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ABSTRACT. In this paper various bases of the Stickelberger ideal (considered
as a Z-module) in the group ring R = Z[G] of the Galois group G of p"*1th
cyclotomic field (n > 0, p an odd prime) over the ring of rational integers are
introduced. One special basis is used for the computation of the index of the
Stickelberger ideal in a subring of R (Sinnott’s result (1980)).

Some bases are used to show “equivalence” of known systems of congruences
(Fueter (1992), Le Lidec (1967)) to the Kummer system of congruences.
Incase n =0, Kummer operated with special elements from the Stickelberger
ideal, and it is shown here that these elements form a basis of the Stickelberger
ideal. The “m-adic” situation is also investigated.

Sinnott’s class number formula is added by a formula where the ring of rational
integers is substituted for the ring of congruence classes modulo p. Here the index

of the Stickelberger ideal equals pi(P) | where i(p) means the index of irregularity
of the prime p.

0. Introduction

The background of this paper is formed by Kummer’s system of congruences

. -3
¢p-2;(t) By; =0 (modp), 1<j< B, (K)

where Bs; are the Bernoulli numbers and ¢;(t) are the Mirimanoff polynomials.
Here always p will designate a fixed odd prime.

These congruences (K) were introduced by Kummer ([8], 1857) when
trying to solve the First Case of Fermat’s Last Theorem. Many authors have

AMS Subject Classification (1991): Primary 16S34, 11R29, 11R18, 11R68.

Key words: Stickelberger ideal, Kummer (Fueter, Le Lidec, Benneton) system of congru-
ences, Iwasawa’s (Sinnott’s) class number formula, Index of irregularity.

!) The results of this paper were delivered in the 10th Czechoslovak Number Theory Con-
ference held in Myto pod Dumbierom (the Low Tatras), Slovakia, 2-7 September 1991.
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used various systems of congruences for this reason since. In the paper [17] a new
system (S) of congruences depending on the Stickelberger ideal was introduced
and it was shown that (S) and (K) are “equivalent” in a certain sense (6.1).
This result can be obtained by means of a special basis of the Stickelberger ideal
mod p considered as a vector space over the Galois field Z/pZ (5.4).

" If we use the basis of the Stickelberger ideal I considered as a Z-module
consisting of Kummer’s elements, then we obtain “equivalence” (6.3) of the
system (S) and the system (L) formed by the Le Lidec polynomials ([10],
[11]). The equivalence of Fueter’s system of congruences (F;) ([3, VI]) and
(S) can be obtained by the choice of another special basis of I. By means of
another choice of elements from I we get the statement that each solution of (S)
is a solution of the other system of congruences (F3) using the Fermat quotients
introduced by Fueter [3, VII] (6.4). Another choice of elements from I (6.5)
gives the Benneton system of congruences ([2]).

For these reasons various bases of the Stickelberger ideal considered as a
module over the ring of rational integers Z or m-adic integers Z, (7 a prime)
are studied in this paper.

In Section 2 the group ring R = Z|G] and the Stickelberger ideal I in R
are investigated, where G is the Galois group of the p"*!th cyclotomic field
(n > 0). The study of the quotient-ring R/I was begun by Iwasawa ([5],
1962), who proved the following class number formula:

0.1. Iwasawa.
[R™:I7]|=h,.

R~ means a special subring of R, I- =IN R~ and h; is the first factor of
the class number of the p"t1th cyclotomic field. ,

Sinnott [13] extended this formula to a general cyclotomic field and in
[14] he transferred it for the case of the Stickelberger ideal I (Theorem 2.1):

0.2. Sinnott (For the p"t1th cyclotomic field).
[R*:I)=h, .

R* means a special subring of R containing R~ (denoted by A in [11]).

Although Sinnott’s case is more general, I am working only (like
Iwasawa) with the p"*1th cyclotomic field since the applications I am inte-
rested in concern only the case of the pth cyclotomic field (Sections 4, 5, 6). The
case of a general cyclotomic field is investigated in this direction by Kucera

[6].
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In Main Theorem 2.7 some bases of the Z-module I are given and we obtain
Sinnott’s formula 0.2 in another way by the computation of the absolute
value of the determinant of the transition matrix from a special basis of R to
some of these bases of I.

Iwasawa ([2], [5]) also formulated the class number formula for the sub-
ring R, of the group ring R, = Z.[G] of G over the ring of m-adic integers
generated by R~ as follows:

0.3. Iwasawa.
[Rr : 7] = (hy)r

Here I; means the Stickelberger ideal in the ring Ry and (h; ), is the 7 -part
of hy .

This m-adic situation is investigated in Section 3 and Iwasawa’s for-
mula 0.3 is transferred for the Stickelberger ideal I in the subring R} of R,
generated by R (3.7(b)):

0.4.
(R : In] = (hy)r -

Section 4 deals with special elements k, from the Stickelberger ideal I (for
the pth cyclotomic field, the case n = 0) which were used by Kummer ([7],
1847), and the main result (4.8) states that these elements of Kummer form
a basis of the Z-module I.

The author ([19, 2.2]) showed the following addition to Iwasawa’s class num-
ber formula.

0.5. Skula.
[R™(p) : I™(p)] =p'®.

Here R=(p), I~ (p) are the former notions considered mod p and i(p) means
the index of irregularity of the prime p.

In Section 5 we obtain (5.2) a similar addition to Sinnott’s class number
formula:

0.6.
[R*(p) : I(p)] = p'P.
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1. Notation and basic assertions

Through this paper we denote by:

indz

Tj

an odd prime,
a non-negative integer,
the first factor of the class number of the cyclotomic field
generated by the p™"*lth roots of unity over the rational field,
the ring of rational integers,

q____pn+1, M:pn(p_1)7 N:_IZM"
a primitive root modulo q,
index of = relative to the primitive root r of x
(z€Z, pte),
the integer (j €Z), 0<rj <gq, rj=7J (mod gq),

hence we have:

1.1. For each j € Z we have:

ri+Ti+N =¢.

