## Mathematic Slovaca

Peter J. Grabner<br>Metric results on a new notion of discrepancy

Mathematica Slovaca, Vol. 42 (1992), No. 5, 615--619

Persistent URL: http://dml.cz/dmlcz/136568

## Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# METRIC RESULTS ON A NEW NOTION OF DISCREPANCY 

PETER J. GRABNER ${ }^{1)}$


#### Abstract

We prove a law of the iterated logarithm for a new notion of discrepancy of point sequences in the $s$-dimensional unit cube and give the connection to the usual discrepancy.


## 1. Introduction

In the theory of uniform distribution discrepancy is used to quantify the distribution behaviour of a given point sequence. The usual notion of discrepancy of a sequence $x_{1}, x_{2}, \ldots, x_{N}$ of points in the unit cube $I^{s}$ is given by

$$
\begin{equation*}
D_{N}^{\mathcal{A}}\left(x_{1}, \ldots, x_{N}\right)=\sup _{A}\left|\frac{1}{N} \sum_{n=1}^{N} \chi_{A}\left(x_{n}\right)-\lambda(A)\right| \tag{1.1}
\end{equation*}
$$

where $\chi_{A}$ denotes the characteristic function of the set $A$ and $\lambda$ is the usual $s$-dimensional Lebesgue measure. The supremum is taken over a system $\mathcal{A}$ of subsets of $I^{s}$, e.g. boxes, cubes, balls or convex sets (cf. [K-N], [Hl]).

In a forthcoming paper Sobol and Nushdin [S-N] study a new notion of discrepancy, which seems to be more suitable for computational applications. We slightly modify their definition: we consider a partition $\mathcal{P}=\left\{\mathcal{A}_{j}\right\}$ of $\mathcal{A}=\bigcup_{j \in J} \mathcal{A}_{j}$ into disjoint classes $\mathcal{A}_{j}$ of sets of equal measure ( $j$ running through an index set $J$ ). For instance we put all translations of one cube or box into each set $\mathcal{A}_{\boldsymbol{j}}$ or we gather all boxes of measure $r$ into sets $\mathcal{A}_{r}$. Then we define

$$
\begin{equation*}
D_{N}^{\mathcal{P}}\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N} \max _{j \in J}\left(\max _{A \in \mathcal{A}_{j}} \sum_{n=1}^{N} \chi_{A}\left(x_{n}\right)-\min _{B \in \mathcal{A}_{j}} \sum_{n=1}^{N} \chi_{B}\left(x_{n}\right)\right) \tag{1.2}
\end{equation*}
$$

[^0]
## PETER J. GRABNER

(Sobol and Nushdin consider dyadic boxes only). It can be seen by simple arguments, that

$$
\begin{equation*}
D_{N}^{\mathcal{A}} \leq D_{N}^{\mathcal{P}} \leq 2 D_{N}^{\mathcal{A}} \tag{1.3}
\end{equation*}
$$

We use a very general form of the law of the iterated logarithm due to Philipp [Ph] to obtain a precise estimate for this notion of discrepancy, which is valid for almost all point sequences in the unit cube. Our result shows where in the interval $\left[D_{N}^{\mathcal{A}}, 2 D_{N}^{\mathcal{A}}\right] \quad D_{N}^{\mathcal{P}}$ is most likely to be.

## 2. The Theorem

THEOREM 1. Let $\mathcal{P}$ be a partition of the system $\mathcal{A}$ of all boxes or of all cubes in the unit cube $I^{s}$. Then

$$
\limsup _{N \rightarrow \infty} \frac{\sqrt{N} D_{N}^{\mathcal{P}}}{\sqrt{2 \log \log N}}=\sigma
$$

for almost all sequences in the unit cube, where

$$
\sigma=\sup _{j \in J} \sup _{A, B \in \mathcal{A}_{j}} \sqrt{\lambda(A \triangle B)} ;
$$

$A \triangle B$ denotes the symmetric difference of the two sets $A$ and $B$.
In the following corollaries we will compute the constants $\sigma$ for some special sets $\mathcal{A}_{j}$.

