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SOME BASES OF THE STICKELBERGER IDEAL 
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Dedicated to Professor Helmut Koch 
on the occasion of his 60th birthday. 

ABSTRACT. In this paper various bases of the Stickelberger ideal (considered 
as a Z-module) in the group ring R = Z[G] of the Galois group G of p n + 1 t h 
cyclotomic field ( n > 0 , p an odd prime) over the ring of rational integers are 
introduced. One special basis is used for the computation of the index of the 
Stickelberger ideal in a subring of R (S i n n o 11 's result (1980)). 

Some bases are used to show "equivalence" of known systems of congruences 
(F u e t e r (1992), L e L i d e c (1967)) to the Kummer system of congruences. 
In case n = 0 , K u m m e r operated with special elements from the Stickelberger 
ideal, and it is shown here tha t these elements form a basis of the Stickelberger 
ideal. The u7r-adic" situation is also investigated . 

Sinnott 's class number formula is added by a formula where the ring of rational 
integers is subst i tuted for the ring of congruence classes modulo p. Here the index 
of the Stickelberger ideal equals p*(p) , where i(p) means the index of irregularity 
of the prime p . 

0. In troduc t ion 

The background of this paper is formed by Rummer's system of congruences 

<pp_2j(t)B2j = 0 ( m o d p ) , l<j<2^-l, (K) 

where B2j are the Bernoulli numbers and (fi(t) are the Mirimanoff polynomials. 
Here always p will designate a fixed odd prime. 

These congruences (K) were introduced by K u m m e r ([8], 1857) when 
trying to solve the First Case of FermaVs Last Theorem. Many authors have 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 16S34, 11R29, 11R18, 11R68. 
K e y w o r d s : Stickelberger ideal, Kummer (Fueter, Le Lidec, Benneton) system of congru

ences, Iwasawa's (Sinnott 's) class number formula, Index of irregularity. 

*) The results of this paper were delivered in the 10th Czechoslovak Number Theory Con

ference held in My to pod Dumbierom (the Low Tatras) , Slovakia, 2-7 September 1991. 
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used various systems of congruences for this reason since. In the paper [17] a new 
system (S) of congruences depending on the Stickelberger ideal was introduced 
and it was shown that (S) and (K) are "equivalent" in a certain sense (6.1). 
This result can be obtained by means of a special basis of the Stickelberger ideal 
mod p considered as a vector space over the Galois field Z/pZ (5.4). 

If we use the basis of the Stickelberger ideal I considered as a Z-module 
consisting of Kummer's elements, then we obtain "equivalence" (6.3) of the 
system (S) and the system (L) formed by the L e L i d e c polynomials ([10], 
[11]). The equivalence of F u e t e r 's system of congruences (Fi) ([3, VI]) and 
(S) can be obtained by the choice of another special basis of I. By means of 
another choice of elements from I we get the statement that each solution of (S) 
is a solution of the other system of congruences (F2) using the Fermat quotients 
introduced by F u e t e r [3, VII] (6.4). Another choice of elements from I (6.5) 
gives the B e n n e t o n system of congruences ([2]). 

For these reasons various bases of the Stickelberger ideal considered as a 
module over the ring of rational integers Z or 7r-adic integers Z^ (n a prime) 
are studied in this paper. 

In Section 2 the group ring R = Z[G] and the Stickelberger ideal J in R 
are investigated, where G is the Galois group of the p n + 1 t h cyclotomic field 
( n > 0) . The study of the quotient-ring R/I was begun by I w a s a w a ([5], 
1962), who proved the following class number formula: 

0 . 1 . Iwasawa. 
[B - : / " ] = h~ . 

R~ means a special subring of R, I~ = I D R~ and h~ is the first factor of 
the class number of the pn+1th cyclotomic field. 

S i 11 n o 11 [13] extended this formula to a general cyclotomic field and in 
[14] he transferred it for the case of the Stickelberger ideal I (Theorem 2.1): 

0.2. S innott (For the pn+1th cyclotomic field). 

[R*:I] = h-. 

R* means a special subring of R containing R~ (denoted by A in [11]). 

Although S i n n o 11 's case is more general, I am working only (like 
I w a s a w a ) with the p n + 1 t h cyclotomic field since the applications I am inte
rested in concern only the case of the p t h cyclotomic field (Sections 4, 5, 6). The 
case of a general cyclotomic field is investigated in this direction by K u c e r a 
[6]. 
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In Main Theorem 2.7 some bases of the Z-module I are given and we obtain 
S i n n o 11 's formula 0.2 in another way by the computation of the absolute 
value of the determinant of the transition matrix from a special basis of R to 
some of these bases of I. 