M-1
> 6= Y & for suitable symbols é;,
=0
G a multiplicative cyclic group of order M ,
s a generator of G; thus G = {1,s,s%,...,sM"1},

R*

R-

544

R =Z|G] the group ring of G over the ring Z; thus
R=Ya;s': a; €Z;

aj=a; for a=Y a;s*€R and j€Z, i=j (mod M),
T .

= {azZaisi € R: ax+aryn = a; + a4y for each k,leZ}

2

:{aeR: (1+sN)aEZ~ZSi},

:{a=Zaisi€R: ax + ag+n = 0 for each keZ}

=(1-sMR={a€R: o1 +s")=0},
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I:{aeR: dp€eER, p-Zr_isi=q;a}
i
={a=2a,~si€R: dz,€Z (0<t<M-1), Z:L‘ﬂ‘tEO (mod q),
i t
1 .

a; = = T4T_4 foreach0<z<M—l}
7 q; t 1+t = v =

([16, Section 4, (4)]).

I is an ideal of the ring R which is called the Stickelberger ideal of the ring R.
I~ =INR™ is an ideal of the ring R~ which is called the Stickelberger ideal
of the ring R~ .

Ideals of the ring R are often considered as Z-modules.

Since %Zztri“ + —;—thrHN.,_t =Y z; for each 1 € Z and each z; € Z
t t t
(0£t<M—1), we have

1.2.
ICR*.

Further we can state
1.3. R#R"* unless p=3 and n=0, R=R*=1 forp=3 and n=0.

Proof. The relations R # R*, R = R* are obvious. Let p =3, n =0
and a=a+bs € R. Put

o= —a+2b,

Ty = 2a—-b.

The equalities Y z4r; = 3a and Y z;7_14¢ = 3b conclude the proof.
t t

1.4. LEMMA.
R =I+R".
Proof. For 0<t< M —1 put
2 fort=0,
=< —1 for t=ind2,

0 otherwise,

and a; = %Z%T—H: = -;—(21‘4 — T_itind2)- Then @ = 3 a;s* € I and
t i

a; + a;+n = 1, the results follow.

Applying this lemma we get:
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1.5. THEOREM. The quotient-rings R*/I and R~ /I~ are isomorphic
(canonically). ‘

Put
boo =¢q—2,
b0j=1—’r'j, 1§j§N—1,
bio=1—r;, 1SiSN-1,

bij=%(7'i7'j—'f‘i+j), 1§.i,‘ jESN-1,
B = (bij)o<i, j<N-1-
For n =0 this matrix B was introduced and | det B| was computed in [12], in
general case in [16]:
1.6.
|det B| = h .

Further put for 1<k<N-1,0<I<N-1:

goo=T—1—q, 9goN=¢q, GN=Tk—1, gmi=-1, gnn=2,

Gkl =$(7‘—17‘k —T_i+k) — Tk + 1.

Denote by C the following matrix:
C = (gkn)osk, h<N -

1.7. PROPOSITION.
|det C| = hy .

Proof. Perform the following operations on C':
a) Interchange the columns with indices [l and N -1 (1<I< N —-1).
b) Multiply by (—1) the columns with indices 1,2,...,N —1.
c) Add the column with index 0 to the column with index N .
d) Subtract the row with index N from the row with index 0.
e) Multiply the row with index 0 by (-1).

Then it is easy to see |det C| = |det B| and the assertion follows from 1.6.
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2. Some bases of the Z-Module I

2.1. NOTATION. For k € Z put

1 . T_T .
Yk = Z E(T—i"'k —T_itk)s' = E [ ; k]s’ ,
1 7

er = sF(1-sN),

and further put

=) roist
i
5=Zsi=1+s+sz+---+sM_1,
i
N-1

€= Zsi=l+s+32+---+$‘N“1.
1=0

If we consider instead of the group ring Z[G|] the group ring Q[G], then the
element —l-'y is often called the Stickelberger element. The element 6 acts on

the class group of the gth cyclotomic field as the norm. Clearly,

Yky €ky Y, O, € are elements of the ring R.

2.2. DEFINITION. Let X C {0,1,...,M —1}. The set X is said to have the
basis property if it has the following property:

EeX, €€, ¢=¢+N (mod M) = ¢ ¢ X.

It is easy to see the following:

2.3. PROPOSITION. Let L C {0,1,...,M — 1} have the basis property and
let |L| = N . Then the system

S*(L)={e1: le L}u{e)

forms a basis of the Z-module R*. (Symbol |L| denotes the cardinal of the set
L.
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2.4. PROPOSITION. We have

vyel, é€l, and €I foreach k €7Z.

Proof.
a) Wecan assume k € Z, 1 <k < M-1.Putforeacht€Z, 0<t< M-1:
r, fort=0,
=1¢ —1 for t =k,

0 otherwise.

Then for 0 < ¢ < M —1 we have

— Z TT—i4t — _(r—zrk - T'_H.k) )

hence v, € I.
b) If we put for 0 <t <M —1

q fort=0,
Try =
¢ 0 otherwise,

then %Zwtr_i“ = r_; and hence vy € I. (Or we can see the relation v € I
t

immediately from the first definition of I putting p=q € R.)
c)Ifweputfor 0<t<M-1

1 fort=0o0rt=N,
o= 0 otherwise, '

then %Eztr_iﬂ = %—(r_i +7r_i+n)=1.Thus 6 €1I.
t

2.5. LEMMA.
(a) For each j,k € Z we have

%(Tjrk —Tjtk) + %("'ﬂ'lﬁN —Titk+N) =T5 — 1.
b) For each k € Z we have
(

Yk +VeeN =7 — 0.

