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METRIC RESULTS ON A NEW NOTION
OF DISCREPANCY

PETER J. GRABNER")

ABSTRACT. We prove a law of the iterated logarithm for a new notion of dis-
crepancy of point sequences in the s-dimensional unit cube and give the connec-
tion to the usual discrepancy.

1. Introduction

In the theory of uniform distribution discrepancy is used to quantify the
distribution behaviour of a given point sequence. The usual notion of discrepancy
of a sequence z1,z3,...,zN of points in the unit cube I° is given by

A
Dy(z1,...,zN) —sup

ZXA Tn) — ()’ (1.1)

where x , denotes the characteristic function of the set A and A is the usual
s-dimensional Lebesgue measure. The supremum is taken over a system A of
subsets of I°, e.g. boxes, cubes, balls or convex sets (cf. [IK-NJ, [H]}).

In a forthcoming paper Sobol and Nushdin [S-N] study a new no-
tion of discrepancy, which seems to be more suitable for computational applica-
tions. We slightly modify their definition: we consider a partition P = {A;} of
A= |J A, into disjoint classes A; of sets of equal measure (j running through

JEJ
an index set J). For instance we put all translations of one cube or box into
each set A; or we gather all boxes of measure r into sets A, . Then we define

1
Z(ml,.‘.,xN) = -ﬁr?ea}(</§ré2( ZXA(I” - mm ZXB In ) (1.2)

) n=1
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(Sobol and Nushdin consider dyadic boxes only). It can be seen by simple argu-
ments, that

D3 < DY <2D%. (1.3)

We use a very general form of the law of the iterated logarithm due to
Philipp [Ph] to obtain a precise estimate for this notion of discrepancy,
which is valid for almost all point sequences in the unit cube. Our result shows
where in the interval [D,(‘,,QD,’?,] D% is most likely to be.

2. The Theorem

THEOREM 1. Let P be a partition of the system A of all bozes or of all cubes
in the unit cube I°. Then

) VND?,
msup —F/———— =0
N_.oop V2loglog N

for almost all sequences in the unit cube, where

o=sup sup +A(AAB);

JjEJ A, BEA,

A A B denotes the symmetric difference of the two sets A and B .

In the following corollaries we will compute the constants o for some special
sets A;.

COROLLARY 1. Let

N N
1 -
T _ , . _ : .
Dy(zy,...,zN) = _0122(1(111?)( E v\t+A,(‘I'") min E f\t+Ar(I")>’

n=1 n=1

where A, = [0,7)°. Then for almost all sequences

. VNDJ, 1
lim sup = —
N—oo V2loglog N (2_2ﬁ)7

1
holds; the expression on the right hand side tends to — as s tends to oo.

V2
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COROLLARY 2. Let

N N
1 .
Dﬁ(zl, S, TN) = I mj\vx(m'ax Z Xpgaltn) = min Z \‘+A(J‘")> ,
n=1 n=1
s
where the mazimum is taken over all bozes A = [][0,7k). Then for almost all
k=1
sequences
. VNDR
lim sup ——m—=N— =]
N—oo V2loglog N
holds.
Remark 1. Note that for the usual discrepancy almost surely

VNDy 1

l. S =
1{1\/11:;1) V2loglog N 2
holds (cf.[Ph]).
3. Proof of the Theorem

As indicated above the proof willuse P hilip p’s uniform law of the iterated
logarithm [Ph, Theorems 1.3.1., 1.3.2.] and his result on the usual discrepancy

[Ph, Theorem 4.1.1.].
Proof. Let us note that the random variables x,,z,,... are independent.
Therefore we can use a simple version of the law of the iterated logarithm (cf.[Fe])

to obtain

N N
2_: \’A(In)_ Z \[;(In)

P | limsup n=l n=l =/AAAB) | =1 (3.1)
N — o0 V2N loglog N

for every pair of sets A, B with A(A) = A(B) (not uniformly up to now!). We
now use that the elements A of A; indicated in the introduction are approx-
imable by boxes A' C A, whose vertices are dyadic rationals with denominator
2!, with an error A(A \ A') < 2s27'. For the moment let us restrict (3.1) to

these “dyadic boxes”, then

N } N
2 X (tn) = 2 X (n)

P | limsup 2= n=l = VAA'AB) | =1
1;/n:;p V2N loglog N ( )
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uniformly in A' and B', as the countable intersection of sets of measure 1 has
measure 1.

We now use the simple inequality
N

(X g (@) = X (@0) = Xy (#0) < (X4 (20) = X5(20))

n=1

(X g (@) = X o (@0) + X 4y o (@n))

N
n=1
N
<)
n=1 i
and Philipp’s uniform law of the iterated logarithm, which states that

> xa(2n) = NAA)
P lill\."njllop n=1 N TR =/AMA)(1-x4) | =1 (3.2)

uniformly for all boxes A C I°. Therefore we obtain that

N N
EIXAI(I")_ leB'(I") \/N/\(B\B’)
lim sup oNToglog N Valglogn ~ YMEB\B)

N N

2 Xa(2a) = 2 xp(za)
. n=1 n=1

< lim sup

N—oo V2N loglog N

N N
S Xl = Sxplen) sy
. = = NMA\ AT
<1 n=l ot VAN A
- l;/nj;p V2N loglog N + V2loglog N + (414

almost sure. We now take A(B\ B') < 2s27' < N3 to finish the proof. O
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