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WEAK ISOMETRIES AND DIRECT 
DECOMPOSITIONS OF DUALLY RESIDUATED 

LATTICE ORDERED SEMIGROUPS 

MILAN JASEM 

(Communicated by Tibor Katrindk) 

ABSTRACT. In the paper the relations between weak isometries fixing zero in 
a dually residuated lattice ordered semigroup G and direct decompositions of G 
are established. 

I n t r o d u c t i o n 

S w a m y [14], [15], [16] introduced and studied dually res iduated lat t ice or­
dered semigroups (notat ion DRl-semigroups) as a common abs t rac t ion of Bool­
ean rings and lattice ordered groups. It was a solution of B i r k h o f f ' s p rob­
lem No. 115 [1]. In [13] S w a m y introduced the notions of an autometr ized 
algebra and an intrinsic m e t r i c Isometries in latt ice ordered groups, i.e. surjec-
tions preserving the intrinsic metric, were studied by S w a m y [17], [18] and 
P o w e l l [11] for the abelian case and by J a k u b i k [3], [4], [5] H o l l a n d 
[2] for the general case. Isometries in Riesz spaces and some types of part ial ly 
ordered groups were dealt with by . T r i a s [20], J a k u b {k and K o 1 i b i a r 
[6], R a c h u n e k [12] and the author [7], [8], [9], [10]. Results of [2], [3], [6], 
[7], [9], [10], [11] show tha t in lattice ordered groups, distr ibutive mult i la t t ice 
groups and Riesz groups there exists a relation between isometries and direct 
decomposit ions . In [19] S w a m y and S u b b a R a o investigated isometries in 
DRl-semigroups and proved that any isometry in a representable DRl-semigroup 
fixing zero is an involutory semigroup automorphism . 

In this paper weak isometries (unlike isometries, surjectivity is not assumed 
here) in DRl-semigroups are studied . It is shown tha t the relation between isome­
tries and direct decompositions exists in DRl-semigroups as well. Namely, the 
following results are established: 

A M S S u b j e c t C l a s s i f i c a t i o n (1 991): Primary 06F05. 
K e y w o r d s : Weak isometry, Isometry, Direct decomposition, Dually residuated lattice 

ordered semigroup. 
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(1) If / is a weak isometry in a DRl-semigroup G and / ( 0 ) = 0 , then G is 
the direct product of a DRl-semigroup A and an 1-group B and 
f(x) = XA + (0 — XB) for each x £ G. (For the denotat ion, see below.) 

(2) If a DRl-semigroup G is the direct product of a DRl-semigroup P and 
an 1-group Q and we put g(x) = xp + (0 — XQ) for each x £ C7, then g is a 
weak isometry and #(0) == 0 . 

This generalizes some results of P o w e 11 [11] concerning isometries and di­
rect decomposit ions of abelian lattice ordered groups . Fur ther , it is shown tha t 
any weak isometry in a DRl-semigroup fixing zero is an involutory semigroup au­
tomorphism . Thus the above mentioned result of S w a m y and S u b b a R a o 
is generalized as well. 

Pre l iminar i e s 

We review some notions and notat ions used in the paper . 

A system G = (G, + , < , —) is called a dually residuated lattice ordered semi­
group if and only if 

1 . (G, + , < ) is a commutat ive lattice ordered semigroup with zero 
element 0 , i.e. (G, +) is a commutat ive semigroup with zero 0 and 
(G, <) is a lattice with lattice operations A and V such tha t 
a + (6 V c) = (a + b) V (a + c) and a + (b A c) = (a + 6) A (a + c) 
for each a,b,c £ G, 

2. given a, b in G there exists a least x in G such tha t b + x > a, and 
this x is denoted by a — b, 

3 . (a - b) V 0 + 6 < a V b for all a, b £ G, 
4 . (a — a) > 0 for each a £ G. 

For any a and 6 in a DRl-semigroup G, we shall write d(a, b) = (a — b) V (b — a) 
(d(a,b) is called the symmetric difference of a and b). The symmetr ic differ­
ence satisfies the following conditions: 

(i) d(a, b) > 0 , d(a, b) = 0 if and only if a = b, 
(ii) d(a, b) = d(b,a), 

(iii) d(a, 6) = d(a V 6, a A 6 ) . 

Any DRl-semigroup is an autometrized algebra with the symmetr ic difference. 

Let G be a DRl-semigroup . A mapping / : G —• G is called a weak isometry 
in G if d(x,y) = d(f(x),f(y)) for each .r,y £ G. If a weak isometry / in G 
is a surjection, then / is called an isometry. A weak isometry ( isometry) / in 
G is called a weak 0-isometry (0-isometry) if / ( 0 ) = 0 . 

From (i) it follows tha t any weak isometry in a DRl-semigroup is an injection. 
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The following assertions hold for any elements x, y, z of a DRl-semigroup G 
(see [14]): 

(a) x — x = 0, x — 0 = x , 
(b) x < y implies x — z < y — z and z — y < z — x , 
(c) x > y implies x — y > 0 , 
(d) x < y if and only if x — y < 0 . 

We shall often need these assertions and we shall apply them wi thout special 
references. 

Further , we shall often refer to the following assertions on DRl-semigroups 
from [14] (a, b, c s tand for elements of a DRl-semigroup): 

T H E O R E M 1. Any DRl-semigroup can be equationally defined as an algebra 
with the binary operations + , V, A, — , by replacing (2) by the equations: 
x + (y — x) > V> x — y < (x V z) — y and (x + y) — y < x . 

L E M M A 2 . (a- b) VO + 6 = a V o . 

L E M M A 5 . a - (b A c) = (a - b) V (a - c). 

LEMMA 6. a - (b + c) = (a - b) - c = (a - c) - b. 

L E M M A 8. a > b implies (a - b) + b = a. 

L E M M A 9 . a\/ b + aAb = a+b. 

L E M M A 1 3 . a- (b- c) <(a-b) + c and (a + b) - c < (a - c) + b. 

L E M M A 1 7 . For any positive integer n , na = 0 implies a = 0 . 

Part ial ly ordered semigroup H with a zero element is said to be the direct 
product of its partially ordered subsemigroups P and Q (notat ion H = P X Q) 
if the following conditions are fulfilled: 

(1) If a e P and b G Q, then a + b = b + a; 
(2) each element c G H can be uniquely represented in the form 

c = c\ + c2 , where c\ G P, c2 G Q; 
(3) if g,h G H, g = g\ + g2 , h = hx+h2, where gx, hx G P, g2, h2 G Q, 

then g < h if and only if gi < h\ and g2 < h2 . 

If H = P x Q, then for x G H we denote by xp and XQ the components of x 
in the direct factors P and Q, respectively. 

Throughout this paper G will denote a DRl-semigroup. For a, b G G, 
U(a,b) = {x G G; x > a and x > b} . If S is a subset of G, then we de­
note S+ = {x G 5 ; * > 0 } , S~ = {x e S; x < 0 } . 
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1. Invert ible e l e m e n t s 

Let Gj be the set of all invertible elements of G. S w a m y proved tha t Gj 
is an 1-group ([15, Th . 1.1]). Now we establish some useful propert ies of invertible 
elements . 

1 .1 . L E M M A . Let y G Gj . Then: 

(i) the inverse of y is the element 0 — y and 0 — (0 — y) = y , 
(ii) for each x G G, (x — y) + y = x, (x + y) — y = x , 0 — (x + y) = 

(0-x) + (0-y), O-(x-y) =y-x = y + (0-x), x - y = x + ( 0 - y ) , 
x-(0-y) = x + y. 