Proof. (a) follows from 1.1 and (b) follows from (a).
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2.6. PROPOSITION. Let K C {1,2,...,M — 1} have the basis property and
let |[K|=N—-1, N ¢ K. Then the system
S(K)={w: ke K}U{y,6}
forms a system of generators of the Z-module I.
Proof. According to 2.5 (b) we can suppose K = {1,2,...,N — 1}, hence
S(K) = {772, IN-1,7,6}.
* Let = Zaisi € I. Then there exist integers z; € Z (0 <t < M —1) such
that ;xtrt ; 0 (mod q) and

ai=%thr_,~+t foreach 0<i<M-—1.

Put
M-

leZmrt, d= z, c=z-—d,
7% t=N
Ck = Tk+N — Tk foreach 1<k<N-1.

We have foreach i1 € Z, 0<i:< M —1:

ey

N-1
Z ck(r—iThk — T—itk)
k=1
=T Z TITI+N — T—i Z Ty — Z TIT—iti4+N + szr—m
I=N+1 I=N+1
=qr-; Z 2y =T E wm—mme
I=N+1 I=N+1
—9q Z T + Z $1T—:+z+zmt7‘—z+1
I=N+1 I=N+1

=qr_;d—qr_;xny —1—; E TIT + T TNTN + T—iT0
l

—qd+qIN + Y TT_iy1 — Tor—i — TNT_itN
1

=qr_id —qr_;Ty — qzr—; +T_iqTN —T_;TN —qd
+9ZN +qa; —qTN + TNT—i
=qa; —qcr—; — qd.

549



LADISLAV SKULA

It follows that
N-1

a= ch7k+6’y+d6,
k=1

and we are done.

2.7. MAIN THEOREM. Let K,L C {0,1,2,...,M — 1} have the basis prop-
erty, |[K|=N-1,|L|=N,0¢ K, N¢ K.

Then the system S(K) = {vw : k € K} U{v,6} forms a basis of the
Z-module I and for the determinant A of the transition matriz from the basis
S*(L) = {e1 : 1 € L} U {e} of the Z-module R* to the basis S(K) of the
Z-module I we have v

|Al = h; .

Therefore the Stickelberger ideal I has a finite index in the ring R*, for
which the following relation holds

[R*:I]=h, .

Proof. Without loss of generality we can suppose L = {0,1,...
...,N -1} and K = {1,2,...,N — 1}, thus S*(L) = {eo,€1,...,6N-1,E}
and S(K) = {7a71172v-~-,"/1\/—176}'

~Using 1.1 and 2.5(a) (-l — k, k — j) we get

N-1
v=Y (ro1—q)e + g,
=0
N-1
_ 1
= Z[a(r_lrk—r_l+k)—rk+l a+(k—1e (1<k<N-1),
=0

The transition matrix from the basis $*(L) to the system of generators S(K)
_of the Z-module I is the matrix' C' from Section 1 and according to 1.7 we have
|A| = |det C| = h;, . This completes the proof.

2.8. Remark. The assertion of 2.7 concerning the index of the Stickelberger
ideal I in the ring R* is a special case of Sinnott’s Theorem 0.2 for the p"*1th
cyclotomic field. Here, this special case was derived by presenting a special basis
S(K) of the Stickelberger ideal (as a Z-module) and by the computation of the
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absolute value of the determinant of the transition matrix from the basis S*(L)
of R* to S(K).

If we use Iwasawa’s class number formula 0.1, we can prove 2.7 from 1.5, 2.3
and 2.6.

On the other hand, we can show from Sinnott’s relation [R* : I| = h;, that
a system of generators of the Z-module I~ forms a basis of I~ and compute -
the absolute value of the determinant of the transition matrix from a basis of
R~ to the given system if we use the isomorphism between R*/I and R™/I.
(see 2.9.2.)

2.9. NOTATION. Put K°={1<k<M-1: r; odd}. Then the set K° has
the basis property, |K°| =N -1, 0 ¢ K°.

According to 2.7:

2.9.1. The system S(K°) = {vx : k € K°} U {v,6} forms a basis of the
Z-module I .

Put

ak:Z[%(r_,-rk—r._Hk)-i—l;rk Si (ICEKO),

%

oy = Z(zr—i - q)s*.
i

It was proved in [16, Theorem]:

2.9.2. The system {ay : k € K°}U{ao} forms a basis of the Z-module I~ and
for the determinant A of the transition matriz from the basis
s9(1—sN) (0<j < N) of the Z-module R~ to this basis we have

|Al = hy
Therefore [R™ : I”] = h;, . (Iwasawa 0.1.)
Clearly, the following holds.
 2.9.3.

ar =+ 15ks (ke K°),

g =2y—qob.

We can see easily from these assertions that §-ZN I~ = {0}. We denote by
I° the sum of the Z-modules §Z and I~ . This sum is the direct sum of these
Z-modules. (Since §Z = 6§R, I° is also an ideal of the ring R.) Summarizing
we have
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2.9.4.
I°=I"@éZCI.

2.10. PROPOSITION. The systems {ar: k € K°} U {ao,6}, {7 : k € K°}
U {2v,8} form bases for the Z-module I°.

Proof. Immediately from 2.9.2 and 2.9.4 we get the fact that the former
system is a basis of the Z-module I°. Since the second system is a system of
generators of the Z-module I° according to 2.9.3 and has the same number of
elements (namely N + 1), the results follow.

According to 2.9.1 and 2.10 we get

2.11. THEOREM. For the index of the ideal I° in the Stickelberger ideal I the
following relation is valid: -

[I:1%=2.

For the quotient Z-module I/I° we have

I/1° = {I° v+ I°}.

