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A NOTE ABOUT THE ALMOST CONTINUITY 
ZBIGNIEW GRANDE 

ABSTRACT. Some notions of quasicontinuity for Husain's almost continuity are 
introduced and examined . 

Let (X, Tx) and (Y, TY) be topological spaces and let (.Z, g) be a metric 
space. A function / : X —• Z is said to be almost continuous ([3]) if for each 
x G X and each open set V C Z containing / ( x ) , the closure C1( / _ 1 (V)) of 
the set / _ 1 ( V ) is a neighbourhood of x. A function / : X —• Z is Sciid to be 
cliquish at a point x G X ([1, 2]) if for every positive number r and for every 
open set U C X containing x, there exists a nonempty open set V C U such 
that osc f < r . 

v J 

R e m a r k 1. ([2], Corollary 12). If / : X —• Z is a cliquish and almost 
continuous function, then / is a continuous function. 

R e m a r k 2. A function / : X x Y —> Z having continuous all sections 
fx(t) = f(x,t) and fy(u) = f(u,y) (x, u G X and i, y G Y) need not be 
almost continuous. Indeed, if X = Y = Z = ~i (R denotes the set of reals), 
Tx = TY are the Euclidean topologies and g is the Euclidean metric, then there 
is a function / : R2 —> R having continuous all sections fx , fy , which is not 
continuous. Since / is cliquish, by Remark 1 it is not almost continuous. 

The following definitions are some analogies of the quasicontinuity ([1, 2]) for 
the almost continuity. 

A function / : X —• Z has the property (P) (resp. (R) ) if for each x £ X and 
each open set V CZ containing f(x), x G C l ^ n t ^ l ^ - ^ V ) ) ) ) (Unf~l(V) 
is of the second category for every open set U containing x). Int denotes the 
interior operation. 

Obviously, every function / : X —• Z having the property (R) has also the 
property (P). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A15, 26B05, 26B99. 
K e y w o r d s : Husain's almost continuity, Cliquish functions, Second category. 
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THEOREM 1. Suppose that for every x G X there is an open neighbourhood 
U(x) having a countable basis of open sets. Let f:XxY—>Z be a function. 
If all sections fx have the property (R) and all sections fy have the property 
(P), then the function f has the property (P). 

P r o o f . Fix points x G X , y G Y and a positive number r . Let W C XxY 
be an open set such that (x,y) G W. There are open sets U C X and V C Y 
such that x G U, y G V and U x V C W. Since the section fx has the property 
(R), there exists a set A C V of second category such that 

Q(f(x,t), f(x,y)) < r/2 for each t G A . 

There is an open set T C U containing x and having a countable basis of open 
sets Ui, U2, . . . , Un,.... Since all sections fy have the property (P), for every 
t G . 4 there is an open set Un(t) such that 

Un(() C I n t ( d ( { u € T: g(f(u,t), f(x,t)) < r / 2} ) ) . (1) 

But the set A is of second category, so there is a positive integer m such that 
the set 

B = {te A: n(t) = m} 

is also of second category. Let 

C = {(u,t) € Um X B: e(f(u,t), f(x,t)) < r/2} . 

For each point (u,t) G C we have 

Q(f(u,t), f(x,y)) 

< Q(f(u, t), / (x , tj) + g(f(x, *), / ( * , y)) < r/2 + r/2 = r. (2) 

From (!) it follows that C1(C) D Um x B. Consequently, C1(C) D Um x C\(B), 
and Int(Cl(C)) b Um x (lnt(Cl(B)) D V) . But the set B is of second category, 
so 

Int(Cl(C)) D Um x (lnt(Cl(£)) n K ) ^ f ) . 

From this it follows by (2) that 

(x,OeCl(lnt(ci({(u,t): .?(/(u,t), /(*, y)) < r}) ) ) 

and the proof is complete. 
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COROLLARY 1. Assume that the spaces (X, Tx), (Y, Ty) and (Z, g) satisfy 
the hypothesis of Theorem 1. Let f: X x Y —> Z be a function such that all 
sections fx are continuous and all sections fy have the property (P). If (y, TY) 
is a Baire space, then f has the property (P). 

THEOREM 2. Let the spaces (X, Tx) , (y, TY) , (Z, g) satisfy the assump
tions of Theorem 1. Moreover, we suppose that every set A C X x Y of first 
category is such that the set 

{y SzY: Ay = {u G X: (u,y) £ A} is of second category} 

is of first category. If all sections fx and fy of the function f: X x Y —> Z 
have the property (R), then f has also the property (R). 

P r o o f . The proof is analogous to the proof of Theorem 1. 

COROLLARY 2. If the spaces (X, Tx), (Y, TY), (Z, g) satisfy the assump
tions of Theorem 2, if (y, TY) is a Baire space, if all the sections fx of a 
function f': X xY —> Z are continuous, and all sections fy have the property 
(R), then f has also the property (R). 

E x a m p l e . Let X = Y = Z = R, let Tx , TY be the euclidean topologies 
and let g be the euclidean metric. Denote by W the set of all rationals. There 
are dense sets Wnk C W ( n , fc = l , 2 . . . ) such that 

WnikinWnik2=9 if (n\, k\)^(n2, fc2), and 0 G Wn . 

Let 
Bo = {boi, &02-..----0*,...} = W\\ with 60i = 0 

and let 
oo 

B* = U (((-v*.X /*) ° W™) x {6°*» ' 
k=i 

The set B\ is nowhere dense in R2 . Let ( P i , . . . ,Pfc,...) be a basis of open 
sets in R2 . There is a nonempty open set Q\ C Pi such that B\ fl Cl(Q\) = 0. 
Since the set B\ — {(0,y): y € R} is countable, 

Bi - {(0,y): y G R} = ((*i„, y i „ ) )~ j . 

For each point (x i n , yin), n = 1,2,... , there is a positive number Tin < l/n 
such that the set 

CO 

^2 = | J ({*ln} X ((ym ~ rm, yin + rln) fl W2n) ) 
n=\ 
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does not intersect the set Cl(Q\). Since the set B2 is nowhere dense, there is 

a n o n e m p t y open set Q2 C Pi such t h a t B2 D C\(Q2) = 0 . Generally, if k is 

even, t h e n we define the set 

oo 

Bk+\ = U ({Xkn} X ((ykn ~ rkn, 2/itn + Tkn) H Wkn) ) 
n=\ 

such t h a t Bk - Bk+\ = ((xkn, 2/fcn))^!, , 0 < rjt„ < 1/n and 

Bk+\n[JC\(Ql) = $. 
i=\ 

Analogously, if k is odd, then we define the set 

oo 

Bk+\ = U ( ((Xkn ~~ r j t n ' X*n + r ^ n ) n ^ n ) X iykn}) 
n=\ 

such that Bk-Bk+\ = ((xkn, ykn))n=1 , 0 < rkn < 1/n and Bk+\^C\(Qi) = 0 

for i = 1 , . . . , k . Since the set Bk+\ is nowhere dense, there is a nonempty open 

set Qk+\ C Pk+\ such that Bk+\ n C1(QA;-M) = 0. Put 5 = Hj U B2 U . . . . 

Since for every k = l , 2 , . . . , Qk C\ B = 9, the set B is nowhere dense. Let us 

put 

1 for (x,y)єB 

0 for (x,y)єR2-B. 
/(*,2/) = { 

All sections fx , fy are almost continuous, but / has not the property (P). 
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