I w a s a w a ([2], [5]) also formulated the class number formula for the sub-
ring R~ of the group ring Rn = Z^G] of G over the ring of 7r-adic integers 
generated by R~ as follows: 

0.3. Iwasawa. 

[R;:I-] = (h-)n. 

Here I~ means the Stickelberger ideal in the ring R~ and (h~)n is the n-part 
of h~ . 

This 7r-adic situation is investigated in Section 3 and I w a s a w a ' s for
mula 0.3 is transferred for the Stickelberger ideal In in the subring R* of Rn 

generated by R (3.7(b)): 

0.4. 

[R* : In] = (h~)n . 

Section 4 deals with special elements KP from the Stickelberger ideal I (for 
the p t h cyclotomic field, the case n = 0) which were used by K u m m e r ([7], 
1847), and the main result (4.8) states that these elements of K u m m e r form 
a basis of the Z-module I. 

The author ([19, 2.2]) showed the following addition to Iwasawa's class num
ber formula. 

0.5. Skula. 

[R~(p):r(p)]=piW. 

Here R~(p), I~(p) are the former notions considered mod p and i(p) means 
the index of irregularity of the prime p. 

In Section 5 we obtain (5.2) a similar addition to Sinnott's class number 
formula: 

0.6. 

[R*(p):I(p)]=pi{p). 
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1. Nota t ion and basic assertions 

Through this paper we denote by: 

p an odd prime, 
n a non-negative integer, 

h~ the first factor of the class number of the cyclotomic field 
generated by the p n + 1 t h roots of unity over the rational field, 

Z the ring of rational integers, 

q = pn+\ M=pn(p-1), N=M-, 

r a primitive root modulo q, 
ind x index of x relative to the primitive root r of x 

( x e Z , p\x), 
rj the integer (j G Z) , 0 < rj < g, rj = r-7 (mod q), 

hence we have: 

1.1. For each j G Z we have: 

rj + rj+N = q -

M-i 
zC h ~ _C $i f° r suitable symbols Si, 
i i=0 

G a multiplicative cyclic group of order M, 
s a generator of G; thus G = { l , s , s 2 , . . . , s M - 1 } , 

R = Z[G] the group ring of G over the ring Z; thus 
i? = J^aiS1 : â  G Z; 

i 
aj = a; for a = ^ a;sz G R and J G Z, i = j (mod M ) , 

i?* = < a = Y^ CLiS1 G I? : a^ + afc+jy = Q>i + a/+Tv for each fc, / G Z | 

= { a G B : (l + Z j a e Z ^ / ) , 
i 

I?~ = < a = 2_\ ais% € .R : a*. + afc+/v = 0 for each fcGZ| 
i 

= (1 - s ^ B = ( a G B : a ( l + s " ) = 0} , 
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I=<aeR: 3peR, p • ^V_ . iS* = q • a | 
i 

= { a = ^ a ^ * G i2 : 3xt e Z ( 0 < < < Af - 1), ^ x t r t = 0 (mod g) , 
i * 

a* = - V^ xtr-i+t for each 0 < i < M — 1> 

([16, Section 4, (4)]). 

7 is an ideal of the ring R which is called the Stickelberger ideal of the ring R. 
I" = I fl R~ is an ideal of the ring R~ which is called the Stickelberger ideal 
of the ring R~~ . 

Ideals of the ring R are often considered as Z-modules. 

Since — ~~\xtri+t H ~~~t~i+N+t — Ylxt f° r e a c h i E Z and each xt E~\ 
Q t Q t t 

(0 = t = M-l),we have 

1.2. 

7 C 7 T . 

Further we can state 

1.3. R T̂  R* unless p = 3 and n = 0 ; R = R* = I for p = 3 and n = 0 . 

P r o o f . The relations R ^ R*, R = R* are obvious. Let p = 3 , n = 0 
and a = a + bs E R. Put 

#o — — a + 2b, 

a?i = 2a — b. 

The equalities X)x* r* = ^a a n d _ ] ) x t r - i+ t = 3b conclude the proof. 
t t 

1.4. L E M M A . 

R* = I + R~ . 

P r o o f . For 0 < t < M - 1 put 

{ 2 for t = 0 , 

— 1 for t = ind2 , 

0 otherwise, 

and ai = — ~^xtr-i+t = — (2r_* - r _ i + i n d 2 ) . Then a = X ^ 5 * E 7 and 

ai + ai+N = 1, the results follow. 

