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SOME DIOPHANTINE APPROXIMATION RESULTS 
CONCERNING LINEAR RECURRENCES 

J. P. JONES*) — P. KISS**)1) 

ABSTRACT. Let Rn and Vn ( n — 0, 1, 2, . . . ) be sequences of integers defined 
by Rn — ARn_\ — BRn_2 and Vn — AVn_\ — BVn_i , wliere A and B are 
fixed non-zero integers and B0 = 0 , R\ — \ , VQ = 2 , V\ ~ A . Furthermore let 
D - A2 - AB . We show that 

Rn 

1 

Rl 

holds for infinitely many n if and only if | B | = 1 and c ̂  \[D /2 . We also show 

that the "best" rational approximations of the irrational number VD have the 

form p/q = Vn/Rn . 

§1. Introduction 

Let Rn and Vn , ( n = 0 , 1 , . . . ), be sequences of integers defined by a second 
order linear recurrence 

Rn = A • Rn-i - B . Rn-2 (n = 2 ,3 , . . . ) , 

Vn = A . V n - i - - 9 - V n - 2 (n = 2 , 3 , . . . ) , 

where A and B are fixed non-zero integers and the initial terms of the sequences 
are RQ = 0, R\ = 1, Vo = 2 and V\ = A. Let a and ß be the roots of the 
characteristic polynomial x2 — Ax + B and let D denote its discriminant. Then 
we have 

(i) £> = A 2 - 4 Я , (ii) Л = a + /3, (iii) B = aß. (1) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11B39, 11J68. 
K e y w o r d s : Linear recurrences, Irrational number, Approximation. 
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Throughou t tin1 paper we suppose tha t D > 0 , D ^ • ( D is not a square) and 

also tha t 0 < A, (see discussion of 0 < .4 below). Plainly \ft\ = \cx\ if and only 

if D < 0 . Thus when 19 > 0 and D ^ • , rv and /? are irrat ional real numbers 

and we can suppose tha t \ft\ < |rv| . Fur thermore, since ft / cv , the te rms of the 

sequences 7?r, and Vn are given by 

(iv) /?„ ß" 
ß 

(v) V„ = «"+/?". (1) 

For the derivation of (iv) and (v) see e.g. [1], [6] or [7]. From these equat ions it 
is not difficult to see tha t 

Rn + i 
— rv = 

Rn " («//*)" - r 

Since | / j | < | o | , it, follows from (2) tha t 

v„ r- 2У7J 

(i) 1 1111 
/?„ + i 

B„ 
o and (ii) lim 

Rn 

ß = y/Ђ. (3) 

T h u s Rn + \/Rn is an approximat ion to the irrational number a and Vn/Rn is 

an apj)roximation to the irrational number \JD . T h e quality of the approxima

tion (3) (i) to rv has been investigated in earlier papers . In [2] it was proved t h a t 

the inequality 

я„ +1 

Я„ 
< 

l 

RІ, 

holds for infinitely m a n y n if and only if \B\ = 1. In [2] it was also proved 

t h a t when \B\ = 1 and p/q is a rat ional number such t h a t (/>,(/) = 1 , then the 

inequality 

PI 1 
< 

v/o-ç2 

implies tha t p/q = Rn+\/Rn for some n > 1. In some other special cases similar 

results follow from [3] and [8]. The quality of the approximat ion of a by the 

ra t io Rn+\/Rn was studied in the papers [4] and [5], in the general set t ing when 

\B\ ^ 1 and even for D < 0 . 

In this paper we consider the approximation of \JD by rat ionals of the form 

Vn/Rn. We shall see tha t the approximation by Vn/Rn is the best possibility 

when \B\ = 1. 

Throughou t we will assume tha t 0 < A. There is no loss of generali ty in 

making this assumption. To see this, let A be a positive integer and suppose Vn 
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and Rn are the sequences defined by A and B , with characteristic roots a and 

ft, and V„ and R'n are the secpiences defined by —A and B , with characterist ic 

roots a1 and ft' . Then D' = D and the assumption 0 < A is equivalent to 

o — ft = \/D . Hence from our assumption 0 < D , i.e. that \ft\ < \a\ , we obta in 

a = 
A+^JD 

0 = 
A D 

and 

-A 
a = = —a 0' 

-A + VD 

ø. 2 2 

Therefore a ' / / ? ' = cv//i. Hence we have from (1) (iv) and (v) tha t 

YL 
R' 

YlL 
Rn 

Thus approximat ing \JD by rationals Vn/Rn, when A < 0 , is equivalent to 

approximat ing — \AD by rationals V^/R'n, when 0 < A. So we shall suppose 

0 < A together with our other assumptions, 0 < D , B ^ 0 and D / D . 