P r o o f . 

(i) This follows from [15, Th. 1.1]. 

(ii) Let y G G / , x e G . By [14, Th. 1], (x - y) + y > x. According to 

(i), [14, Lemmas 6 and 13] we obtain [(x — y) + y] — x < [(x — y) — x] + y — 

[(x — x) — y] + y = (0 — y) + y = 0 . Then we have (x — y) + y < x . Therefore 

(x -y) + y = x. 

From [14, Th . 1] it follows that (x + y) - y < x. According to (i), [14, 

Lemmas 6 and 13] we get x-[(x + y)-y] < [x - (x + y)] + y = (0 - y) + y = 0 . 

Thus we have x < (x + y) — y . Therefore x = (x + y) — y. 

In view of [14, Lemma 6] we have [0 — (x + y)] + y = [(0 — x) — y] + y = 0 - x . 

Then (0 - x) + (0 - y) = [0 - (x + y)] + y + (0 - y) = 0 - (x + y). 

By [14, Lemma 6], (y-x)-y = 0-x. Then y + (0-x) = [(y-x)-y] +y = 

y - x. Also, by [14, Lemma 6], [0 - (x - y)] - y — 0 - [(x - y) + y] = 0 - x . 

From this we get (0 - x) + y = { [0 - (x - y)] - y } + y = 0 - (x - y ) . 

Because of (x-y) + y = x , we have x + (0 — y) = (x — y) + y + (0-y) = x — y. 

By [14, Lemma 6], [x - (0 - y)] - y = x - [(0 - y) + y] = x. Then x + y = 

x - ( O - y ) . 

1.2. L E M M A . For each x £ C7~ the element 0 — x is the inverse of x . 

P r o o f . It is a direct consequence of [14, Lemma 8]. 

1.3. T H E O R E M . Let Gn = {x + (0 - y ) ; x,y (E G~} . Then Gn = Gj . 

P r o o f . From 1.2 it follows that Gn C Gj . So it remains only to show tha t 
Gj C Gn . 

Let z e Gj , v = (O-z)VO, u = (0-z)A0. By [14, Lemma 9], u+v = 0 - ; J . In 
view of 1.1 and 1.2 from this we get z = 0—(0—z) — 0—(u+v) = (0 — u) + (0— v). 
Since 0 — v < 0 , we conclude z E Gn . This ends the proof. 
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1.4. LEMMA. Let x G G, z = 0 A x, y = (0 - x)V 0. Then z = 0 - y . 
y^O-z, 0-(0-y) = y. 

P r o o f . By [14, Lemma 5], 0 — z = 0 V (0 — x) = y. In view of 1.2 we get 
y + z = 0. Fur ther , from [14, Lemma 6] it follows tha t z = z — (z + y) = 0 — y. 
Thus y = 0 - (0 - y ) . 

1.5. LEMMA. Let x G G, 0 — (0 — x) = x . Then 0 — x is the inverse of x . 

P r o o f . Let x G G, 0 - (0 - x) = x, x\ = 0V x, x2 = x A 0 . By [14, 

Lemma 9], x\ + x2 = x. Then 1.1 and 1.2 yield x = 0 — [0 — (x\ + x2)] = 

0-[(0-x\) + (0-x2)} = [ 0 - ( 0 - * i ) ] + [ 0 - ( 0 - a : 2 ) ] = [ 0 - ( 0 - . n ) ] +x2 . In view 

of 1.1 and 1.2 we have x + (0-x) = [0-(0-x\)]+x2 + (0-x\) + (0-x2) =0. 

This ends the proof. 

1.6. C O R O L L A R Y . G J = {x e G; x = 0 - (0 - x)}. 

P r o o f . This is a consequence of 1.1 and 1.5. 

1.7. THEOREM. Let f be a weak isometry in G, a€Gi. Then the mapping 
g defined by g(x) = f(x) — a for each x G G is a weak isometry as well. If f 
is an isometry, then g is also an isometry. 

P r o o f . Let y, z G G. By 1.1 and [14, Lemma 6], d(g(y),g(z)) = 

{f(v)-[*+(f(z)-a)]}v{f(z)-[a+(f(y)-a)]}= [f(y)-f(z)]\f[f(z)-f(y)] = 
d(f(y),f(z)) = d(y,z). Thus g is a weak isometry . The rest follows by 1 . 1 . 

From 1.1 and 1.7 we obtain immediately: 

1.8. COROLLARY. If f is a weak isometry in G and f(0) G Gj , then the 
mapping defined by g(x) = f(x) — f(0) for each x G G is a weak 0-isometry 
and f(x) = g(x) + f(0) for each x G G. Moreover, if f is an isometry, then g 
is a 0-isometry. 

1.9. THEOREM . Let G = P x Q be such direct product that Q is a group and 
a — b G P for each a, b G P . Then: 

(i) (x - y)P = xP -yP , (x - y)Q = XQ - yQ and 
d(x,y) = d(xp,yP) + d(xQ,yQ) for each x,y G G, 

(ii) the mapping f defined by f(z) = zp + (0 — ZQ) for each z G G is a 
0-isometry in G. 

P r o o f . 

(i) Let x,y G G. By 1.1 and [14, Lemma 6], (x — y) — XQ = (x — XQ) — 
(yp + yQ) = (xp — yp) — yQ . In view of 1.1 from this we get x — y = 
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[(x-y)-xQ] +xQ = (xP-yP) + (0-yQ) + xQ = (xP - yP) + (xQ - yQ). Also, 
by 1.1, XQ-yQ EQ. Thus (x - y)P = xP - yP, (x - y)Q = xQ - yQ . Then 
we have d(x,y)P G U(xP - yP, yP - xP), d(x,y)Q G U(xQ - yQ, yQ - xQ). 
Therefore d(x,y) > [(xP - yP) + (yQ - XQ)] V [(yP - xP) + (xQ - yQ)] . 
Then we have d(xP,yP) + d(xQ,yQ) = [(xP -yP) + (xQ - yQ)] V [(xP -yP) + 

(yQ - XQ)] V [(yp - XP) + (XQ - yQ)] v [(yp - XP) + (yQ - XQ)] = d(x, y) v 
[(xP - yP) + (yQ - XQ)] V [(yP - xP) + (xQ - yQ)] = d(x, y). 

(ii) Let u,v G G. According to (i) and 1.1 we obtain d(f(u), f(v)) = 
d(uP + (0-uQ), vP + (0-vQ)) = d(uP,vP) + d(0-uQ, 0 - vQ) = d(uP,vP) + 
[(0 - uQ) + vQ] V [(0 - vQ) + uQ] = d(uP, vP) + d(uQ, vQ) = d(u, v). Let t G G . 
By 1.1, f[tP + (0-tQ)] =tP+ [0 + (0-tQ)] =tP + tQ = t. Since /(0) = 0 , 
we conclude that / is a 0-isometry. 

2. The sets A and B 

Throughout this section we suppose that / is a weak 0 -isometry in G. 
We denote A\ = {x G G+ ; f(x) = x} , B1 = {x G G+ ; f(x) = 0 - x} , 
A= {x+(0-y); x,y G Ax } , B = {x + (0 - y); x,y G ̂  } . 

2 .1 . LEMMA. Let x e G. 