Applying this lemma we get: 
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1.5. THEOREM. The quotient-rings R*/I and R JI are isomorphic 
(canonically). 

Put 

boo = q - 2 , 

boj = 1 - r j , 1 _i i _i -AT - 1 , 

&io = l - r i , l = z = / V - l , 

&tj = - ( r * r j " ri+i)> ! = * > 3 = N ~ ! > 

^ = (&ij)o<i,j</V-l-

For n = 0 this matrix £? was introduced and |detF?| was computed in [12], in 
general case in [16]: 

1.6. 
\detB\ = h~. 

Further put for 1 < k < N - 1, 0 < I < N - 1: 

got =r-i - q, g0N = 9, #k.v = r*. - 1, g/v/ = — 1 , 9NN = 2 , 

#kf =-(r-irk — r-i+k) - rfc + 1. 

Denote by C the following matrix: 

C = (gkh)o<k,h<N • 

1.7. P R O P O S I T I O N . 

| d e t C | = h - . 

P r o o f . Perform the following operations on C: 

a) Interchange the columns with indices / and N — 1 ( l < / < - V — 1). 
b) Multiply by (—1) the columns with indices 1,2, . . . , 1V — 1. 
c) Add the column with index 0 to the column with index IV. 
d) Subtract the row with index N from the row with index 0. 
e) Multiply the row with index 0 by (—1). 

Then it is easy to see |det C\ = | det B\ and the assertion follows from 1.6. 
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2. S o m e bases of t h e Z - M o d u l e J 

2.1 . N O T A T I O N . For k e Z put 

i^k' Ъ = Yt\{r-irk-r-i+h)a< = ү l Ң 
І І 

єk = sk(l-sN), 

s , 

and further put 

i = Yl r-iS* > 
г 

6 = У£si = l + s + s2 + ... + sм-1, 
І 

УV-I 

= Y^sѓ = 1 + s + s2 + ... + sN-lt 

jV-1 

є 
i=0 

If we consider instead of the group ring Z[G] the group ring Q[G], then the 

element —7 is often called the Stickelberger element The element S acts on 

the class group of the qth cyclotomic field as the norm. Clearly, 

7k ? £ki 7> <5> £ are elements of the ring R. 

2.2. DEFINITION. Let X C { 0 , 1 , . . . , M - 1} . The set X is said to have the 
basis property if it has the following property: 

£<EX, £ ' e Z , Cf = ( + N ( m o d M ) - ^ ^ I . 

It is easy to see the following: 

2 .3 . PROPOSITION. Let L C { 0 , 1 , . . . , M — 1} have the basis property and 
let \L\ = N. Then the system 

S*{L) = {et: I G L} U {e} 

forms a basis of the Z-module R* . (Symbol \L\ denotes the cardinal of the set 
L.) 
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2.4. P R O P O S I T I O N . We have 

7 G I, ( 5 G / , and 7fc G / /or eac/i k G Z . 

P r o o f . 

a) We can assume k G Z, 1 < A; < M - l . Put for each t G Z, 0 < t < M - l 

{ rfc for t = 0, 

— 1 for t = k , 

0 otherwise. 

Then for 0 < i < M — 1 we have 

т E г ' r - i + ' = —ІГ-irk ~ r-i+k), 
' V q 

hence 7fc € I • 

b) If we put for 0 < t < M - 1 

q for ż = 0 , 

^ 0 otherwise, 

then — Ylxtr-i+t — r-i ar1d hence 7 G / . (Or we can see the relation 7 G / 

immediately from the first definition of I putting p = q G -R.) 
c) If we put for 0 < t < M - 1 

zt 
_ J 1 for t = 0 

\ 0 otherwise, 

= 0 or t = N, 

then — Yl^tr-i+t = — (T-; + r-i+jv) = 1- Thus 8 G / . 

2.5. L E M M A . 

(a) For each j,k G Z we Ziave 

--(rjr f c - r J + f c ) + - - ( r j r A . + N - rj+k+N) = r, - 1 

(b) For eac/i k G Z uve /iai>e 

7k + Tk+jv =1-8. 

P r o o f , (a) follows from 1.1 and (b) follows from (a). 
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2 . 6 . PROPOSITION . Let K C {1,2 , . . . , M — 1} have the basis property and 

let \K\ = N - 1 , N i K . Then the system 

S(K) = {lk: keK}U{j,6} 

forms a system of generators of the Z -module I. 