We shall prove the following theorems: 

T H E O R E M 1. Let c be a real number. Then the inequality 

D-
Rn 

1 

c • Rl 

holds for infinitely many n if and only if \B\ = 1 and c < vD/2. 

T H E O R E M 2. Suppose \B\ = 1 and B + 5 < A . All sufficiently large solutions 

P/<1 °f 

D - P 

Dф 
(4) 

have the form p/q = Vn/Rn for some positive integer n. 

T H E O R E M 3 . Suppose \B\ = 1 and B + 5 < A. Then infinitely many rational 

numbers p and q satisfy the inequality 

D-P- < 
1 

c • qc 
(5) 

if and only if c < 2\AD. When c = (1\JD, every sufficiently large rational 

solution p/q of (5) has the form p/q = Vn/Rn , for some positive integer n. 
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§2. P r o o f of t h e t h e o r e m s 

P r o o f o f T h e o r e m l . From (1) (ii), (iii) we have aft = B and 

a — f3 = \JD so tha t by (1) (iv), (v) we have 

Vn /K / F J ^ + l 3 " \ 2y/Dfin 2/?"(«" - / ? " ; 

? n \a" - (1" ) a" Rn \an - ftn J a" - ft" y/Ď-Rl 

_ 2 B » ( l - ( / ? / « ) " ) 

y/Ď-Ri 

(6) 

Hence the inequality of Theorem 1 is equivalent to | L ? | n | l — (/3/a)n\ < \jD/2c. 
Since \/3\ < \a\ we have (fi/a)n —> 0 as n —+ oo . Theorem 1 follows. 

In the proofs of Theorems 2 and 3 below we shall use the following lemma. 
A proof of it can be found in [9], (Chapter 7 in the 5th edit ion). 

LEMMA 1. Let 7 be irrational. If there exist integers p and q > 1 such that 

1 
< 

2 . , - ' 

then p/q is one of the convergents to the simple continued fraction expansion of 
7 , that is, p/q = hn/kn holds for some n where hn/kn is the nth convergent 
to 7 . 

P r o o f o f T h e o r e m 2. We will consider four cases according as B = ± 1 
and A is odd or A is even. T h e assumption B + 5 < A is equivalent to saying 
t h a t when B = — 1 and A is even, then 4 < A; when B = — 1 and A is odd, 
then 5 < A; when B = + 1 and A is even, then 6 < A ; and when B = + 1 
and A is odd, then 1 < A. From these it follows tha t 2 < v ^ / 2 if B = - 1 
and 5/2 < y/D/2 if i? =- -f 1. We shall use these inequalities in the following 
when we apply L e m m a 1. 

First suppose tha t B = — 1 and A = 2a, where a is an integer a n d a > 2 . 
In this case 4 < .4 and we have \jD = \/4a2 + 4 . In this case it is easy to check 
t h a t the simple periodic continued fraction expansion of \/_) is 

VD = (2a,a~M). (7) 

Let 7 = \AD. Since Z) 7̂  • , 7 is irrational. W h e n 7 = (an, « i , CZ2, • • •) is 
the simple continued fraction expansion of an irrational number 7 , then, as is 
well known, see [9], the n th convergent rn = ( a 0 , « i , • • • , «n) to 7 is given by 
r n = hn/kn , where /in and kn are sequences defined by 

ft_2 = 0 , /i_, = 1, /*, = a1-/i1-_1 + f t i _ 2 , (i = 0 , 1 , . . . ) , (8) 

&_2 = 1 , k_i=0, k,;= a . k . - i + fci_2 , ( i = 0 , l , . . . ) . (9) 
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In our case, from (7) we have a0 = 2a and 

a 2 t _i = a and a2l = 4 a , (/ = 0 , 1 , . . . ) . (10) 

ConseqLiently by (8), h0 = 2a , h\ = a • 2a + 1 = 2a2 + 1 and h2 = 

4a • (2a2 + 1) + 2a = 8a3 + 6a . On the other hand, from the definition of the 

sequence Vn , V0 = 2 = 2/i_, , V, = A = 2a = h0 , V2 = 2a • 2a + 2 = 2 • /;., and 

Vr
3 = 8a3 + 6a = h2 . 