(i) If x > 0, f(x) > 0, then f(x) = x; 
(ii) if x > 0, f(x) < 0, then f(x) = 0-x; 

(hi) if x < 0, f(x) > 0, then f(x) = 0-x; 
(iv) if x < 0, f(x) < 0, then f(x) = x. 

P r o o f . 

(i) If x > 0 and f(x) > 0, then 0 - x < 0, 0 - f(x) < 0. Thus d(x,0) = 

d(f(x),f(0)) yields f(x) = x. 

Analogously we can verify (iii). 

(ii) If x > 0, f(x) < 0, then from d(x,0) = d(f(x),f(0)) we obtain 

,r = 0 - f(x). Hence 0 - x = 0 - ( 0 - f(x)) . By 1.1 and 1.2, f(x) = 0 - x . 

Analogously we can prove (iv). 

2.2. LEMMA. Let x e G. 

(i) If x > 0 , f(x) > 0, then f(0-x) =0-x; 
(ii) if x > 0, f(x) < 0, then / (0 - x) = x ; 

(iii) if x < 0, f(x) > 0, then f(0 - x) = x ; 
(iv) if x < 0, f(x) < 0, then f(0-x)=0-x. 
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P r o o f . 

(i) Let x e G+ , f(x) > 0. Then (0 - x) - 0 < 0, 0 - (0 - x) > 0 . Thus from 
d(0-x,0) = d(f(0-x),f(0)) we get 0 - ( 0 - x ) > f(0-x). By [14, Lemma 13], 
0 - (0 - x) < x. Thus x > f(0- x). From this we obtain x - / (0 - x) > 0, 
f(0 — x) — x < 0. Since 0 —x < x, we have x —(0 —x) > 0, (0 — x) — x < 0. In view 
of 2.1 from <1(x,0 —x) = d(f(x),f(0 — x)) we obtain x —(0 —x) = x — f(0 — x). 
Thus [x —(0 —x)] —x = [x — / (0 — x)] —x . Then according to [14, Lemma 6] from 
this we obtain 0 - ( 0 - x ) = 0 - / ( 0 - x ) . Since 0 - ( 0 - x ) G U(0, / ( 0 - x ) ) , in view 
of [14, Lemma 2] we have 0 - ( 0 - x ) > 0 V / ( 0 - x ) = [ 0 - / ( 0 - x ) ] V0 + / ( 0 - x ) . 
Hence 0 - (0 - x) > [0 - (0 - x)] + / (0 - x) . Then [0 - (0 - x)] + (0 - x) > 
[0 — (0 — x)] + (0 — x) + / (0 — x) . Because of 0 — x < 0 , in view of 1.2 "we have 
/ (0 — x) < 0. According to 2.1 (iv) we obtain / (0 — x) = 0 — x . 

(ii) Let x € G + , f(x) < 0. From d(0,0 - x) = d(f(0),f(0 - x)) we get 
0 - (0 - x) > 0 - / (0 - x) . By [14, Lemma 13], x > 0 - f(0 - x). From this 
according to [14, Lemma 6] we obtain 0 > [0 — / (0 — x)] — x = (0 — x) — / (0 — x) . 
Thus f(0 - x) > 0 - x, / (0 - x) - (0 - x) > 0. In view of 2.1 (ii) we have 
x - ( O - x ) = d(x,0-x) =d(f(x),f(0-x)) =d(0-x,f(0-x)) =f(0-x)-(0-x). 
Then [x - (0 - x)] + (0 - x) = [/(0 - x) - (0 - x)] + (0 - x) . By [14, Lemma 8], 
/ ( 0 - x ) = x. 

(iii) Let x e G~ , f(x) > 0. From d(0 - x,0) = d(f(0 - x) , / (0)) we get 
0 — x > / (0 — x) . Then according to 2.1 (iii) we get (0 — x) — x = d(x, 0 — x) = 
d(f(x), / ( 0 - x)) =(0-x)- / (0 - x) . Then [(0 - x) - x] + 2x + / (0 - x) = 
[(0 - x) - / (0 - x)] + / (0 - x) + 2x. By [14, Lemma 8], / (0 - x) = x . 

(iv) Let x e G~ , f(x) < 0. Then from d(0 - x,0) = d(f(0 - x) , / (0)) we 
get 0 - x > 0 - / (0 - x) . Then 0 - [0 - f(0 - x)] > 0 - (0 - x). From this 
according to 1.1, 1.2 and [14, Lemma 13] we obtain / (0 — x) > x. In view of 
2.2 (iv) we have (0 - x) - x = d(x. 0 - x) = d(f(x), / (0 - x)) = f(0 - x) - x. 
Then [(0-x)-x]+x= [f(0- x) - • x] +x . By [14, Lemma 8], 0 - x = / ( 0 - x ) . 

2 .3. LEMMA. Let x,y <E Ai . Then f(x+y) = x + y, f(x - y) = x - y, 
f((0-x) + y) =(0-x) + y, f(0-(x + y))=0-(x + y). 

P r o o f . Let x,y e A\ . Since y < x + y, in view of [14, Th. 1] from 
d(x + y,y) = d(f(x + y), f(y)) we obtain x > y - f(x + y). By [14, Lemma 6], 
0 > [y - f(x + y)] - x = (y - x) - f(x + y). Thus f(x + y) > y - x > 0 - x. 
According to 2.2 (i), (x + y)-(0-x) =d(x + y, 0-x) = d(f(x + y), / ( 0 - x ) ) = 
/ (x + y ) - ( 0 - x ) . T h e n [(x + y) - (0 - x)] +(0-x) = [f(x + y)-(0-x)]+(0-x). 
In view of [14, Lemma 8], x + y = f(x + y). 
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In view of 2.2 (i) from d(x-y, 0-y) = d(f(x-y)J(0-y)) we get (x-y)-
(0-y)>f(x-y)-(0-y).Thus [(x-y)-(O-y)] +(0-y) > [f(x-y)-(0-y)] + 
(0-y). By 1.1 and 1.2, x - y > f(x - y). Then x - f(x - y) > x - (x - y). 
Further, from d(x — y,x) = O?(/(x — y)J(x)) we obtain x — (x — y) > x-f(x-y). 
Thus x — (x — y) = x — f(x — y). Then [x — (x — y)] — y = [x — f(x — y)] — y . 
From this according to [14, Lemma 6] we have 0 = (x — y) — f(x ~~ y). Hence 
f(x — y) > x — y. Therefore f(x — y) = x — y. 

By 2.2 (i), from d((0 - x) + y,0 - x) = d(f((0 - x) + y), f(0 - x)) we get 
[(0 - x) + y] - (0 - x) > f((0 -x) + y)-(0-x). Then { [(0 - x) + y] -

( 0 - x)} + ( 0 - x ) > {f((0-x) + y) -(0-x)}' + (0-x). By 1.1 and 1.2, 
( 0 - x ) + y > f((0-x)+y) . Further, from d((0-x)+y,y) = d(f((0-x)+y)j(y)) 

it follows that y - ((0 - x) + y) > y - / ( (0 - x) + y) . By [14, Lemma 6], 
0 - ( 0 - x ) > y - / ( ( 0 - . r ) + y) .Then (0 - (0 - x)) + (0 - x) + / ( ( 0 - x) + y) > 

[y ~ / ( (0 -x) + y)] + f((0 - x) + y) + (0 - x). From this, according to [14, Th. 1 
and Lemma 8], we obtain f((0 — x) + y) > y + (0 — x). Therefore f((0 — x) + y) = 
( 0 - x ) + y. 