P r o o f . According to 2.5 (b) we can suppose K = {1 , 2 , . . . , N — 1} , hence 

S(K) = {7 i , 7 2 , . . . , 7LV-1,7, <5} • 

Let a = ^2ais1 G / . T h e n there exist integers x t E Z (0 —^t f^ M — 1 ) such 
i 

t h a t Ylxtrt = 0 (mod q) and 
t 

ai = — 22 xtr-i+t f°r e a c h 0 < i < M — 1 . 

P u t 

M-i 
1 \ - -x - 22 XtVt' - = 2_^ x« > c = x - d, 

t t=N 

Ck = Xk+N — xk for each 1 < k < N — 1 . 

We have for each i e Z , 0 < z < M - 1: 

jv-i 

k=i 
M-i jv-i M-i jv-i 

Y2 ck(r-irk -r-i+k) 
k=i 

M-i 

= r _ i ^2 Xirl+N ~ r-i ] P x/r/ - ^ x / r _ w + y y + ] P z lT - i+i 
/=jv+i /=i l=N+l z=i 

M-i M-i jv-i 

= qr-i ^2 xl~r-i ^2 X{Tl ~~ r~i ^ Xin 

l=N+l l=N+l 1=1 

M-i M-i jv-i 

- q YI xi + y2 xir-i+i+_c ^r-*+i 
Z=jV+l /=jV+l 1=1 

= qr-id - qr-iXN - r-i ^ xtrt + r-{xNrN + r_ iX 0 

l 

-qd + qxN + 22 xlr-i+i — xor-i - xNr-i+N 

l 

= qr-id - qr-iXN - qxr-i + r-iqxN - r-{xN - qd 

+ qxN + qai — qxN + xNr-i 

= qai — qcr-i — qd. 
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It follows that 
1V-1 

OL = ~~^ Cfc7fc + C7 + d6, 
k=i 

and we are done. 

2.7. MAIN THEOREM. Let K, L C {0,1, 2 , . . . , M - 1} have the basis prop
erty, \K\ = N -1, \L\ = N, 0 $ K, N i K. 

Then the system S(K) = {<yk : k £ K} U {7,6} forms a basis of the 
Z -module I and for the determinant A of the transition matrix from the basis 
S*(L) = {ei : I G L} U {e} 0/ the Z -module R* to the basis S(K) of the 
Z -module I we have 

|A| = K . 

Therefore the Stickelberger ideal I has a finite index in the ring R*, for 
which the following relation holds 

[R* :I]=h-. 

P r o o f . Without loss of generality we can suppose L = { 0 , 1 , . . . 
...,N - 1} and K = {1 ,2 , . . . , /V - 1} , thus S*(L) = {e0,eu...JeN-i,e} 
and S(K) = {7,71,72, •-. ,7jv-i,<5} . 

Using 1.1 and 2.5 (a) ( — / —> k, k —> j) we get 

jv-i 

^ = ~Z (r"z ~ q}ei + qe' 
/ = 0 

jV-1 
lei + (rk-l)e (l<k<N-l), 

1=0 

N-1 

7k = 5 ľ -{r-trk-r-i+k)-rk + l 

s= x .^- 1 ) 6 ^ 2 6 -
/=0 

The transition matrix from the basis S*(L) to the system of generators S(K) 
„of the Z-module I is the matrix' C from Section 1 and according to 1.7 we have 

IAI = I det C\ = h~ . This completes the proof. 

2.8. R e m a r k . The assertion of 2.7 concerning the index of the Stickelberger 
ideal I in the ring R* is a special case of SinnotVs Theorem 0.2 for the p n + 1 t h 
cyclotomic field. Here, this special case was derived by presenting a special basis 
S(K) of the Stickelberger ideal (as a Z-module) and by the computation of the 
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absolute value of the determinant of the transition matrix from the basis S*(L) 
of R* to S(K). 

If we use Iwasawa's class number formula 0.1, we can prove 2.7 from 1.5, 2.3 
and 2.6. 

On the other hand, we can show from SinnoWs relation [R* : I] = h~ that 
a system of generators of the Z -module I~ forms a basis of I~ and compute 
the absolute value of the determinant of the transition matrix from a basis of 
R~ to the given system if we use the isomorphism between R*/I and R~ jl~ . 
(see 2.9.2.) 

