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WEAK RIESZ GROUPS

BOHUMIL SMARDA

ABSTRACT. In this paper a modification of the Riesz decomposition property is
investigated on directed po-groups. Namely, a lattice characterization of the set
of all directed convex subgroups of a directed po-group with this decomposition
property is described.

Riesz groups are directly partially ordered groups ( po-groups, briefly) which
have the well-known interpolation property (or the decomposition property,
equivalently — see [8] and [3]). Pedersen [6] proved that a weak variant
of the Riesz decomposition property holds in C*-algebras. In this paper a simi-
lar modification of the Riesz decomposition property is investigated on directed
po-groups. Namely, a lattice characterization of the set of all directed convex
subgroups ( o-ideals, respectively) of a directed po-group with this decomposi-
tion property is described.

1. Decomposition on C*-algebras

Pedersen in [6] shows that the following decomposition property is true
in a C*-algebra A: : ‘

If z,a,be AY, 0 <z <a+b,then u, v € A exist such that z = u*-u4v*-v
and u-u* <a, v-v*<b.

In the case that u, v are normal we obtain the Riesz decomposition prop-
erty. All unexplained facts concerning C*-algebras can be found in Dixmier
[1]. The set of all hermitian elements (positive elements) in a. C*-algebra A is
denoted by An (A%1). Let us denote |a| = (a*-a)? for a € A (see [2], preceding
Th. 2.4).

" PROPOSITION 1.1. If A is a C*-algebra, then the following assertions are
equivalent:

1. A has the Riesz decomposition property.
AMS Subject Classification (1991): Primary 06F20.

Key words: Decomposition property, C*-algebra, Directed po-group, Directed convex
subgroups.

257



BOHUMIL SMARDA

2. aAb=0 in A, ifand only if aANb=0 in At for a,be A.
3. A s commutative.

Proof.

1 = 2:If aAb=0in A* and c € A, exists such that ¢ <a, b, c£0,
then c|| 0, ¢, 0 < a, b and the Riesz interpolation property implies an existence
of z€ A with 0, ¢ < z < a, a contradiction.

2 = 3:If a,b€ A and |a|A|b] =0 in A, then with regard to [10, 2.11]
there holds a-b =0 and |a|A|b*| =0 in A*. We have a*-b=0 = b*-a=0
=> |0*|Ala*| =0 in AT = [b*|Ala*| =0in Ay => b*a* =0 = a'b=0.
Further, a-b = 0 = (a*)*-b = 0 and the previous consideration implies
a*-b=0. Finally, a* -b =0 <= a-b = 0 holds, for each a, b € A and
according to [10, 2.13] A is commutative.

3 = 1 is clear.

COROLLARY 1.2. If A is non-commutative C*-algebra, then A has the Pe-
dersen decomposition property but not the Riesz decomposition property.

PROPOSITION 1.3. A C*-algebra A has the following decomposition property:

If z,a,be At, 0<z < a+b, then k,1 € A exists such that k,1 >0,
x=k+1! and k€ AaA, | € AbA (AaA is the closed ideal in A generated by
a).

Proof. The Pedersen decomposition property implies an existence of u,v €
A such that z = |u|?+|v|?, [u*|? < a, |v*|> < b hold. If k = |u|?, [ = |v|?, then
k,1>0 and z = k+1. We have |u[* = u*-u-u*-u = u*-|u*|?>-u < u*-a-u € AaA
and thus k = |u|? € AaA holds (see [2, 2.2]). Similarly I = |v|?> € AbA.

This decomposition property is a generalization of the Riesz decomposition
property.

PROPOSITION 1.4. A C*-algebra A has the following interpolation property:

If 21,2, y1,y2 € A, zi <y for 1,5 € {1,2}, then elements z, h, k € A
ezists such that 1 <z < h+y;, 2a—k <2<y, bk <0, h € (z1,u1),
k € (z2,y2), where (zi,yi) is the ideal in A generated by z;, y; (i =1.2).

Proof. We have y; —z; > 0 for 1,5 € {}_,2} and y; —z; = (y2 —z2) +
(z2 — 1) < (y1 — 21) + (y2 — 22). According to the Pedersen decomposition

property there exist elements u, v € A such that y, — 2 = |u|?> + |v|? and
lu*2 < y1 —z1, |v*]*? < y2 —x2. If we put z = |ul? + 21, then 2z > z1,
y1 > [u*P+ 21 = |u*? = [u]*+z and z < h+y; for k= |[u|? - |u*|?|. Further,
y2 = [ul?+vlP+z1 2 [ul+21 = 2, 22 <~ Prye = = P+ ul 4o 421 =
—|v*|2 + |v]? + z hold. Thus we have z; —k < z for k = |——|v|2 + ]v*|2| . Finally,
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[u*|? € (z1,31), lul* = u*-[u*]*-u € (z1,31) and [2, 2.2] implies |u|* € (z1,11),
i.e., h € (z1,y1). Similarly we prove that k € (z2,y2).