Corollary 1. Let

$$
D_{N}^{\mathcal{T}}\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N} \max _{0<r<1}\left(\max _{\boldsymbol{t}} \sum_{n=1}^{N} \chi_{\boldsymbol{t}+A_{r}}\left(x_{n}\right)-\min _{\boldsymbol{t}} \sum_{n=1}^{N} \chi_{\boldsymbol{t}+A_{r}}\left(x_{n}\right)\right)
$$

where $A_{r}=[0, r)^{s}$. Then for almost all sequences

$$
\limsup _{N \rightarrow \infty} \frac{\sqrt{N} D_{N}^{T}}{\sqrt{2 \log \log N}}=\frac{1}{\left(2-2^{\frac{1}{2-1}}\right)^{\frac{--1}{2}}}
$$

holds; the expression on the right hand side tends to $\frac{1}{\sqrt{2}}$ as $s$ tends to $\infty$.

Corollary 2. Let

$$
D_{N}^{\mathcal{R}}\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N} \max _{A}\left(\max _{t} \sum_{n=1}^{N} \chi_{t+A}\left(x_{n}\right)-\min _{t} \sum_{n=1}^{N} \chi_{t+A}\left(x_{n}\right)\right)
$$

where the maximum is taken over all boxes $A=\prod_{k=1}^{s}\left[0, r_{k}\right)$. Then for almost all sequences

$$
\limsup _{N \rightarrow \infty} \frac{\sqrt{N} D_{N}^{\mathcal{R}}}{\sqrt{2 \log \log N}}=1
$$

holds.
Remark 1. Note that for the usual discrepancy almost surely

$$
\limsup _{N \rightarrow \infty} \frac{\sqrt{N} D_{N}}{\sqrt{2 \log \log N}}=\frac{1}{2}
$$

holds (cf.[Ph]).

## 3. Proof of the Theorem

As indicated above the proof will use Philip p's uniform law of the iterated logarithm [ Ph , Theorems 1.3.1., 1.3.2.] and his result on the usual discrepancy [Ph, Theorem 4.1.1.].

Proof. Let us note that the random variables $x_{1}, x_{2}, \ldots$ are independent. Therefore we can use a simple version of the law of the iterated logarithm (cf.[Fe]) to obtain

$$
\begin{equation*}
\mathbb{P}\left(\limsup _{N \rightarrow \infty} \frac{\left|\sum_{n=1}^{N} \chi_{A}\left(x_{n}\right)-\sum_{n=1}^{N} \chi_{B}\left(x_{n}\right)\right|}{\sqrt{2 N \log \log N}}=\sqrt{\lambda(A \triangle B)}\right)=1 \tag{3.1}
\end{equation*}
$$

for every pair of sets $A, B$ with $\lambda(A)=\lambda(B)$ (not uniformly up to now!). We now use that the elements $A$ of $\mathcal{A}_{j}$ indicated in the introduction are approximable by boxes $A^{\prime} \subset A$, whose vertices are dyadic rationals with denominator $2^{t}$, with an error $\lambda\left(A \backslash A^{\prime}\right)<2 s 2^{-t}$. For the moment let us restrict (3.1) to these "dyadic boxes", then

$$
\mathbb{P}\left(\limsup _{N \rightarrow \infty} \frac{\left|\sum_{n=1}^{N} \chi_{A^{\prime}}\left(x_{n}\right)-\sum_{n=1}^{N} \chi_{B^{\prime}}\left(x_{n}\right)\right|}{\sqrt{2 N \log \log N}}=\sqrt{\lambda\left(A^{\prime} \triangle B^{\prime}\right)}\right)=1
$$

## PETER J. GRABNER

uniformly in $A^{\prime}$ and $B^{\prime}$, as the countable intersection of sets of measure 1 has measure 1.