3. The Stickelberge'r ideal of the ring R,

3.1. Notation. In this Section we will denote by
T a prime,
Q the field of rational numbers,
Q: the field of m-adic numbers,
Z. the ring of m-adic integers,
S = Q[G] the group rings of the group G over Q,
Sz = Qx[G] the group rings of the group G over Q;,
R, = Z.|G] the group rings of the group G over Z, .

Thus S, = {Zaisi i a; € Q,r} and for @ = Y a;s' € S, we put again
i i
aj = a;, where 5,1 €Z, 0<i<M—-1, j=i (mod M).

S, Sx are considered as Z-module and Z, -module (respectively).

We will consider (as in [2, Section 2]) the natural 7-adic topology in the ring
Sp:if o) = Zagu)si € Sr and lim a§") =d; € Q; (lim denotes the 7-adic
7 v—00

limit) for each 0 < ¢ < M —1, then lim o) =q = Zaisi € Sr.
v—00 3
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For M C Sy let Mz denote closure in this topology:

My ={a€Sr: Ia e M, lim a(")=a}.

V—00

The former notation S, R,, Q. and Z. is in accordance with this one.
Obviously,

R; = {Q:ZaisieR,: a; +a;+n = 0 for each iEZ},

R, = {a=2a,’si € Ry : a;+aiyn =aj +aj N for each i,j EZ}.
i

Ideals of the ring R, will often be considered as Z, -modules in the natural
way.

The Stickelberger ideals I, and I, of the rings R, and R; are defined as
the closures of I and I~ in the natural m-adic topology, respectively. (see [5,
Section 2])

Obviously,
I. CR;.

3.2. THEOREM. Let M C S be a Z-submodule of the Z-module S with
a basis pi,...,4um (1 < m < M). Then My is a Z, -submodule of the
Zr -module S, with the basis py,...,tm -
Proof. Put M= { Y mjpj: my € Z,,} Clearly, M C M, . For each
i=1
1 < j < m there exist dj; € Q such that pu; = Y- djis'. Since pi,...,Hm
i

are linearly independent over Q, rank of the matrix D = (dj;) (1 < j < m,
0<i< M —1) equals m. Therefore p1,...,un are also linearly independent
over Q, , and then they form a basis of the Z, -module M.

Let g€ My, p= 3 bis' (b; € Q). Then there exist ™) € M (v 2>1)
i
such that g = lim u®).
We have u®) = " mg."),uj, where mg.") € Z. Put
i=t

m
bSU)zzm‘gU)dﬂ (OgléM-l, y=1,2,)
i=1
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j=

. m .
Then p®) = Zs’ 21 m;-")dj,- = Zbg")s‘, hence b; = lim bg")
1 1

V—00

(0<i<M-—1).

o0
Since the sequences {mﬁ-")} . (1 £ j <£m) are bounded, there exist posi-
v=

o0

tive integers k; < ko < ... such that the sequences {mg.y")}k are convergent.
=1

m
If we put m; = klirn mg."k) (€ Zr), we get by = Y mjdj;, hence p =
—00 j=1

3" m;p; € M. The proof is complete.
i=1
3.3. PROPOSITION. Put

J={aER,,: dpeR,, p-Zr_,-si=q-a},

i
K={a=2aisi€R,,: dzy €Zr (0<t<M-1),
i
q/;mtn (in Zp), a; = %;.’Eﬂ‘_,q.t for each i € Z} .

Then
I,.=J=K.

Proof.
LLta=Yased, p=Yas€Ry, p-Y r_is" =q-a. We have
i t i

Y qaist = Z(E:ctr_i+t)si, hence a; =
B t

%

%Eztr_i.”, from which J C K
t
follows. )
II. Let a = ) a;s* € K. Then there exist z; € Z, (0 <t < M —1) such
i

that ¢/ zir; in the ring Z, and a; = %Zztr_iﬂ for each t € Z. There
T t .

exist zt(") €Z(0StSM-1,v=1,2,...)such that lim z§") = x; . Since

v—00
%Zztrt € Z , there exist y) € Z (v 2 1) such that lin;o y¥ = %thn
t v t
=ag.For 0St<M—-1and v=1,2,... put

1
q-y¥ -3 2, for t=0,

M-
v=1

o) =

zt(") for 1StsSM-1.
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Then we have a:t € Z and Z:L'( Dy = = qy™ = 0 (mod ¢) (in Z). Hence
al) = Za( “Jsi € I for each v = 1,2,..., where agu) = l }:xﬁ")r_,-H.

Since hm q-y"¥) = S z,r;, we have lim xé v) hm qg-y® — Z ToyTy
s v—00 v— =1
) = z; foreach 0 <t < M—1, whichimplies lim a; o) = ai,

V—00

= xq, hence llm z,

lim o™ =« and a € I, . The inclusion K C I, follows.
V—00

III. According to 2.7 there exists a basis {01,...,8nv+1} of the Z-module I
and according to 3.2.it forms a basis of the Z, -module I, . There exist pr € R
such that pr Y r_is* =q- B (1SkSN+1).

Let o € I;. Then there exist by € Z, such that

N+1

a= Y bfr.
k=1

Put p= E brpx . Then p € R, and we have p- Zr_,s = Z bkpkzr_,s
k=1
= q - a. The inclusion I; C J follows immediately.

3.4. PROPOSITION. We have
I. =I.NR,.
Proof. Theinclusion I C I,NR; follows immediately from the equality
I~ =INR™ .Let a € I,NR,; andputasin2.9 Ko ={1 <k< M-1: r; odd}.