2.9. NOTATION. Put K° = {1 < k < M- 1 : rk odd} . Then the set K° has 
the basis property, \K°\ = N - 1, 0 £ K° . 

According to 2.7: 

2 .9 .1 . The system S(K°) = {-yk : k G K0} U {j,6} forms a basis of the 
Z-module I. 

Put 

"fc = £ 1(r_irk-r-i+k)+
1 Гk 

(kєK°), 
V' — t f « ' — i-f-zcy 1 cy 

a0 = ] P ( 2 r _ i - q)sl. 
i 

It was proved in [16, Theorem]: 

2.9.2. The system {ak : k G If0}U{a.o} forms a basis of the Z-module I~ and 
for the determinant A of the transition matrix from the basis 
s J '(l — sN) (0 < j < N) of the Z -module R~ to this basis we have 

Therefore [R~ : I~] = h~ . (Iwasawa 0.1.) 

Clearly, the following holds. 

2.9.3. 

ak=7k + - ^ 6 (keK°), 

a0 = 27 - qS . 

We can see easily from these assertions that 6 • Z n I~ = {0} . We denote by 
1° the sum of the Z-modules <5Z and I~ . This sum is the direct sum of these 
Z-modules. (Since 6Z = 6R, 1° is also an ideal of the ring R.) Summarizing 
we have 
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2.9.4. 
J° = J - 0 6 Z C J . 

2.10. PROPOSITION. The systems {ak : k G K0} U {a0,<5} ; {7*. : k G i f 0 } 
U {27,6} /orrn bases /or the Z -module 1° . 

P r o o f . Immediately from 2.9.2 and 2.9.4 we get the fact that the former 
system is a basis of the Z-module J ° . Since the second system is a system of 
generators of the Z-module J° according to 2.9.3 and has the same number of 
elements (namely N + 1), the results follow. 

According to 2.9.1 and 2.10 we get 

2 .11 . THEOREM. For the index of the ideal J° in the Stickelberger ideal I the 
following relation is valid: 

[ J : J ° ] = 2 . 

For the quotient Z-module 1/1° we have 

I/I° = {I0 ,7 + I°}. 

3 . T h e St icke lberger ideal of t h e r ing Rw 

3 .1 . N o t a t i o n . In this Section we will denote by 

7r a prime, 
Q the field of rational numbers, 

Qn the field of 7r-adic numbers, 
Z„- the ring of 7r-adic integers, 

S = Q[G] the group rings of the group G over Q, 
Sn = QTT [G] the group rings of the group G over Qn , 
R^ = ZT- [G] the group rings of the group G over Z^ . 

Thus Sn = < ^aiS1 : a* G Q^ > and for a = Ylais% ^ S* w e P u t a g a - n 

^ i ' i 

dj = ai, where jf, i G Z, 0 < i < M — l , j = i (mod M). 

S, Sn are considered as Z-module and Z-r-module (respectively). 

We will consider (as in [2, Section 2]) the natural 7r-adic topology in the ring 

Sn: if a W = Ya^S1' G Sn and lim aJl/) =dieQ7T (lim denotes the vr-adic 
i "->°° 

limit) for each 0 < i < M - 1, then lim a<"> = a = ^ais
i e Sn . 
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For M C Sn let Mn denote closure in this topology: 

M* = {a G S- : 3 a M G M , lim a(l/) = a] . 
K v—»oo 

The former notation S-, I?^, Q?- and Z?- is in accordance with this one. 
Obviously, 

R~ = < a = 2_^ a%s% ~ R- : ai + â +Tv = 0 for each i G Z > , 

/?* = < a = \ . a i 5 * G -R-r : a* + ai+N = «j + Q>J+N f° r e a c h i, J G Z > . 
i 

Ideals of the ring Rn will often be considered as Zn -modules in the natural 
way. 

The Stickelberger ideals 1^ and I~ of the rings Rn and i?~ are defined as 
the closures of I and I~ in the natural 7r-adic topology, respectively, (see [5, 
Section 2]) 

Obviously, 

In - Rn ' 

3.2. THEOREM. Let M C S be a Z-submodule of the Z-module S with 
a basis / i i , . . . , / x m (1 < m < M). Then Mn is a Zn-submodule of the 
Zn -module Sn with the basis / i i , . . . , / i m . 

r rn >, 

P r o o f . Put M = < ~~ nijfij : vrtj G Z^ >. Clearly, M C M-. For each 
l j = i j 

1 < j < TO there exist dji G Q such that fij = ~~djiSl. Since / i i , . . . , / x m 
i 

are linearly independent over Q, rank of the matrix D = (dji) (1 < j < m , 
0 < z < M — 1) equals m. Therefore / i i , . . . , /xm are also linearly independent 
over Qn , and then they form a basis of the Z-- -module M . 