We now use the simple inequality

$$
\begin{aligned}
& \sum_{n=1}^{N}\left(\chi_{A^{\prime}}\left(x_{n}\right)-\chi_{B^{\prime}}\left(x_{n}\right)-\chi_{B \backslash B^{\prime}}\left(x_{n}\right)\right) \leq \sum_{n=1}^{N}\left(\chi_{A}\left(x_{n}\right)-\chi_{B}\left(x_{n}\right)\right) \\
\leq & \sum_{n=1}^{N}\left(\chi_{A^{\prime}}\left(x_{n}\right)-\chi_{B^{\prime}}\left(x_{n}\right)+\chi_{A \backslash A^{\prime}}\left(x_{n}\right)\right)
\end{aligned}
$$

and Philipp's uniform law of the iterated logarithm, which states that

$$
\begin{equation*}
\mathbb{P}\left(\limsup _{N \rightarrow \infty} \frac{\left|\sum_{n=1}^{N} \chi_{A}\left(x_{n}\right)-N \lambda(A)\right|}{\sqrt{2 N \log \log N}}=\sqrt{\lambda(A)(1-\lambda(A))}\right)=1 \tag{3.2}
\end{equation*}
$$

uniformly for all boxes $A \subset I^{s}$. Therefore we obtain that

$$
\begin{aligned}
& \quad \underset{N \rightarrow \infty}{\limsup }\left(\frac{\sum_{n=1}^{N} \chi_{A^{\prime}}\left(x_{n}\right)-\sum_{n=1}^{N} \chi_{B^{\prime}}\left(x_{n}\right)}{\sqrt{2 N \log \log N}}-\frac{\sqrt{N} \lambda\left(B \backslash B^{\prime}\right)}{\sqrt{2 \log \log N}}-\sqrt{\lambda\left(B \backslash B^{\prime}\right)}\right) \\
& \leq \limsup _{N \rightarrow \infty} \frac{\sum_{n=1}^{N} \chi_{A}\left(x_{n}\right)-\sum_{n=1}^{N} \chi_{B}\left(x_{n}\right)}{\sqrt{2 N \log \log N}} \\
& \leq \limsup _{N \rightarrow \infty}\left(\frac{\sum_{n=1}^{N} \chi_{A^{\prime}}\left(x_{n}\right)-\sum_{n=1}^{N} \chi_{B^{\prime}}\left(x_{n}\right)}{\sqrt{2 N \log \log N}}+\frac{\sqrt{N} \lambda\left(A \backslash A^{\prime}\right)}{\sqrt{2 \log \log N}}+\sqrt{\lambda\left(A \backslash A^{\prime}\right)}\right)
\end{aligned}
$$

almost sure. We now take $\lambda\left(B \backslash B^{\prime}\right) \leq 2 s 2^{-t}<N^{-\frac{1}{2}}$ to finish the proof.

## REFERENCES

[Fe] FELLER, W.: An Introduction to Probability Theory and Its Applications I, II, J. Wiley, New York, 1950.
[HI] HLAWKA, E.: Theorie der Gleichverteilung, Bibliographisches Institut, Mannheim-WienZürich, 1979.
[K-N] KUIPERS, L.-NIEDERREITER, H.: Uniform Distribution of Sequences, J. Wiley, New York, 1974.

## METRIC RESULTS ON A NEW NOTION OF DISCREPANCY

[Ph] PHILIPP, W.: Mixing Sequences of Random Variables in Probabilistic Number Theory, AMS Memoirs vol. 114, Providence, 1971.
[S-N] SOBOL, I. M.-NUSHDIN, O. V.: A new measure of irregularity of distribution, J. Number Theory 39 (1991), 367-373.

Institut für Mathematik der TU Graz
Steyrergasse 30
8010 Graz
Austria


[^0]:    A MS Subject Classification (1991): Primary 60F15. Secondary $11 \mathrm{K05}$.
    Key words: Uniform distribution, Discrepancy, Law of the iterated logarithm.
    ${ }^{1}$ ) The author is supported by the Austrian Science Foundation (Project Nr. P8274 PHY).