Since f(x + y) = x + y , from 2.2 (i) it follows that / ( 0 — (x + y)) = 0 — (x + y). 

2.4. LEMMA. A\ is a convex subsemigroup of G, A~*~ = A\ and f(x) = x 
for each x £ A. 

P r o o f . In view of 2.3 we need to prove only the convexity of A\ . Let 
x < z < y tor some x, y G A\ , z G G. Since z > 0, from d(z, 0) = d(f(z), / (0)) 
we get f(y) =y > z > f(z). Then from d(y, z) = d(f(y), f(z)) we get y - z = 
y — f(z). Thus (y — z) — y = [y — f(z)] — y. According to [14, Lemma 6], we 
obtain 0 > 0 - ^ = 0 - f(z). Hence f(z) > 0. Then from 2.1 (i) it follows that 
f(z) = z. Therefore z G A\ . 

2.5. LEMMA. Let x G G, f(x) = x. Let X\ = 0 V x, x2 = 0/\ x . Then 
f(x\) = x\, f(x2)=x2, x\,0-x2eA\, x2,x£A. 

P r o o f . First we show that f(x2) = x2 . From d(x2,0) = d(f(x2)J(0)) we 
get 0 — x2 > f(x2), 0-x2 > 0 — f(x2). Further, from d(x,x2) = d(f(x)J(x2)) 
we obtain x — x2> f(x2) — x , x — x2 > x — f(x2) . By [14, Lemma 9], x\ +x2 = x . 
Then from 1.1 and 1.2 it follows that x — x2 = x\ . Thus x\ > f(x2) — x . 
According to [14, Lemma 6] we obtain x\ — f(x2) > (f(x2) - x) — f(x2) = 0 — x . 
In view of 1.1 and 1.2 from 0 — x2 > f(x2) we get ^i — f(x2) > x\ — (0 — x2) = 

X\+ x2 = x. Then by [14, Th. 1], 2[x\ - f(x2)] > x + ( 0 - x ) > 0 . According to 
[14, Lemma 16], x\ — f(x2) > 0. Hence x\ — f(x2) > 0 V x = x\ . From this by 
[14, Lemma 6] we get [x\ - ( 0 — x2)] —f(x2) > x\ -(0-x2). Thus x — f(x2) > x . 
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Further , in view of [14, Lemma 5] we have xi — / ( x 2 ) > 0 V (0 — x) = 0 — x2 . 

From this according to 1.1, 1.2 and [14, Lemma 6] we obta in 0 < [x\ — f(x2)] — 

( 0 - x 2 ) = [xi - ( 0 - x 2 ) ] - f(x2) = x - f(x2). Hence x - f(x2) > 0 V x = x\ . 

From this and [14, Lemma 6] it follows that 0 — / ( x 2 ) = [x — / ( x 2 ) ] — x > 

xi — x = 0 — x 2 . Thus we have 0 — f(x2) = 0 — x2 . Because of 0 — x 2 > f(x2), 

from [14, Lemma 2] it follows tha t 0 - x2 > 0 V / ( x 2 ) = [0 - / ( x 2 ) ] V 0 + / ( x 2 ) . 

Then 0 - x2 > (0 - x 2 ) + / ( x 2 ) . Hence ( 0 - x 2 ) + x2 > ( 0 - x 2 ) + x 2 + / ( x 2 ) . 

By 1.2, 0 > / ( x 2 ) . Then 1.1, 1.2 and 2.1 yields / ( x 2 ) = x2 = 0 - (0 - x 2 ) . 

By 2.2 (iv), f(0 - x2) = 0 - x2 . Therefore (0 - x 2 ) G A\ , x2 £ A. 

Now we prove tha t f(x\) = X[ . Since xi > x , d ( x i , x ) = d(f(x\), f(x)) 

yields 0 - x2 > x - f(x\). In view of [14, Th . 1] we have (0 - x 2 ) + f(x\ )>x. 

Further , from d ( x i , 0 ) = d(f(x\),f(0)) we get 0 - f(xx) <xx=x-x2. Then 

[ 0 - / ( x ! ) ] - x < ( x - x 2 ) - x . By [14, Lemma 6], (0-x)-f(x\) < 0 - x 2 . In 

view of [14, Th . 1] we have ( 0 - x ) < [ ( 0 - x ) - / ( x ! ) ] + / ( x i ) < ( 0 - x 2 ) + / ( x i ) . 

Then 2[(0 - x 2 ) + f(x\)] > x + (0 - x) > 0. From [14, Lemma 16] it follows 

tha t ( 0 - x 2 ) + / ( x i ) > 0 . Thus ( 0 - x 2 ) + / ( x ! ) > 0 V ( 0 - x ) = 0 - x 2 . Hence 

(0 - x 2 ) + x2 + f(x\) > (0 - x 2 ) + x2 . By 1.2, f(x\) > 0. Then according to 

2.1 (i), f(x\) = x\ . Thus x\ e A\ . Because of x = x\ + [0 - (0 - x2)] , we have 

x G A. 

2 . 6 . L E M M A . A = {x G G; f(x) = x} , A is a convex subset of G. 

P r o o f . First s ta tement is a consequence of 2.4 and 2.5 . Let xi + ( 0 —x2) < 

z < y\ + (0 - y2) for some x\, x2,y\,y2 G A\ , z G G. Then 0 < 

z - [x\ + (0 - x2)] < [y\ + (0 - y2)] - [x\ + (0 - x2)] . It is easy to verify 

tha t [y\ + (0 - y2)] - [x\ + (0 - x2)] < y\ - (0 - x2). By [14, L e m m a 13], 

y\ — (0 — x2) < y\ + x2 . Thus from 2.4 we get z — [x\ + (0 — x2)] G A\ . Then 

also {z — [x\ + (0 — x2)]} + x\ belongs to A\ . In view of [14, L e m m a 8] we 

have z = {z — [x\ + (0 — x2)] } + xi + (0 — x 2 ) G A. Therefore A is a convex 

subset of G. 

2 . 7 . T H E O R E M . A is a DRl-semigroup. 

P r o o f . Let u = u\ +(0 — u2), v = v\ + ( 0 — v2), where u\, v\, u2, v2 G A\ . 
By [14, Lemmas 6 and 13], (0 — u2) + (0 — v2) > 0 — (u2 + v2). Then u\ +v\ > u + v 
> u\ + v\ + [0 — (u2 + v2)] . In view of 2.4 and 2.6 we have u + v G A . Hence A 
is a subsemigroup of G. Further , it is easy to see tha t u\ — (0 — v2) > u — v > 
(0 — u2) — v\ . Thus , in view of [14, Lemmas 6 and 13] we have u\ +v2 > u — v > 
0 - (u2 + v\). By 2.4 and 2.6, u - v G A. Since (0 V u) + (0 V v) > u V v > u , 
(0 A u) + (0 A v) < u A v < u , from 2.5 and 2.6 we obtain tha t u V u , u Av E A. 
Therefore A is a DRl-semigroup. 
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2.8. LEMMA. Let x e B\ . Then x = 0 - (0 - x). 

P r o o f . It follows from the relation d(x, 0) = d(f(x), f(0)) . 

2.9. LEMMA. Let x e B . Then x = 0 - (0 - x). 

P r o o f . Let x = y + (0 - z), where y,z e B\. By 1.1, 1.5, 2.8 and [14, 
Lemma 6], 0 - (0 - x) = 0 - { [0 - (0 - z)] - y} = 0 - (z - y) = y + (0 - z) = x . 