Let fi G M-T , // = X>iS* (6* G Q* ). Then there exist ^ e M (i/ = 1) 

such that /i = lim / / ^ . 
iv—•oo 

We have ^ = £ m-"Vj, where m^ € Z. Put 
i = i 3 

b\v) ^J^mүUц (0 = Ż = M - 1 , I/--1.2,. . .) . 
i = i 
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Then fiM = £ s * £ m^dji = Y^)si, hence bt = lim b{v) 

i j=l J i "">«> 

( 0 < t < A f - 1 ) . 

Since the sequences < rrvp \ (1 < j < m) are bounded, there exist posi

tive integers fci < &2 < • • • such that the sequences < m!;- \ are convergent. 
I J J k=i 

( ) m 

If we put mj = lim rnfk) (G Z^ ), we get &» = ^ mjdji, hence /i = 
fc-"°° i=i 

£ mj/Lj G -M. The proof is complete. 
j=i 

3.3. P R O P O S I T I O N . Put 

J={aeRn: 3peRn, p-^r-jS1 = q • a J , 
i 

R={a = J ^ a . s * € B* : B x t e Z ^ ( 0 < * < M - 1 ) , 
i 

g/ ^ #trt ( in Zjr ) , a» = - ^ xtr-i+t for each i G Z j 
t 

TTien 

9 i 

In = J = K. 

P r o o f . 

I. Let a - X l a i s l ^ ^ J P — __ x< 5< ^ -R- ? P * z C r - i 5* — 9 ' a • We have 
i t i 

J2Qaisl = __( _2 x * r -H-*) 5 * ' hence a* = - ^ x t r _ i + t , from which J = K 
i i v t ' 9 t 

follows. 

II. Let a = J2aisi € K• T h e n t h e r e e x i s t * t G Z- (0 = £ = M - 1 ) such 

that q/Yxtrt in the ring Z- and a; = —^x tr_i_(_ t for each t £ Z. There 
t 9 t 

exist z(l/) G Z ( O ^ t ^ M - 1 , i/ = 1,2,. . . ) such that lim z[v) = xt. Since 
I/—>oo 

— J2xtrt G Z*- , there exist j/*") G Z (i/ = 1) such that lim yW = —Y,xtrt 
q t iz-foo <? t 

= a0 . For 0 = t = M - 1 and i/ = 1,2, . . . put 

9 - y M - £ ^ t V , for i = 0 , 

zt
H for 1 = t = M - 1. 
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Then we have x^ G Z and Ylxt rt — QV^u) — 0 (mod g) (in Z) . Hence 
t 

&H = £ a ^ 5 * G J for each v = 1, 2 , . . . , where a\v) = — £ ^ " V - i + t . 
* Q t 

м - i 

Ľ 
Since lim q • y^) = £ xtrt, we have lim XQ = lim g • y(") — £ xv rv 

= xo , hence lim x^ = xt for each 0 < t < M—1, which implies lim a,- = ai, 
iV—>CO I / — + 0 0 

lim a^ = a and a G 7 - . The inclusion K C In follows. 
*v—+oo 

III. According to 2.7 there exists a basis {/?i,... ,/3;v+i} of the Z-module I 
and according to 3.2 it forms a basis of the Z- -module In. There exist pk G R 
such that pk J2r-isi = Q'Pk ( l = fc = JV + l ) . 

i 
Let a G ITT. Then there exist bk G Z- such that 

Iv+i 
a=Yl bbfa • 

k=i 

jv+i jv+i 
Put p = __ fekpk . Then p € Rn and we have p-J2r-iSl = __ 6^Pk £ r - i s * 

fc=l i fc=l i 

= q • a . The inclusion I- C J follows immediately. 

3.4. P R O P O S I T I O N . JVe have 

l- = lnnR~. 