2. Weak decomposition property on po-groups

Effros [2] in Theorem 2.8 describes a bijection between closed ideals of
a C*-algebra A and closed invariant order ideals in A. If I is an ideal in A,
then IN Ay is an o-ideal (i.e., a directed convex normal subgroup) in a directed
po-group Ay, . These considerations give the following generalization.

DEFINITION 2.1. Let G be a directed po-group with the following property:

If z,a,b € G*, 0 <z < a+b, then elements k,l € G exist such that
k,1>0, c=k+1, k€ (a) and I € (b), where {(a) ((b), resp.) i3 a directed
convez subgroup in G generated by a (b, resp.). Then we say that G is a weak
Riesz group (or G has the weak decomposition property).

Weak Riesz groups fulfil a theorem similar to the theoremof Stormer [9]
for C*-algebras.

PROPOSITION 2.2. Let G be a directed po-group. Then G i3 a weak Riesz
group if and only if It + J* = (I + J)* holds for arbitrary directed convez
subgroups I, J in G.

Proof.

=>: Clearly It +J+* C (I+J)* andif z € (I+J)*,then 0 <z < a+b for
suitable elements a € I* and b€ J*. Thus k, ! € G exist such that k, 1> 0,
z=k+1, k€ (a), l € (b) and it implies z € [t + J*.

<—:If z,a,b € Gt, 0 <z < a+b then there holds z € (a + )t =
(a)* + (b)*. Finally, k € (a)* and ! € (b)* exists such that z =k +1.

PROPOSITION 2.3. If G is a weak Riesz group, 0 <z <y; +y2+ -+ yn
for z,y1,y2,...,Yn € Gt , then elements z,, z2,...,2, € G ezist such that
r=x14+ 22+ -+, and z; € (y;) for i=1,2,...,n.

Proof can be done by induction.

PROPOSITION 2.4. If G i3 a weak Riesz group, then a sum of directed convez
subgroups in G i3 again a directed convez subgroup in G.

Proof. If {X;: ¢ € I} is a set of directed convex subgroups in G and

X =Y Xi, then X; is generated by X} for i € I and thus X is generated

by a subset in G, i.e., X is directed. f 0 <y <z, z € X, y € G, then

z < ) z; for suitable z; € X,T*' and K C I finite. With regard to 2.3 we
iEK
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have y = Y y; for y;i € (zi)* C X; (i € K). Finally, X is a directed convex
Y=Yy
subgroup in G.

PROPOSITION 2.5. Let G be a weak Riesz group. Then there holds:
1. If H is a directed convez subgroup in G, then H is a weak Riesz group.
2. If H is an o-ideal in G, then G/H 1is a weak Riesz group.

Proof.

1.If z,a, b€ Ht, 0 <2 <a+b, then elements k, ] € Gt exist such that
z=k+1, k€ (a), | € (b) and it implies that k,l € H .

22f H<z+H<(a+H)+(b+ H) for z,a,b € Gt, then elements
¢, d € HY exist such that 0 < z +c < a+ b+ d. Further, there exist k,l € Gt
suchthat z+c¢=k+1, k€ (a), le(b+d). Thusz+H=(k+H)+(I+H),
k+H,I1+HeG/HY and k+ H€ (a+H), |+ H € (b+ H) hold.

PROPOSITION 2.6.

1. If G is a weak Riesz group, then G has the following interpolation prop-
erty: If =1, 22, y1, 92 € G, z; <y; (1,7 € {1,2}), then elements 2y, z2 € G
exist such that z1 < zy <y, 290 < 29 < yy and 21, 29 € ((y1 —z1) + {xl}) N

({yz — z2) + {12}) -

2. Let G be a commutative po-group. Then G s a weak Riesz group if and
only if G has the following property:
If 21, 22,41, y2 € G, 1 + 22 = y1 +y2, then elements z;; € Gt exist such
that z; = ziy1 + zi2, yj = z15 + 225 and zij € (yj> for 1,5 € {1,2},

Proof.

1. We have 0 < y2 — 2y = (y2 —x2) + (22 — z1) < (y2 — 22) + (1 — 1)
and thus there exist elements k,! € G such that k,1 >0, y2 —z; = k + 1,
k€ (y2—a2), l € (y1 —x1). For 2y = l+2; = —k+y, thereholds yo > z; >z,
z1 € (y1 —x1) + {z1}, 21 € (y2 — z2) + {y2} . Similarly we can prove existence
of an element z; of required properties.