2.10. LEMMA. Let y G B. Then 0 — y is the inverse of y and (x — y) + y = x, 
(x + y)-y = x, 0-(x + y) = (0-x) + (0-y), 0-(x-y) = y-x = y + (0-x), 
x — y = x + (0 — y) . x — (0 — y) = x + y for each x G G. 

P r o o f . It follows from 1.1, 1.5 and 2.9. 

2.11. LEMMA. Let x,y G B\ . Then f(x + y) = 0 - (x + y), f(x - y) = 
O-(x-y). 

P r o o f . According to [14, Th. 1], from d(x + y,y) = d(f(x + y), f(y)) we 
get x > (x + y)-y > f(x + y) - (0-y). Then x-y > [f(x-y)-(0-y)] -y. By 
2.10 Eind [14, Lemma 6], x > x — y > f(x + y) — [(0 — y) + y] = f(x + y). In view of 
2.2 (ii) from d(x + y, 0 - x) = d(f(x + y), / (0 - x)) we have (x + y)-(0-x) = 

x - f(x + y). Then [(x + y) - (0 - x)] + 2(0 - x) + (0 - y) + f(x + y) = 

[x - f(x + y)] + f(x + y) + 2(0 - x) + (0 - y). By 2.10 and [14, Lemma 8], 
f(x + y) = (0 - x) + (0 - y) = 0 - (x + y). 

By 2.2(h) from d(x-y, 0-y) = d(f(x-y), / ( 0 - y ) ) we get (x-y)-(O-y) > 
V - f(x - y). Then [(x - y) - (0 - y)] - x > [y - f(x - y)] - x . In view of [14, 
Lemma 6] from this we obtain 0 > (y — x) — f(x — y). Thus f(x — y) > y — x > 
0 — x. Then d(x,x — y) = d(f(x),f(x — y)) yields x — (x — y) = f(x — y) — (0 — x). 
Hence [x — (x — y)] — x = [f(x — y) — (0 — x)] — x . Finally, according to 2.10 
and [14, Lemma 6] from this we obtain 0 — (x — y) = f(x — y). 

2.12'. LEMMA. B\ is a convex subsemigroup of G, H+ = B\ and f(x) = 0 — x 
for each x G B . 

P r o o f . In view of 2.10 and 2.11 it remains to prove only the convexity of 
B\ . Let x < z < y for some x,y G B\ , z G G. Then d(z,0) = d(f(z),f(0)) 
yields z > 0 — f(z). In view of [14, Lemma 13] from this we get f(z) > 0 — 
(0 - f(z)) >0-z>0-y = f(y). Then from J(y, z) = d(f(y), f(z)) we obtain 
y - z = f(z) -(0-y). Thus (y - z) - y = [f(z) -(0-y)] -y. According to 
2.10 cind [14, Lemma 6] we have 0 — z = f(z). Hence z G B\ . 
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2.13. LEMMA. Let x e G, f(x) = 0 - x . Let x\ = 0 V x . x 2 = 0 A x . Then 
f(x\) = 0 - x\ , / ( x 2 ) = 0 - x 2 , x i , 0 - x 2 G - B i . x2,xeB. 

P r o o f . By [14, Lemma 9], x = xi + x2 . In view of 1.2 from X\ = 0 V x we 
get xi +(0 —x2) = xi V(0 — x 2 ) . From x2 = OAx according to [14, Lemma 5] we 
obtain 0 - x 2 = OV(O-x). Then we have x i + ( 0 - x 2 ) G U(x,0-x). Let v G G, 
v G U(x, 0 - x) . Then 2v > x + (0 - x) > 0. By [14, Lemma 16], v > 0. Thus 
v > OVx = x\, v > OV(O-x) = 0 - x 2 . Hence v > ( 0 - x 2 ) V x i = x i + ( 0 - x 2 ) . 
Therefore Xi + (0 — x2) = x V (0 — x) . 

Since 0 — xi < 0, 0 — xi < 0 — x, from the relations x2 < 0, x2 < x 
we obtain (0 — xi) + x2 < x , (0 — xi) + x2 < 0 — x. From this we derive 
0 - [ ( 0 - x i ) + x 2 ] > (O-x)v(O-(O-x)) . Further, from d(0,x) = d(f(0), f(x)) we 
have xV(O-x) = (0-x)V [0 - (0 -x ) ] .Therefore x j + ( 0 - x 2 ) < 0 - [ ( 0 - x ^ + x ^ . 
From this according to 1.1 and 1.2 we can easily get that xi < 0 — (0 — x i ) . 
But according to [14, Lemma 13], 0 — (0 — xi) < xi . Thus 0 — (0 — x\) = x\ . By 
1.5, 0 — xi is the inverse of xi . Since X\ and x2 are invertible, x is invertible 
as well. Thus by 1.1, 0 — (0 — x) = x. Further, according to 1.1, 1.2 and [14, 
Lemma 6] from x = x\ + x2 we get xi = x — x2 , xi — x = 0 — x2 . 

Now we prove that / (x 2 ) = 0 —x2. From the relation d(x2,0) = d(f(x2), /(0)) 
we get 0 - x2 > / ( x 2 ) , 0 - x2 > 0 - / ( x 2 ) . Then (0 - x2) + x2 + / (x 2 ) > 
[ 0 - / ( x 2 ) ] + / ( x 2 ) + x 2 . By 1.1, 1.2 and [14, Th. 1], / ( x 2 ) > x2 . This implies 
xi + / (x 2 ) > x. Further, from d(x,x2) = d(f(x),f(x2)) we get xi = x — x2 > 
(0 —x) —/(x 2 ) . From this according to [14, Th. 1] we obtain xi + / ( x 2 ) > 0 —x . 
Therefore xi + / (x 2 ) > x V (0 — x) = xi + (0 — x 2 ) . Because of 0 — x2 > / ( x 2 ) , 
we have xi + (0 - x2) > xi + f(x2). Thus xi + / (x 2 ) = xi + (0 - x 2 ) . Then 
/ ( x 2 ) = 0 - x 2 . B y 2.2 (hi), / ( 0 - x 2 ) = x2 = 0 - ( 0 - x 2 ) . Therefore 0 - x 2 G B\ , 
x2 G B. 

Finally we show that f(x\) = 0 - x\ . From d(x\, 0) = d(f(x\), / (0)) we get 
•Ei > f(x\), xi > 0 — f(x\). Thus x > f(x\) + x2 . In view of [14, Lemma 6] 
we have 0 — x < (0 - x2) - f(x\). From c?(xi,x) = d(f(x\),f(x)) we obtain 
0 - x 2 > / ( x i ) - ( O - x ) . By [14, Lemma 6], ( 0 - x 2 ) - / ( x i ) > 0 - ( 0 - x ) = x . 
Thus ( 0 - x 2 ) - / ( x ! ) > x V ( O - x ) = xi + ( 0 - x 2 ) . Because of x\ > 0 - f(x\), 
according to 1.1 and [14, Lemma 6] we have x i+ (0 —x2) > [0 — f(x\)] +(0 — x2) 
= [0 - f(xi)} - x2 = (0 - x2) -f(x\). Then X! + (0 - x2) = (0 - x2) - f(x\). 
From 1.1 and [14, Lemma 6] it follows that xi = xi + (0 — x2) + x2 = 
{ [0 - f(x\)] - x2 } + x2 = 0 - f(x\). Since xi > 0 V f(x\), [14, Lemma 2] 
implies X! > [0 - f(x\)] V 0 + f(x{). Thus x2 > X\ + f(xx). Hence 0 > f(x\). 
By 2.1 (ii), f(x\) = 0 - xi . Therefore x\ e B\ . Since x = xi + [0 - (0 - x2)] , 
we have x G B. 
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2.14. LEMMA. B is an l-group and a convex subset of G. Furthermore 
B = {x eG, f(x) =0-x}. 