P r o o f . The inclusion I~ C In n I2~ follows immediately from the equality 
I~ = / n i ? ~ . Let a G 7 ^ 0 ^ " and put as in 2.9 # 0 = {1 < k < M-l : rk odd} . 
According to 2.7 and 3.3 the system S(K°) = {7*. : k G i f 0 } U {7,6} forms a 
basis of the Z-module J- . Hence there exist c*.,c,d G Z- (k G K° ) such that 

a = ^2 c*7k + c7 + dl • 
fc€K° 

Then 

i ^ fcGK0 

Since a G i2_ , we have for each i G Z: 

i J ^ c f c ( r_ i r f c - r_ i + f c ) + cr_ i + d 
q 

keк° 
+ - 22 ck(Г-i+NГk - Г_ѓ+тv+fc) + CT-І+/V + d = 0 . 

kєк° 
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According to 1.1 

J2 ck(rk-l) + cq + 2d = 0. 
keK° 

Therefore c = 2c' for an 7r -adic integer c' and 

J2ck^-=c'q + d. 
keK° 

Then according to 2.9.3 

^ ckak + c'a0 = ^2 cWk + {c'q + d)6 + cy - c'q6 
keK° keK° 

= ^T ck-yk + cj + d6 = a. 
keK° 

The proposition follows from 2.9.2 and 3.2. 

3.5. R e m a r k . ( I w a s a w a [5, Section 2]) makes a mention of the formula in 
3.4 but his proof is based on other facts. Another proof of the equality In = J 
from 3.3 and Proposition 3.4 is also given in W a s h i n g t o n ' s book [21, §6.4, 
Lemma 6.2]. 

3.6. THEOREM. Let Af C M be Jj-submodules of the Z -module S with finite 
bases possessing the same number of elements (thus the index [M : AT] of the 
Z-module Af in Z-module M is finite). Let (M/Af)n denote the 7r -Sylow sub
group of the factor group (M/Af, +) considered as a Z?- -module in the natural 
way. 

Then the Z^ -module (M/Af)^ and the Zn -quotient module M^/Af^ are 
isomorphic (canonically). The Z^ -module Afn has a finite index in Z?- -module 
Mn , which equals the IT -part [M : Af]n of the index [M : Af] . Hence 

(M/Af)n =* M*/K , [Mv : K] = [M:Af]n. 

P r o o f . 

I. We have [M : Af]n = 7ra, where a is a non-negative integer. Then 
7ra • M c Afn. 

Let / Ix, . . . , Hm be a basis of the Z^ -module M . According to 3.2 / / i , . . . , \xm 

is a basis of the Z^ -module M^ . For a £ Mn , there exist a i , . . . , a m G Zn 

such that 
a = ai/xi H h amfim . 
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Each integer a* has the form: a; = Xi + 7ray;, where Xi G Z, 0 _ Xi = na 

and j/i G ZT- . Put 
X(a) = xiiii H h xm/xm . 

Then x ( a ) € M, x ls a mapping from -M^ into .M, a — x ( a ) £ Mr and 
for a,/3 € -/Vt-r , c G Z^ , C G Z , C = C (mod 7ra) we have 

X ( a + /3) = x(a) + x(/3) (1ra • A4), X(ca) = cX(a) (7ra • M). 

Let 0 be the projection from M/M on the 7r-Sylow subgroup (M/M)n of 
the additive group M/M. Denote by tj) the canonical mapping from M on 
M/M and put a = 0 o ^ o X . Then a is a homomorphism from the Z^ -module 
A4-T into the Z^ -module (M/M)n . 

II. We show that 

M fl A/V = {a G At : order of a + M in M/M is not divisible by 7r} . 

Let a € M nMn and let TT* • y be the order of a + IV in M/M ( x , y G Z) , 
x _ 0? 2/ > 0 , ~ \ y- If -y i ---- j* /m 1s a basis of the Z-module A/", then 
according to 3.2 v\,..., i/m is a basis of the Z^ -module Mn , hence there exist 

m 
c i , . . . , cm G ZT- such that a = ~~] Cjjj . If y • Cj G Z for each 1 < j < m, then 

3 = 1 

y • a G M, thus x = 0. If there exists 1 < j < m such that y • cj ^ Z, then 
nx • y • Cj ^ Z, hence TTX • y • a ^ JV, which is a contradiction. The converse 
inclusion is obvious. 

III. From the formula in II we get that the kernel of (/) o ip equals M fl Mn . 
Since a - x (a ) G Mn (a € Mn ), it holds that x~X(M ^Mn) = Mw . It follows 
that the kernel of a is equal to Mn . 

The mapping (j) o ip is surjective. For /i G M we have /x — x(/I) G A4 fl A/"--, 
hence 0oi/3(/i) = cr(/x), which implies that a is surjective as well. This completes 
the proof. 