According to 2.7 and 3.3 the system S(K°) = {y: k € K°}U {v,6} forms a
basis of the Z-module I,. Hence there exist cg,c,d € Z, (k € K°) such that

a= > aytey+dy.

keK©
Then
if 1
a=) s = ck(r—iTh — T—itk +cr_-+d).
2o (5 Zp ey

Since a € R, , we have for each i € Z:

1 > er(roirk —r_igk) +er—i+d

q keK©

+ 1 Z ck(r—i+NTE = T—itN+k) T cr—itNn +d=0.
1 exo
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According to 1.1

Z ck(rk—1)+cq+2d=0.
keK?©

Therefore ¢ = 2¢’ for an w-adic integer ¢’ and

> ek l_zrk =cdq+d.
keEKO

Then according to 2.9.3

Z crag +clag = Z ckvk + ('g+ d)6 + ¢y — c'qb
kEKO kEKO

= Z Yk +cy+db=a.
kEKO

The proposition follows from 2.9.2 and 3.2.

3.5. Remark. (Iwasawa [5, Section 2]) makes a mention of the formula in
3.4 but his proof is based on other facts. Another proof of the equality I, = J
from 3.3 and Proposition 3.4 is also given in Washington’s book [21, §6.4,
Lemma 6.2).

3.6. THEOREM. Let N C M be Z-submodules of the Z-module S with finite
bases possessing the same number of elements (thus the index [M : N of the
Z-module N in Z-module M is finite). Let (M/N), denote the m -Sylow sub-
group of the factor group (M/N,+) considered as a Z, -module in the natural
way.

Then the Z, -module (M/N)x and the Z, -quotient module My /N, are
isomorphic (canonically). The Z. -module N has a finite indezx in Z, -module

M., which equals the 7 -part [M : N, of the indez [M : N|. Hence

(M/N)w & My /Ny, Mg Ny =[M: Ny

Proof.
I. We have [M : N], = 7%, where a is a non-negative integer. Then
™ - MCN,.
Let yy,...,u4n be abasis of the Z, -module M. According to 3.2 py,...,4m

is a basis of the Z, -module M, . For o € M, there exist a;,...,ay, € Zr
such that

a=aip+ -+ Amfin -
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Each integer a; has the form: a; = z; + n%y;, where z; € Z, 0 £ z; £ n°
and y; € Z, . Put
x(a) =zipy 4+ + Tmfim -

Then x(a) € M, x is a mapping from M, into M, a — x(a) € Nr and
for a,fE My, c€Zy, cEZ, c=¢ (mod 7*) we have

x(a+8) = x(a) +x(B) (=*- M),  x(ca) =ex(a) (7% M).

Let ¢ be the projection from M/N on the m-Sylow subgroup (M/N), of
the additive group M/N . Denote by 1 the canonical mapping from M on
M/N and put o = ¢orpox. Then o is a homomorphism from the Z, -module
M into the Z, -module (M/N),.

II. We show that

MNN; ={a€M: order of o+ N in M/N is not divisible by 7} .

Let « € MNN, and let ® -y be the order of a+ N in M/N (z,y € Z),
x>0,y >0, nty.If v,...,v, is a basis of the Z-module N, then
according to 3.2 vy,...,vy, is a basis of the Z, -module N , hence there exist

m
Cly...yCm € Zy such that a= Y ¢jv;. If y-c; € Z for each 1 < j <m, then
i=1
y-a € N, thus £ = 0. If there exists 1 < j < m such that y-c; ¢ Z, then

m-y-c; ¢ Z, hence 7°-y-a ¢ N, which is a contradiction. The converse
inclusion is obvious.

III. From the formula in II we get that the kernel of ¢ o1 equals M NN .
Since a — x(a) € Ny (a € M, ), it holds that x (M NN;) = N . It follows
that the kernel of o is equal to N .

The mapping ¢ o1 is surjective. For u € M we have u — x(n) € M NN,
hence ¢oip(u) = o(u), which implies that o is surjective as well. This completes
the proof.

We obtain from this theorem and from 2.9.2, 2.7 and 2.11
3.7. THEOREM. We have
(a) Ry I;]=(h;)r (Iwasawa),
(b) [Ry:Ix] = (hy)x,

© o 1 jrne,
[I”‘I"]_{Z for m=2.

The part (a) is due to Iwasawa [5, (5)].
We obtain in a similar way as in 1.4 R} = I + R, , which implies:
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3.8 THEOREM. The quotient-rings Rx/I, and R;/I; are isomorphic
(canonically).

This theorem can be proved by means of 3.7 (a),(b) as well or from 1.5
and 3.6.

3.9. PROPOSITION. Let M, N be Z-submodels of the Z-module S with
finite bases and let M NN =0. Then

(M®N)y =M, &Ny

Proof. The results follow easily from 3.2.
We obtain from this proposition and from 2.9.4 and 3.7 (c):

3.10. PROPOSITION. For 7 # 2 we have
In=1_®6ZL,.

(Note 6Zr. = 6R, .)

4. Kummer’s elements

In the last three Sections we will assume n = 0, hence
q=p, M=p-1, N =——,
the group G has order p — 1, etc. For the sake of simplicity we put
h™ =hg .
4.1. DEFINITION. For i,p € Z put

1 for ri+riyp2>p,
Kin = .
' 0 forri+riy, <p,

Kp = Zli_ipsi €R.
i

558



SOME BASES OF THE STICKELBERGER IDEAL

4.2. PROPOSITION. Let i,p€ Z.

(a) If p=N (mod M), then ki, =1 and kK, =kn =6.
(b) Let p# N (mod M). Then
(bl) Kip+Kitnp =1,

(b2) kip = %(ri + Tityp — Tito), where o = ind(r, + 1),
(b3) Kip = [%(7‘1 + Ti+p)] ,

1 1
(b4) Kip = [;ri(l + rp)] - [;rirp] .