P r o o f . Let x,y E B . Thus x = x\ + (0 — x2), y = yi + (0 — y2) for some 
#i> £2, yi, y2 E B\ . According to 2.10 and 2.12 we have x + y = x\ + y\ + 
[ 0 - ( . r 2 + y 2 ) ] eB, 0-x = (0-x\)+ [0-(0-x2)] = x2 + (0 - x\) G B. By 
2.10, 0 — x is the inverse of x. Hence B is a group. In view of 2.12 and 2.13 
it is easy to see that B is an l-group. 

Let g > d > h for some g,he B, deG. Then g + (0 - h) > d + (0 - h) > 0. 
By 2.12, d + (0 - h) belongs to B\ . Then d = d+(0-h) + h<EB. Therefore 
B is a convex subset of G. The last proposition follows from 2.12 and 2.13. 

2.15. LEMMA. Let x e A\ , y e B\. Then f(x + y) = x + (0 - y ) . f(x - y) = 
* + y, f((0-x) + (0-y)) = (0-x) + y, f((0 - x) - y) = ( 0 - s ) + y, 
/ ( ( 0 - x ) + y) = ( 0 - x ) + ( 0 - y ) . 

P r o o f . Let x G A\ , y G B\ . In view of [14, Th. 1] from d(x + y,y) = 
d(f(x + y), f(y)) we get x > (x + y) - y > f(x + y) - (0 - y). Then x - y > 
[/(* + y) - (0 - y)] - y. By 2.10 and [14, Lemma 6], x - y > f(x + y). 
From [14, Th. 1] and the relation d(x + y,x) = d(f(x + y),f(x)) we infer that 
y >(x + y) — x > x — f(x + y). From this according to [14, Lemma 6] we obtain 
0 > [x - f(x + y)] - y = (x - y) - f(x + y). Then f(x + y) >x-y. Therefore 
f(x + y)=x-y = x + (0-y). 

According to [14, Lemma 13] from d(x, x — y)= d(f(x), f(x — y)) we obtain 

y > x-f(x-y). By [14, Lemma 6], 0 > [x-f(x-y)] - y = (x-y)-f(x-y). Thus 

f(x~y) ^ x~y • From this and the relation d(x — y,x + y) = d(f(x — y),f(x + y)) 

we get f(x-y)-(x-y) = (x + y)-(x-y). Then [f (x - y) - (x - y)] +(x-y) = 

[(x + y) ~(x~ y)] + (x - y). By [14, Lemma 8], f(x-y) = x + y. 

In view of 2.2 (i), 2.8 and [14, Lemma 6] from d((0 - x), (0 - x) + (0 - y)) = 

4 / ( 0 - x),f((0 -x) + (0- y))) we get y = (0 - x) - [(0 - x) + (0 - y)] > 

/ ( (0 - x) + (0 - y)) - (0 - x) > f((0 -x) + (0- y)) . According to 2.2 (ii) and 

[14, Lemma 6] from d((0-x) + (0-y), 0-y) = d(f((0- x) + (0 - y)), / (0 - y)) 

we obtain 0 - (0 - x) = y - f((0 - x) + (0 - y)) . Then [0 - (0 - x)] + (0 - x) + 

f((0-x) + (0-y)) = [y-f((0-x) + (0-y))]+f((0-x) + (0-y)) + (0-x). 

By [14, Lemma 8], / ( (0 - x) + (0 - y)) = (0 - x) + y. 

According to 2.2 (i) and [14, Lemma 13] from d((0 - x) - y, 0 - x) = 
d(f((0-x)-y),f(0-x)) we obtain y > / ( (O-x)-y) - ( 0 - x ) > f((0-x)-y) . 
In view of 2.2 (ii) from d((0 - x) - y, 0 - y) = J(/((0 - x) - y) , / (0 - y)) we get 
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(0 - y) - [(0 - x) - y] = y - / ( (0 - x) - y) . Then {(0 - y) -

[ ( 0 - x ) - y ] } + [ ( 0 - x ) - y ] + / ( ( 0 - x ) - y ) + y = [ y - / ( ( 0 - x ) - y ) ] + / ( ( 0 - x ) - y ) + 

[ ( 0 - x ) - y ] + y . B y 2.10 and [14, Lemma 8], we have / ( ( O - x ) - y ) = ( 0 - x ) + y. 

In view of 2.2 (i), from d ( ( 0 - x ) + y, 0 - x ) = <z( / ( (0-x) + y ) , / ( 0 - x ) ) we 

obtain [(0 - x) + y] - (0 - x) > / ( (0 - x) + y) - (0 - x) . Then { [(0 - x) + y] -

(0 - x)} + (0 - x) > [/((0 - x) + y) - (0 - x)] + (0 - x) . By 1.1 and 1.2, 

(0 - x) + y > / ( (0 - x) + y) . Then from d((0 - x) + y, (0 - x) + (0 - y)) = 

d ( / ( ( 0 - x ) + y ) , / ( ( 0 - x ) + ( 0 - y ) ) ) we have [ ( 0 - x ) + y] - [ ( 0 - x ) + ( 0 - y ) ] = 

[(0 - x) + y] - / ( (0 - x) + y) . Then { [(0 - x) + y] - [(0 - x) + (0 - y)] } + 

(0 - x) + (0 - y) + [0 - (0 - x)] + (0 - y) + / [ (0 - x) + y] = { [(0 - x) + y] -

/ ( ( 0 - x ) + y ) } + / ( ( 0 - x ) + y ) + ( 0 - x ) + ( 0 - y ) + [ 0 - ( 0 - x ) ] + ( 0 - y ) . I n v i e w 

of 2.10 and [14, Lemma 8] from this we get / ( (0 - x) + y) = (0 - x) + (0 - y). 

2 .16 . LEMMA. Let x e A, y € Bt . Then f(x - y) = x + y. 

P r o o f . Let x = a, + (0 - a2) for some a\, a2 e A\ and let y e 5 , . Since 
x - y < a , - y , according to 2.10, 2.15 and [14, Lemma 6] from d(ax-y, x-y) = 
d(f(ax - y), f(x - y)) we obtain (<n + y) - / ( x - y) < (a, - y) - (x - y) = a, - x = 
0 - ( 0 - a 2 ) . T h u s [(a, + y) - / (x - y)] + ( 0 - a 2 ) < [0 - (0 - a2)] + (0 - a 2 ) . 
By 1.1, 1.2 and [14, Lemma 13], [a, + (0 - a2) + y] - / ( x - y) < 0. Then 
/ ( x - y ) > a , + ( 0 - a 2 ) + y > ( 0 - a 2 ) + y. 

Since x — y > (0 - a2) - y, in view of 2.10, 2.15 and [14, Lemma 6] from 
d(x-y, ( 0 - a 2 ) - y ) = d(f(x-y), f((0-a2)-y)) we get f(x-y)-[(0-a2)+y] = 
(x-y)- [(0 -a2)-y] = x - { [(0 - a2) - y] + y} = x - (0 - a 2 ) . Then 
{/(x - y) - [(0 - a2) + y] } + (0 - a2) + y = [x - (0 - a2)] + (0 - a2) + y. By 
[14, Lemma 8], f(x — y) = x + y . 