We now extend these equations by proving that 

V2i = 2 . b 2 i _ ! , (11) 

V2i+x =h2i, (12) 

for i > 0 . Equat ions (11) and (12) will be proved by induction. The equations 
hold for i = 0 and i = 1. Suppose (11) and (12) hold for indices 0 , 1 , . . . , ? ' . 
Then from (8) - (12) we have 

V^i+i) = V2i+2 = 2a • V2i+i + V2l = 2ah2l + 2/i2 , - i = 2(a/t2 t + /*2 l_,) = 2h2i+x 

= 2 • /l2(«-+,)-,. 

Also 

^2(i+i)+i = 2aVr
2l+2 + V2i+\ = 4 a b 2 l + i + h2l = h2{l+x). 

Hence (11) and (12) are established for all i > 0 . 

Similarly as above, by (9) we have R0 = 0 = fc_, , I?i = 1 = k0 , R2 = 2a 

= 2ki , I?3 = 4a2 + 1 = k2
 a n d we can show by induction tha t for any i > 0 

R2l = 2 - k 2 , _ , , (13) 

and 

i W , = * 2 i . (14) 

Now suppose (4) holds, i.e. \y/D — p/q\ < 2/y/TJq2 for some p and g. Then , 

since 2 < v _ ) / 2 , Lemma 1 implies tha t p /g = hn/kn for some n . Hence by 

(11), (12), (13) and (14), we have p/q = Vn/Rn , which implies the theorem. 

Next suppose B = — 1 and that A = 2a + 1 is odd. Since 5 < A , we have 

2 < a. In this case \ /Z/ = \ /4a 2 + 4a + 5 . \/D is irrational and 2 < \f~Dj2. 

The periodic continued fraction of \/Z) is \[D = ( 2a + 1, a, 1,1, a, 4a + 2 ) = 

( a0 , a , , a 2 , . . . ) , where a0 = 2a + 1 and 

«5i+1 = a , a 5 l + 2 = 1, a 5 l + 3 = 1 , a 5 l + 4 = a , a 5 l + 5 = 4a + 2 , 
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for i > 0 . By an argument similar to the above but longer, we can show t h a t 

for i > 0 

V^i = 2 • /l5i-l , R$i = 2 • k5z-l , 

K3.+1 = h5i, -R31+1 = hi, (15) 

V31+-2 = ^5i + 3 7 R3i + 2 = &5i+3 • 

Now suppose (4) holds for some rat ional p/q. Since 2 < y/D/2, L e m m a 1 

implies t h a t p/q = r n = hn/kn for some n . Hence by (15) the theorem holds 

when n = 5i — 1, n — hi or n = 5z; + 3 . If n is of the form n = 5i + 1 or 

n — hi + 2 , t h e n we still have to prove tha t 

2 < | v < D - r n | . (16) 

Suppose first t h a t n = 5i + 1. By the elementary propert ies of the continued 

fraction expansion of an irrat ional number 7 , we have 

fr - r ? i l = TTQ—r~n—\ ' v 1 7 ) 
M * n + l*n + kn-l) 

where 0j is defined by 7 = ( an, a i , a 2 , . . . , a j- i , #j) and 6j = ( a^, a j + i , . . . ) . 

By (17), to prove (16), we have to show t h a t 

*- + *ir<2f- (18) 

W h e n n = hi + 1 we have 

#n+ i = #5i+2 = ( 1 , 1 , a, 4a + 2, a ] 

a n d one can check t h a t 

_ 2a - 1 + v ^ 
#5i + 2 — ~ — • 

2a + 1 

F u r t h e r m o r e , from (9), (15) and (3) we have 

kn-\ k5i k$i -R3.+1 

(19) 

kn k5i+1 ak5l + fc5i_i aRзi+1 + Rзi/2 Q Rзг 

2 • Rз.+i 

2 
a + 

(20) 

< j - + £ 

2 a 
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for any e > 0, if i is large enough . But 

A+>/D 2a + 1 + y/D 
( 2 Г 

and from (19) and (21), after a short calculation, we have 

1 _ 2 / 0 ^D 
e"+2 + ~7T--2~~i<T' 

(l+2~ 

since a > 2. Together with (20), this proves inequality (18). 

