

R e m a r k . Let us recall t ha t a locale is a complete lat t ice L in which 
the infinite distr ibutive law a A\J S = y{a A S: s G 5 } holds for all a G L 
and S Q L . T h e impor tan t examples of locales are lattices of all open sets 
of topological spaces. All unexplained facts concerning locales can be found in 
J o h n s t o n e [5]. 

P r o o f o f 3 .1. Let A, G C(G) be for i G I and let [ | J A.-l denote a 

subgroup generated by | J A{. Then each element x G U ^»T n a s ^ n e f° rm 
iei liei J 

x = 5Z a* - r ° r sui table elements a, G -4, and a finite subset K C / . If g G G, 
i£K 
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0 < g < x then 2.3 implies an existence of elements gi G G+ such that g = 

Y2 gi and gi £ [j Ai for i G K. (J At is convex and let us prove that it 
iЄK Ч Є 1 

L г Є / 

is also directed. If x = ^ a, , y = ^ bi are two elements from E ^« > then 
ieK ieL L iG1 -1 

from the directness of Ai it implies that there exist z{ G A,, z, > a,,0 for all 

i G A' and Z{ > 6t, 0 for all i e L . We have x, y < X] 2- £ E ^« • J ° m s 

ieh'UL L t G / -
of .A,- G C(G) are also subgroups generated by (J A,- and finite meets are meets 
of sets (see 2.7). 

Now, let us verify the corresponding distributive law: If A, Bi G C(C0 for 

i G / , then A fl V #i 2 V (A n # 0 clearly. If a G A fl V Bi, t h e n t h e r e e x i s t s 

iGI iGI iG1 
an element a G A fl V J5, such that a > a, 0 > — a. We have a = 51 «̂ 

iei ieK 

for suitable elements 6, G B* and i £ K, K C I finite (see 2.3) and thus 

bi G Afl B, for i € K. Finally, a G V (-4 ^ ^-) a n <^ fr°m the convexity 
iei 

ae \/(AnBi) holds. 
iGI 

COROLLARY 3.2. If G is an sw -Riesz group, then the set 1(G) of all o-ideals 

in G is a locale with respect to arbitrary sums and finite meets. 

P r o o f follows from 3.1 and 2.4. 

Recall that a locale L is regular when I = \J(x G L: x* V / = 1) holds for 

each / G L, where x* = \j(y G L: y A x = 0). 

PROPOSITION 3.3. Let G be an sw -Riesz group. Then a locale 1(G) is reg­

ular if and only if each principal o-ideal in G is a direct summand in G. 

P r o o f . 

= * : (9) = E iX*: Xi +(9) = G for * € J } h o l d s for e a c h 0 e G+ . Since 
iGI 

<7 = 5 ^ ̂ i for suitable x, G Kt and finite set K C / there holds (g) = 5Z -^i • 
iGA' ieK 

Distributivity of 1(G) implies G = f] (X* + (g)) = f| X* + (g) and f| K* = 
iGA' iGA' ieK 

(j2xX = (9r. 

'*= : Clearly, A = £ ((a): (a)+ + (a) = o) holds for each 4 € 1(G) and 
06A+ 

V(A" e I(G): X*V A = G) C A because I = C M = ( P v i ) A l = 

(X* A.X) V (A A X) = A A X . Finally, 7(G) is regular. 
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