2 .17 . LEMMA. Let x £ AJ , y e B. Then / ( (0 - x) + y) = (0 - x) + (0 - y) . 

P r o o f . Let i e A, and y = 6, + (0 - 62) for some 6,, 62 e B , . In 
view of 2.15 and [14, Lemma 13] from d((0 - x) + y, (0 - x) + (0 - 62)) = 
d X / ( ( 0 - x ) + y ) , / ( ( 0 - x ) + ( 0 - 6 2 ) ) j we get 6, > [ ( 0 - x ) + y ] - [ ( 0 - x ) + ( 0 - 6 2 ) ] > 
[(0 — x) + 62] - / ( (0 - x) + y) . From this according to 2.10 and [14, Lemma 6] 
we obtain 0 > { [(0 - x) + 62] - / ( (0 - x) + y) } - 6, = { [(0 - x) + 62] - 6, } -
/ ( ( 0 - x ) + y ) = [ ( 0 - z ) + 62 + ( 0 - 6 , ) ] - / ( ( 0 - x ) + y) .Hence / ( ( 0 - x ) + y ) > 
( 0 - x ) + 62 + ( 0 - 6 , ) > ( 0 - x ) + ( 0 - 6 , ) \ Then from d((0-x) + y, ( 0 - x ) + 6,) = 
d(f((0 - x) + y ) , / ( ( 0 - x) + 6,)) , 2.15 and [14, Lemma 6] it follows that 
/ ( ( 0 - x ) + y ) - [ ( 0 - x ) + ( 0 - 6 , ) ] = [ ( 0 - x ) + 6 , ] - [ ( 0 - x ) + 6 , + ( 0 - 6 2 ) ] = 
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0 - ( 0 - 6 2 ) . T h u s {f((0-x) + y)-[(0-x) + (0-b\)]}+[(0-x) + (0-b\)] = 

( 0 - x ) + ( 0 - 6 ! ) + [ 0 - ( 0 - 6 2 ) ] . By 2.10 and [14, Lemma 8], f((0-x) + y) = 

( 0 - . r ) + ( 0 - y ) . 

2 . 1 8 . THEOREM. Let x E A, y € B. Then f(x + y)=x + (0-y). 

P r o o f . Let x = a\ + (0 - a2), y = b\ + (0 - b2) for some a i , a2 £ A\ . 

b\,b2 e B\. In view of 2.10 and 2.16 from d(x + y, x + (0 - b2)) = d(f(x + y), 

f(x + (0 - 62))) it follows that (x + y) - [x + (0 - b2)] > (x + b2) - f(x + y). 

By [14, Lemma 13], b\ > (x + b2) - f(x + y). According to 2.10 and [14. 

Lemma 6] 0 > [(x + b2) - f(x + y)] - b\ = [(x + >b2) - b\] - f(x + y) = 

{x+[0-(0- b2)] + ( 0 - 6 0 } - f(x + y) = [x + (0 - y)] - f(x + y). Therefore 

f(x + y) > x + (0 - y) > (0 - a2) + (0 - y ) . Then from 2.17 and the relation 

d(x + y , (0 - a2) + y) = d(f(x + y ) , / ( ( 0 - a2) + y)) we obta in (x + y) -

[(0-a2) + y] = f(x + y)- [ ( 0 - a 2 ) + (0-y)] . In view of [14, Lemma 8] we have 

{(x + y) - [(0 - a2) + y] } + (0 - a2) + (0 - y) = f(x + y). Finally, according 

to 1.1, 1.2, 2.10 and [14, Lemma 6] we have f(x + y) = { [(x + y) - y] -

(0 -a2)}+(0-a2) + (0-y) = x + (0-y). 

3 . D irec t d e c o m p o s i t i o n c o r r e s p o n d i n g t o a w e a k 0 - i s o m e t r y 

Let / , A\ , B\ , A, B be as in Section 2. 

3 . 1 . LEMMA. Let x G G+ , x\ = 0 V f(x), x2 = 0 V (0 - f(x)) . Then 

x = x\+x2, f(x) = x\ - x2 = x\ + (0 - x2), f(x\)=x\, f(x2) = 0 - x2 . 

P r o o f . First we prove that x = x\ + x2 . From d(x,0) = d(f(x),f(0)) 

we get x = f(x) V (0 — f(x)) . Since x\ + x2 E U(f(x),0 — f(x)) , we have 

X\ + x2 > x. 

Let x2 = x — x\ . Clearly x > x\ , x > x2 , x2 > 0. From [14, Lemma 8] it 

follows tha t x2+x\ = x . Since x £ U(0, 0 — f(x)) , in view of [14, Th . 1] we have 

x + f(x) e U(f(x),0) . Thus x + f(x) > 0 V f(x) = x\ . Then according to [14, 

Lemma 13], 0 < [x + f(x)] — x\ < (x — x\) + f(x). Again, by [14, Lemma 13], 

0 - f(x) <[(x-x\) + f(x)] - f(x) < [f(x) - f(x)] + (x - xx) = x2 • Thus 

x2 > 0 V (0 — f(x)) = x2 . Then x = x\ + x2 > x\ + x2 . Therefore x = x\ + x2 . 

Let z — 0 A f(x). Then according to 1.4 we have z = 0 — x2 , x2 = 0 — z , 
0 — (0 — x2) = x2 . Then from 1.5 it follows tha t 0 — x2 is the inverse of x2 . By 
1.1 and [14, Lemma 9], f(x) = x\ + z = x\ + (0 — x2) = x\ — x2 . 

Now we verify tha t f(x2) = 0 — x2 . From 1.1, and d(x,x2) = d(f(x),f(x2)) 

we get x\=x-x2> f(x2)-f(x). Then x\ - f(x2) > [f(x2)-f(x)] - f(x2). 
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By [14, Lemma 6], x\ - f(x2) > 0 - f(x). From d(x2,0) = d(f(x2)J(0)) we 
obtain x2 > f(x2), x2 > 0 — f(x2). Then x\ — f(x2) > x\ — x2 = f(x). Thus 
x\ — f(x2) > f(x) V [0 - f(x)] = x\ + x2 . According to [14, Lemma 13], from 
the relation x2 > 0 — f(x2) we get x\ + x2 > x\ + (0 — f(x2)) > x\ — f(x2). 
Therefore x\ — f(x2) = x\ + x2 . In view of [14, Lemma 6] we have 0 — f(x2) = 
[x\ - f(x2)} - X\ = (x\ + X2) - X\ = (x\ + x2) - [x\ + x2 + (0 - x2)] = 
0 — (0 — .r2) = x2 . Since x2 > / ( . r 2 ) , according to [14, Lemma 2] we obtain 
x2 > 0 V f(x2) = (0 - f(x2)) V 0 + f(x2). Thus x2 > x2 + f(x2). Hence 
0 > f(x2). Then 2.1 (ii) yields f(x2) = 0 - x2 . Further, in view of [14, Th. 1] 
we have x2 = (x\ + x2) — X\ < x? . Therefore x2 = x2 = x — x\ . 