Proof. The assertions (a), (bl), (b2) and (b3) are obvious. We get (b4)

from the relation r;y, = rir, — p[%rirp] and (b3):

Kip = [%n(l +r,) — [%rirp” = [71)-7',-(1 + rp)] - [%—rirp].

4.3. PROPOSITION. For each p € Z we have k, € I.

Proof. Since ky =6 € I (2.4), we can assume 0 < p<p—-2, p# N.
Put ind(r, + 1) =0 and
1 fort=0o0rt=pincase p#0,
2 for t=0 incase p=0,
-1 fort=o,
0 for0<t<p-2, t¢{0,p,0}.

Then Y z4ry = 0 and for each i € Z we have %Zztr_,q_t = %(r-i +
T t

T_itp — T'—ito) = K—ip according to 4.3 (b2). This concludes the proof. (Note
that it follows also from 4.9.)

4.4. Remark. Kummer [7, §11, §12] operated with these elements «,
(0 < p<p—-2, p# N) and proved that these elements annihilate on the
class group I' of the pth cyclotomic field. For this reason we call the elements
kp (p € Z) Kummer’s elements.

In [15] the following elements from R~ were considered:
¢ =Y o_imaG+ns (0<j<N-1),
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where for i,p € Z
{ 1 for i +ripp <p,
Ot,'p =
-1 for ry+riqp > p.
The following proposition was shown in {15, Theorem 3.3, Consequence 3.4

and conclusion of the proof of Theorem 3.6].
4.5. PROPOSITION.

() |det(aiinag+1))lo<i, jsn-1 = 2N=1h~.

(b) For integers pZ N # o (mod M) the equality

Qip = Qg for each i1 €7Z

is satisfied if and only if o = p (mod M) or
o=ind(p—1-r,) (mod M).
(c) The elements ¢; (0 < j < N—1) form a basis of the Z, -module I,

Since aiynp = —aip (pE N (mod M)), we have

| det(a—iina(j+1))lo<i, sjsN-1
= | det(aH_N ind (j+1))|0si. JSN-1

= |det(eina (j+1))lo<i, j<n—1 = 2V "Th™

according to 4.5 (a). This determinant is the determinant of the transition matrix
from the basis ¢; = s'(1 —s") (0 <i < N —1) of the Z-module R~ to the
elements ¢; (0 < j <N —1). Thus we get from 3.2, 3.6 and 3.7 (a):

4.6. PROPOSITION.
(a) |det(e—iinag+1)losi, jsnv-1=2""h".
(b) The elements ¢; (0 < j < N —1) form a basis of the Z-module I,
for each odd prime .

The parts (a) and (b) of the following prop051t10n are obvious and the part
(c) follows from 4.5 (b).

4.7. PROPOSITION. Let ,j,p,0 € Z. Then we have
(a) ip=1—2Kip. ‘
(b) ¢; =6 —2kKinaG+1) (0<F<N-—-1).
(c) For p # N # o (mod M) the equality Kip = Ki; for each i € Z
is satisfied if and only if 0 = p (mod M) or ¢ = ind(p — 1 —17,)
(mod M). Hence k, = k, if and only if 0 = p (mod M) or o =
ind(p—1-r,) (mod M).
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4.8. THEOREM. Kummer’s elements
KindGj+1) (0<Jj<N-—-1), Ky =6
form a basis of the Z-module I .
Proof. According to 2.3 the elements ¢; = s'(1—s") (0 <I< N-1)
and € = NZ_I s* form a basis S* of the Z-module R*. For 4.2 (bl) we have for

i=

pE”ZL:

N-1
kp=Y (kop—1er+e  (p#N (mod M)),
1=0
N-1
Kp=KN=0= (—1)er + 2¢ (p=N (mod M)).
=0

Thus the transition matrix C from the basis §* to Kummer’s elements
K = {Kina(j+1): 0<j < N —1}U{kn} hasform CT = (¢;;) (0<4, j < N),
where

K_iind(j+1) —1 for 0<4, j<N -1,

1 fori=N, 0<j<N-1,
Cii =
7 -1 for 0<i<N-1, j=N,
2 fori=j3=N.

. 1
According to 4.7(a) K_;ind(j+1) = 5(1 — O_jind(j+1)) , hence

det C = —(_21—13N -det D,
where D = (d;;) (0<1i, j < N) and
14+ a_jinda(j4+1) for 0<i, j<N -1,
dij =41 fori=N, 0<j<N-1,
2 for 0<i<N, j=N.
If we subtract the last row of the determinant of D from the others, we get
det D = 2det(a_;inda(j+1)) (0<i, jSN-1).
Proposition 4.6 (a) gives then
|detC|=h",
and Main Theorem 2.7 completes the proof.

Using 4.2 (b4) we obtain the following relation between Kummer’s elements
and elements ~’s.
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4.9. PROPOSITION. We have for 1<j<p-—2:

(a) Kindj = Yind(j+1) — Yind;j »
J
(b) Y Kindv = Yind(j+1) -
v=1

4.10. Remarks.

To show the decomposition of the Lagrange resolvent Kummer ({7,
p. 363]) used in fact the following equality:

4.10.1.
p—2
Z Kindv = Yind(p-1) =7 — 5.

v=1

Vandiver [20, Section 1] himself was interested in transformations of
p—1
2

Kummer’s elements k, (0 < p<p—2, p# ) and he obtained, using

4.9 (b), in fact the equality ([20, (3)]):
4.10.2.

J
_l . .
s°7 E Kindv = J6 — Yind(G+1) (1<ji<p—2)

v=1

. -1 .
since $°Z Yind(j+1) = 56 — Vinai+1) (2:5(2)).