When n = 5z + 1, we can prove inequality (16) by a similar a rgument . 

We now consider the third case, B = 1 and A is even. T h e n A — 2a and 

B + 5 < A implies 3 < a. In this case 

y/D= \/4a 2 - 4 = ( 2 a - 1,1, a - 2,1,4a - 2) 

and we have 

^2i-f 1 — /*4i-f-l i R21+1 = ^4i-f 1 , 
( 2 2 ) 

V2l = 2 - / i 4 l _ i , R2i = 2 - k 4 j _ i , V ; 

for ? > 0 . Suppose (4) holds for some rational p/q. Since 2 < \JD j2, L e m m a 1 

implies t h a t p/q is a convergent to the continued fraction expansion of y/D , 

i.e. t h a t p/q = rn = hn/kn . Hence from (22), p/q = V3/R3 , if n is of the form 

n = 4z + 1 or ?i = 4z — 1. Similar to the above, for the other convergents we can 

prove t h a t 

2 2 
< \y/D - r 4 n + 2 | and < |\/F) - r 4 n [ , 

-0 - *2„+a ' 4 n + " VľJ-^L 

by using 

2a - 4 + \/Ď 
l n + 3 = { l , 4 a - 2 , l , a - 2 ) = 

0 4 n + , = < l , a - 2 , l , 4 a - 2 ) = 

4 a - 5 

2a - 1 + y/D 

4 a - 5 

This completes the proof of the theorem in this th i rd case. 
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Finally assume B = 1 and .4 is odd. Then A = 2a + \ . B + 5 < A implies 

3 < a . In this case \/D = \ /4a 2 + 4a - 3 = ( 2 a , l , a - 1,2, a - 1 ,1 ,4a ) , where 

a is an integer, and we can show that 

V31+1 = '*<)i+l i R:ii+1 — ^'(ii+1 , 

Vu + 2 — 'l()j + 3 , Rli + 2 = ^'tii + 3 • ( 2 3 ) 

J'3i + 3 = 2 ' //(ii + 5 , -^31 + 3 — 2 ' k(jj + 5 , 

for all 7 > 0 . Fur thermore it can be shown that 

2a + y/D 
%» + ì - ( L « - l , 2 , a - 1,1,4a) = 

06ll + з = ( 2 , a - 1,1,4a, l , n - l = 

Ö6 f l + 5 = ( l , 4 a , l , a - l , 2 , a - l > = 

4 a - 3 ' 

2a - 1 + s/Ђ 

2a - 1 

2a - 3 + \ÍĽ 
4a 

from which we obta in 

y/Ď-kl 
<WD-rn\ 

when n = 6?', n = 6? + 2 or n = C?; + 4, (z = 0 , 1 , 2,. . . ) , using 3 < a. Hence1 

the theorem is proved in all four cases. 

P r o o f o f T h e o r e m 3. If a rat ional number p/q , with p and q suffi
ciently large, satisfies the inequality (5), with c = 2\JD , then inequality (4) is 
also satisfied by p/q. Consequently by Theorem 2, there exists a positive integer 
n such t h a t p/q = Vn/Rn . 

If c > 2 a n d p/q is a solution of (5), then by Lemma 1 p/q is a convergent 
to the simple continued fraction expansion of \/D and so, by ( 1 1 ) - (15), (22) 
and (23), p = Vn or p = Vn/2 and q = Rn or q = Rn/2 for some n. From 
these by (6), with Vn = 2p and Rn = 2q, 

' - W ° > - (24) P--Sf> 

follows. From (5) and (24) we obta in the inequality c < 2\[T). From (24) it also 
follows t h a t (5) has infinitely many p, q integer solutions if c < 2\/D. T h u s we 
have proved every assertion of the theorem. 
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