2. =: We have 0 < z; < y; +y; and thus there exist 211, 212 € G such
that z1 = z11 + z12, z11 € (yl), z12 € (yg). For zp; = —z15 + y; there holds
y; = 215+ 225 (J =1,2)and o1+ 22 = y1 +y2 = 211 + 221 + 212 + 222 =
Ty + 221 + z22. It implies T = 297 + 292, where 291 € (Y1), 222 € (y2) -

—:Ifz,a,6€ G, 0<z<a+b, then we have a+b=(a+b—2x)+2z

and thus there exist z31, 222 € Gt such that z = z, = 221 + 222, 221 € (a),
222 € (b) .
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DEFINITION. Let G be a directed po-group with the following property:

If z,a,b € G*, 0 <z < a+b, then elements k,1 € G ezist such that
k,1>20, z=k+1, k<a,l € (b). Then we say that G is a semiweak Riesz
group (an sw-Riesz group).

PROPOSITION 2.7.

1. An sw-Riesz group G has the interpolation property from Proposition 2.6
and z; > z4.

2. If G 13 an sw -Riesz group, then a meet of two directed convez subgroups
in G 138 again a directed convez subgroup in G.

Proof.

1. If we repeat the proof of Prop. 2.6, 1., then we receive that G has the
interpolation property and k < y; —z3,1i.e., 2 = -k + 1y > z.

2. If A, B are directed convex subgroups in G, then AN B is a convex
subgroupin G.If z € AN B, then p € A, ¢ € B exist such that 0,z < p, ¢q.
There exist elements 21, z3 € ({(g — z) + {z}) N (p) such that z <z <p, 0 <
29 < q, z; > 0. Finally, we have 21,20 € ANB, 2142, >0, 2142, > 2, > z,
21+ 22 € ANB. AN B is a directed subgroup in G.

3. Lattice characterization

The lattice of all convex [-subgroups of a lattice-ordered group G was in-
vestigated by M. Jakubikov4 [4]. This lattice is a complete distributive
lattice which is a complete sublattice of the lattice of all subgroups of G. This
result was generalized by J. Rachunek [7] for the case of Riesz groups. Let
us investigate a similar situation for sw -Riesz groups.

THEOREM 3.1. If G is an sw -Riesz group, then the set C(G) of all directed
convez subgroups in G 1is a locale.

Remark. Let us recall that a locale is a complete lattice L in which
the infinite distributive law a A\/S = \/{a A S: s € S} holds for all a € L
and S C L. The important examples of locales are lattices of all open sets
of topological spaces. All unexplained facts concerning locales can be found in
Johnstone [5].

Proof of 3.1. Let A; € C(G) be for ¢ € I and let [U A,-] denote a
i€l
subgroup generated by |J Ai. Then each element = € [ U A,']— has the form
€] i€l
z = Y, a; for suitable elements a; € A; and a finite subset K CI.If g € G,
tEK

261



BOHUMIL SMARDA

0 < g < z then 2.3 implies an existence of elements g; € Gt such that ¢ =

> gi and g; € [ U A,'] for i€ K. [ U A,-] is convex and let us prove that it

iEK iel €l

is also directed. If z = Y a;, y = ) b; are two elements from [ > A,-] , then
€K €L i€l

from the directness of A; it implies that there exist z; € A;, z; > a;,0 for all

1€ K and z; > b;,0 forall i € L. We have z,y < ) =z € [EAi] . Joins

i€KUL i€l
of A; € C(G) are also subgroups generated by |J A; and finite meets are meets
of sets (see 2.7).

Now, let us verify the corresponding distributive law: If A, B; € C(G) for

i€l,then AN\ B; 2 V(ANB;) clearly. If a € AN/ B;, then there exists
i€l el el
an element @ € AN \/ B; such that @ > a, O > —a. We have a = ), b;
el ieEK
for suitable elements b; € B} and i € K, K C I finite (see 2.3) and thus
b € ANDB; for i € K. Finally, a € \/(AN B;) and from the convexity
i€l

a € (AN B;) holds.

i€l
COROLLARY 3.2. If G is an sw -Riesz group, then the set I(G) of all o-ideals
i G 13 a locale with respect to arbitrary sums and finite meets.

Proof follows from 3.1 and 2.4.

Recall that a locale L is regular when ! = \/(z € L: z* V1 = 1) holds for
each | € L, where z* =\/(ye L: y Az =0).

PROPOSITION 3.3. Let G be an sw -Riesz group. Then a locale I(G) 1is reg-
ular if and only if each principal o-ideal in G s a direct summand in G.

Proof.
=>: (g9) = > {Xi: X} + (9) = G for i € I} holds for each g € G*. Since
i€l
g = Y, z; for suitable z; € X; and finite set K C I there holds (¢) = ) X;.
i€k iER
Distributivity of I(G) implies G = () (X7+(g)) = () X +(g) and ) X} =
€K i€k iER
(Zx) ="
iEK
<=:Clearly, A= Y ({a): (a)* + (a) = G) holds for each 4 € I(G) and

acAt
\/(X € I(G): X*V A =G) C A because X = GAX = (X*VAAX =
(X*AX)V(AANX)=AAX.Finally, I(G) is regular.
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