When operating with Fermat’s equation, Fueter [3, (V)] showed in essence
4.9 (a).
Denote q; = 7‘1‘,—% for < € Z. Then

"= ZQ—iSi = Z(Iis_i ) Sk’h = Zq_i+ksi = Zqi+k3_i (Ic € Z).
i i i i

We have

_ '”‘i+k] _ [mrk] [rmc]
k= _ _r
qi+ " p p p

- ] (2] [

- X
since 7Tk = Titk +P r_,pri] and r* =r; +p[%] .

It follows
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k+1 k
4.10.3. sty = Ye+1 — Tk + ([Tp ] - r[%])'y (0 <k <p-—2), which is
a slight modification of Fueter’s proof of (IV) in [3].

We can obtain from 2.7 and the relation ¢;4+n = r — 1 — g; on the basis of
4.10.3:

4.10.4. PROPOSITION. Let K C {0,1,...,p — 3} have the basis property,
|K|=N—-1 and N -1 ¢ K. Then the system
{Sk’)/l = Zq_.H_kSi : k € K} U {’)’,6}
i

forms a basis of the Z-module I .

For a € Z, p{a denote g(a) the Fermat quotient with base a (with respect
to the prime p), thus

aP~l -1
aq) == ————
q(a) ’

By Lerch [9, (8)] we have

qla) = Z() [Z2] (mod p). (L)

From the considerations of F uet er [3] leading to his formula (VII) we can
formulate the following:

4.10.5. For 0 < h <p—2 there exists B, € R such that

wh =Y T iq(r_itn)s' +pBn,

7

where wp =r_ps" STy € 1.
k

Proof. We have

whp = Z T_hT—k Z [ T_;;Tk ]s“’h = Z st }: T_hT—k [——T_i;;hrk ] .
k i k

i

According to Lerch’s Theorem (L) the following holds

T_ithT
T—iq(T—ith) =T—i Zri_hr_k [—%”k] (mod p)
k

= zk: T_hT—k [___T_i;hrk] (mOd P) ’

which concludes the proof.
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5. The Stickelberger ideal mod p

Remind that we assume n = 0, thus
p—1
q=p, M=p-1, N =44+~ etc.

Denote further by:

Z(p) the ring of residue classes mod p, thus Z(p) = Z/pZ;
the elements from Z are often considered as the elements from Z(p),
R(p) =Z(p)[G] the group ring of G over the ring Z(p); thus

R(p) = {zaisi: a; € Z(p)} for a = Zaisi € R(p) we put a; = a;,
1 1
where j,i€Z, 0<i< M -1, j=i (mod M),
R*(p) = {azz:aisi € R(p) : ax + ax+n = a1 + aj4n for each k,leZ},

R (p) = {a = Zaisi € R(p) : ax + ar+n =0 for each k € Z},

i(p) index of irregularity of p; thus i(p) = card{l <a<?® ; 3 : p/BZG} ,
where By, mean the Bernoulli numbers,
¥ the canonical mapping from Z onto Z(p) (¢(a) = a+pZ, a € Z).

The mapping 1 will also be considered as the mapping from R onto
R(p) in this way:

For a = Za,—si € R we have 9(a) = zw(ai)si € R(p).

Obviously, ¥(R*) = R*(p), ¥(R™) = R™(p).
I(p) =(I) the Stickelberger ideal of the ring R(p),
I=(p) =) the Stickelberger ideal of the ring R™(p).

R(p), R*(p), R (p), I(p), I~ (p) are considered as Z(p)-modules (hence
vector spaces over the field Z(p) ).

The following addition to Iwasawa’s class number formula (0.1) was shown
in [19, 2.2]:

5.1. THEOREM. (Skula)
[R™(p) : I~ (9)] = p'P.
We show a similar addition to Sinnott’s formula (0.2):

5.2. THEOREM. .
[R*(p) : I(p)] = p'®.

First we prove the following lemma:
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5.3. LEMMA. For Z(p)-modules R*(p), R~(p), I(p) and I~ (p) we have

(a) R*(p) = R™(p) ®€Z(p) = R~ (p) ® 6R(p),

(b) I(p)=1I"(p) ®6R(p).
(The elements e, & are considered to be elements from R(p). Note
6R(p) = 8Z(p)-)

Proof. The assertion (a) is obvious. According to 2.11 we have [I : I°] = 2,
where I® = I~ @ 6R. Thus I(p) = ¢(I°) = ¥(I~) + 6R(p) . The lemma follows
by noting that § ¢ R~ (p).

Proof of Theorem 5.2. Accordiné to 5.3 we have
[R*(p): R~(p)] =p,  [I(p): I (p)] =p.
Using 5.1 we get
PP+ = [R*(p): R~ (p)] - [R™(p) : I" ()] = [R*(p) : I" (p)]
= [R*(p): I(P)] - [I(0) : I~ (p)] = [R*(p) : I(p)] - P
The theorem follows.

Let 1< L<p-2, L odd. Put

op = Zr_iLsi € R (p).

)

It was shown in [18, 3.3, 6.4] (the element o, is designated by aj, ) that the
system {op: 3< L<p—-2, L odd, B, # 0 (mod p)} U {0y, = v} forms
a basis of the vector space I~ (p) over the field Z(p). Together with 5.3 (b) we
get

5.4. PROPOSITION. The system
{oL: 3<L<p-2, L odd, B,_, 20 (mod p)} U{y,6}
forms a basis of the vector space I(p) over the field Z(p) .

6. Kummer’s system of congruences

Considering the first case of Fermat’s Last Theorem, Kummer (8] intro-
duced a certain system of congruences, which can be transformed in the following
form:

. p—3
@p—2j(t)B2; =0 (mod p), 1<j< pT , (K)

p—1 )
where ¢;(t) = 3 (=1)*"1vi"1t? (1 <i < p—1) are Mirimanoff polynomials.

v=1
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Kummer [8] also proved:

If (z,y,2) is a solution of the first case of Fermat’s Last Theorem

P 4+ yP 4+ 2P = 0, p 1 xyz), then the numbers — ,=,... must fu the
PhyP 4 2P =0 then th b Z z Ifil th
congruences (K) and the congruence

@p-1(t) =0 (mod p).