Finally, we prove that f(x\) = x\ . From d(x,x\) = d(f(x)J(x\)) we get 
x2 = x — x\ > f(x) — f(x\). In view of [14, Th. 1] we have x2 + f(x\) > 
[f(x) - f(x\)} + /(:r i) > f(x). Further, d(xu0) = d(f(x\)J(0)) yields x\ > 
f(x\), x\ >0-f(x\).By [14, Lemma 13], f(x\)>0- [0 - f(x\)] >0-x\. 
From this according to 1.1 and 1.5 we obtain x2 + f(x\) > (0 — x\) + x2 = 
( 0 - X ! ) + [ 0 - ( 0 - x 2 ) ] = 0 - / ( x ) . T h u s x2+f(x\)>f(x)v[0-f(x)] =x\+x2. 
From this we get f(x\) > x\ . Therefore f(x\) = x\ . This completes the proof. 

3.2. LEMMA. Let x £ C+ and let x = g + h = x\ + x2 for some g, x\ £ A\ , 
b, x2 E B\ . Then x\ = g . x2 = h. 

P r o o f . By 2.18, f(x) = g + (0 - h) = x\ + (0 - x2). Then from this, 2.10 
and [14, Lemma 6] we get (0 — x2) = x\ —(x\ + x 2 ) = x\ — (g-\-h) = (x\ —g) — h , 
x2 = 0 — (0 — x2) = x\ — [x\ + (0 — x2)} = (x\ — g) — (0 — h). From this according 
to 2.10 and [14, Lemma 6] we obtain x2 — h = [(x\ — g) — (0 — h)] — h = 

[(X\ - g)-h}-(0 - h) = (0- X2) - (Q - h) ~ [o - (0 - h)} - X2 = h - X2 . 
Since .r2, h G B , in view of 2.10 we have 2(x2 — h) = (x2 — h) + h + (0 — x2) = 
x2 + (0 — x2) — 0. By [14, Lemma 17], x2 — h = 0. From this according to 2.10 
we obtain x2 = h. Then x\ + x2 = g + x2 yields x\ = g. 

From 3.1 and 3.2 we immediately obtain: 

3.3. LEMMA. For each x E G + there exist uniquely determined elements 
x\ E A\ , x2 E B\ such that x = .ri + x2 . 

3.4. THEOREM. Let x E A\ , y E B\ . Then x = 0V( . r -y) , 0 - y = OA(x-y). 

P r o o f . Let x E Ai , y E ^ i and let z = x + y, zj = 0 V / ( z ) , 
e2 = 0 V (0 - f(z)) . Then the desired result follows from 1.4, 3.1 and 3.3. 
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3 . 5 . LEMMA. For each x G G~ there exist uniquely determined elements 
x i , x2 G G~ such that x = xi + x2 , f(x\) = Xi , / ( x 2 ) = 0 — x 2 . More­
over, X] = 0 — xi , x2 = 0 — x2 , where x\ G A\ , x2 6 B\ . 

P r o o f . Since 0 — x > 0 , for the elements xi = 0 V / ( 0 — x) and x2 = 
0 V (0 — / ( 0 - x)) from 3.1 we obtain (0 - x) = x\ + x2 , xi e A\ , x2 G B\ . 
According to 1.1, 1.2 and 2.10 we get x = 0 — (0 — x) = 0 — (xi + x 2 ) = 
(0 - x i ) + (0 - x 2 ) . Let Xi = 0 - X! , x 2 = 0 - x 2 . Thus xa < 0 , x 2 < 0 . By 
2.2 and 2 .8 , f(x\) = x\ , / ( x 2 ) = x2 = 0 - (0 - x 2 ) = 0 - x2 . 

Let x = y\ + y2 , f(y\) = yx , f(y2) = 0 - y2 for some yx , y2 G G~ . By 1.1 
and 1.2, 0 — x = (0 — yi) + (0 — y 2 ) . According to 1.1, 1.2 and 2.2 we have 
/ ( 0 - y i ) = 0 - yi , / ( 0 - y2) = y2 = 0 - (0 - y 2 ) . Since 0 - yi , 0 - y2 G G+ , 
from 3.3 it follows tha t 0 — yi = xi , 0 — y2 = x2 . In view of 1.1 and 1.2 we 
have yi = 0 — (0 — yi) = xi . Similarly y2 = x2 . 

3 .6 . L E M M A . Let z G G. Then there exist z\ G A, z2 G B such that 
Z = Z\ + z2 . 

P r o o f . Let z G C , x = 2 V 0 , y = z A0. According to 3.1 and 3.5 there 
exist xi , yi G A\ , x 2 , y2 G B\ such that x = xi + x2 , y = (0 - y i ) + (0 - y 2 ) . 
By [14, Lemma 9], z = x + y . If we put z\ = x\ + (0 — y i ) , z2 = x2 + (0 — y 2 ) , 
then z\ and z2 have the desired properties. 

3 . 7 . L E M M A . Let x G G , x = g-\-h = x\-\-x2, where y, X] G A, h, x2 G B . 
Then x\ = g, x2 = h . 

The proof of this lemma follows on the same lines employed in the proof of 
Lemma 3.2. 

3 . 8 . L E M M A . For each x G G there exist uniquely determined elements 

x\ G A, x2 G B such that x = x\ + x2 . 

P r o o f . This is a consequence of 3.6 and 3.7. 

3 . 9 . L E M M A . Let x ,y G G and let x = xi + x2 , y = yi + y2 , x + y = 
(x + y ) i + ( x + y) 2 , x - y = ( x - y ) i + ( x - y ) 2 , where xu yu (x + y ) i , ( x - y ) i G A, 
x2, y2 , (x + y ) 2 , (x - y)2 G B . Then (x + y)i = x2 + yi , (x + y) 2 = x2 + y2 , 
(x - y)\ = xi - yi , (x - y)2 = x2 - y2 . 

P r o o f . According to 2.7, 2.14 and 3.8 from the relation (x + y)i + 

(x + y)2 = x + y = xi + yi + x2 + y2 we obtain (x + y)i = xi + yi , (x + y) 2 = 

x2 + y:2 • m view of 2.10 and [14, Lemma 6] we have (x — y) — x2 — 

[(x\ + x 2 ) - x2] - (yi + y2) = (xi - yi) - y2 = (xi - y\) + (0 - y 2 ) - By 

2.10 we have (x - y) = [(x - y) - x2] + x2 = (xi — yi) + (x2 - y 2 ) . According 
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to 2.7, 2.10 and 2.14, (x\ - y\) G -4, (x2 - y2) G B. Then from 3.8 it follows 
that (x - y)\ = x\ - y\ , (x - y)2 = x2 - y2 . 

3.10. LEMMA. Let x,y £ G, x = x\ + x2 , y = y\ + y2 , where x\, yi G A, 
#2> y2 G -B. Tfoera x < y if and only if x\ < y\ and x2 <y2 . 

P r o o f . The "if" part is obvious, so we prove "only if" part. Since x — y < 0, 
according to 3.5 we obtain x — y = (x — y)\ + (x — y)2 , where (x — y)\ G A, 
(x — y)2 G B, (x — y)\ < 0, (x — y)2 < 0. In view of 3.9 we have (x — y)\ = 
x\ - y\ < 0, (x - y)2 = x2 - y2 < 0. Thus xx < y\ , x2 < y2 . 

3 .11 . THEOREM. G W <Ae direct product of the DRl-semigroup A and the 
l-group B and f(x) = XA + (0 - XB) for each x G G. 

P r o o f . This follows from 2.7, 2.14, 2.18, 3.8 and 3.10. 

3.12. THEOREM. Any weak 0-isometry in G is an involutory semigroup au­
tomorphism. 

P r o o f . The assertion is a consequence of 2.10 and 3.11. 
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