In [17] we introduced the following system of congruences depending on the
Stickelberger ideal I :

fa(t) =0 (mod p) (a€l;),
wp—1(—t) =0 (mod p),

(S)

where for a =Y a;s' € R, (or a € R(p)) put
5

p—1
fa(t)=§:a_ind,,ﬁt” (v€Z, 0<v<p, vo=1 (modp)).
v=1

From the results of [17] we can find that the system (S) and (K) are equiv-
alent in the following sense:

6.1. PROPOSITION. Let 7 € Z, 7 # —1 (mod p). Then 7 is a solution of
the system (K) and the congruence @p_1(t) =0 (mod p) if and only if —7 is
a solution of (S).

The polynomial ¢p,_1(t) does indeed occur among the polynomials fq(t)
since we have fs(t) = —pp—1(—t) (mod p). Then we get from 5.3 (b):

6.2. PROPOSITION. The system (S) is equivalent to the following system of
congruences or equations:

fa(t) =0 (mod p) (aeJ),
where J means I, or I, or
fa(t)=0 (O‘EI(I’))'

Note that f,, (t) = —¢r(—t) (mod p) for elements o7, (1< L <p—2)and
the “equivalence” between (K) and (S) can be obtained by the choice of the
basis

{oL: 3<L<p-2, L odd, B, #0 (modp)}U{'y,é}
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of the vector space I(p) (5.4).

Le Lidec ([10], [11]) introduced and investigated for 1 < n < p — 2 the
following polynomials:

p—1
L) =) ot*'™" ((n+1)-n-v<v),

where the inequality (n+ 1) -n-v < v means that m<wv for 1 <m<p-1,
m=(n+1)-n-v (mod p).
Consider the following system of congruences:

La()=0 (modp) (1<n<p-2),

Yp—1 (—%) =0 (mod p). @)

In [17, (1.4)] it was shown that the system (S) and (L) are “equivalent” in
the following sense:

6.3. PROPOSITION. Let A\, o be integers with the property A\-0 =1 (mod p).
Then X is a solution of the system (L) if and only if o is a solution of the system

(S).

We can obtain a proof of this proposition by choice of the basis from Kum-
mer’s elements

{KinaG+1): 0<J <N -1} U {kny =6}
(4.8) of the Z-module I. We have namely for 1 <n<p-2,0<p<p-2,

-1 —
p# p2 , Tp = —(n+1)n (mod p)

fuo(1) = La(F) (mod p).

Fueter, solving the first case of Fermat’s Last Theorem, derived the following
system of congruences ([3, (VI), (VII)]):

p—1 .
> i8] =0 (modp) (1<as<p-1),

p—1

Z%"EO(modp), (F1)
Zq(mh)t“ =0 (modp) (0<h<p-2). (F2)
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Ifweput a=rp (1<a<p—-1,0<k<p-—2), we get

p—1

f%(t)s;%[%] f*  (mod p).
pP— 1 p—1
Further fs(t) = %—t" (mod p), fy(t) = > tY (modp) and
n=1 v=1

fun ) =3 q(rign)t™ (mod p). (Note that 1 is no solution of (F1) (a=p-1.))
i
This follows from

6.4. PROPOSITION. The system congruences (F1) and (S) are equivalent.
Each solution of (S) is also a solution of the system of congruences (F3).

Remark. Suppose 0 < h < p—2. Put a = r, and n = r_; for
0<i<p-—2.Then

-1 _p— -1 _ -2 [an
aP~1n? 1_r’ii+h=—pr’ii+h[T] (mod pz)

since an = p[%] +7_;+n - Hence

a?t—1+a 1 (nP71 —1) - (r’:_}l_h -1) = —pr’:ih [%] (mod p?),

which implies

a(rn) +q(r-i) — q(r—isn) = —r’:f_h [%} (mod p).

Multiplying by rp7r—_; we get
P (r-ia(rn) + 7-ig(r—) = riq(r-isn)) = =3 (r—irn = r—syn) (mod p).
Therefore according to 4.10.5 there exists v, € R such that
Th (Q("'h)’)’ + wo — pBo — wh + pBr) = —Yh + PV,
which implies existence of an element up € R such that
Yh = Thwh — Thwo — Thq(Th)Y +ppn  (0<h<p—2). (A)
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We get from (A):
each solution T of the system (F3), 7 # 1 (mod p) and the congruence

p—1
fst)= > %t” (mod p) is a solution of the system (S).

n=1
Acknowledgement. T.Agoh called my attention to this implica-

tion ((F2) = (S)), which was proved by him. The equality (A) is a translation
of Agoh’s formulas using polynomials to the language of the group ring R.

Benneton [2] considered the following system of congruences

1
9" =0 (modp) (1<n<p-1), (B)

=
|

e
Sle
vl

uru"'

where vn means the least positive residue of vn mod p. (Quotation from [4,
Theorem L3 (h)].) He proved that for each solution ¢ of (K) (¢t # —1 (mod p))
—t is a solution of (B), therefore each solution of (S) is a solution of (B).

For i,p € Z put
1 for riyp, > g ,

ﬂ'ip =
0 for rigp < g ,

B = Z:ﬁ_ipsi €R.
Then we have

6.5. PROPOSITION.

(a) B, =kos” €I for each integer p (Ko is Kummer’s element),
p—1

©) fo,0)= L o (7> 5),

where 1 <n<p—1 and p=indn, hence
(c) each solution of (S) is a solution of (B).

Note that A go h [1] proved in fact both systems (S) and (B) are equivalent
in case 2 is a primitive root mod p.
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