We obtain from this theorem and from 2.9.2, 2.7 and 2.11 

3.7. T H E O R E M . We have 

(a) [R~ : / - ] = (h-)n ( I w a s a w a ) , 
(b) [Rl:h] = (h-)«, 
(c) ,/.:«,={; *"*i 

I 2 /or 7r = 2 . 

The part (a) is due to I w a s a w a [5, (5)]. 

We obtain in a similar way as in 1.4 J2* = In + R~ , which implies: 
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3.8 THEOREM. The quotient-rings R^/I- and R*/I~ a r e isomorphic 
(canonically). 

This theorem can be proved by means of 3.7 (a), (b) as well or from 1.5 
and 3.6. 

3.9. PROPOSITION. Let M, N be Z -submodels of the Z -module S with 
finite bases and let M C\ N = 0 . Then 

(M 0 N)- = M- 0 N- . 

P r o o f . The results follow easily from 3.2. 

We obtain from this proposition and from 2.9.4 and 3.7(c): 

3.10. P R O P O S I T I O N . For - ^ 2 we have 

U = I~@bl^. 

(Note 67^ = SRn .) 

4. Rummer 's e lemen t s 

In the last three Sections we will assume n = 0, hence 

p - i 
q = p, M = p — 1, IV 

2 ' 

the group G has order p — 1, etc. For the sake of simplicity we put 

Һ — ҺQ . 

4.1. D E F I N I T I O N . For i,p€Z put 

_ ( 1 for ri + ri+p >p, 
lp \ 0 for n + ri+p < p, 

ACp — y K — ipS £ j i t . 
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4.2. P R O P O S I T I O N . Let i,p e Z . 

(a) If p = N (mod M), then Kip = 1 and KP = rc/y = 8. 
(b) Let p^N (mod M ) . Tfcen 

( b l ) Kip + «i+/Vp = 1, 

(b2) Kip = — (n + r i + p - r i + ( 7 ) , w/iere a = ind(r p + 1), 

(b3) Kip = 

(b4) Kip = 

^•(гt + г i +p)], 

^ ( l + r p ) ] - ^ 

P r o o f . The assertions (a), (bl), (b2) and (b3) are obvious. We get (b4) 

from the relation n+p = r^p — p\ —r^ p and (b3) 

^ip — jrг(l+rp) -nrp ł п ( l + Гp) -rirp 

4.3 . PROPOSITION. For each peZ we have Kp e I• 

P r o o f . Since Kjy = 8 E / (2.4), we can assume 0 < p < p — 2, p ^ N. 
Put ind (rp + 1) = a and 

1 for £ = 0 or t = p in case p ^ - 0 , 

2 for £ = 0 in case p = 0 , 
%t — \ 

— 1 for £ = a , 
0 for 0 < t < p - 2 , t<£ {0, p, a} . 

Then ][] x t r* = 0 and for each i G Z we have — ^ X t r . ^ = — (r_; + 
* P t P 

r-i+p — r-i+(T) = K-ip according to 4.3 (b2). This concludes the proof. (Note 
that it follows also from 4.9.) 

4.4. R e m a r k . K u m m e r [7, §11, §12] operated with these elements KP 

( 0 < p < p — 2, p T-= IV) and proved that these elements annihilate on the 
class group T of the p t h cyclotomic field. For this reason we call the elements 
Kp (p E Z) Kummer's elements. 

In [15] the following elements from R~ were considered: 

<A? =Yla-iind(i+1)st (°<3 <N -I), 
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where for i, p G Z 

<*ip = | _ j 

1 for ГІ + Гi+p < p, 

for Гi + Гi+p > p. 

The following proposition was shown in [15, Theorem 3.3, Consequence 3.4 
and conclusion of the proof of Theorem 3.6]. 

4.5. P R O P O S I T I O N . 

(a) | d e t ( a i i n d ( i + 1 ) ) | 0 < i , J<N-I = 2N~1h~ . 

(b) For integers p ^ IV ^ a (mod M) the equality 

ocip — otia for each i G Z 

is satisfied if and only if a = p (mod M) or 
a = ind(p — 1 — rp) (mod M). 

(c) The elements cf)j (0 < j < N — 1) form a basis of the Z p -module I~ . 

Since cti+Np = — c*;p (p^ N (mod M ) ) , we have 

| d e t ( a _ i i n d ( j + 1 ) ) | 0 < 2 , J<N-I 

= |det(a i +7Vind(j+i))|o<i,j</v-i 

= | d e t ( a i i n d ( j + 1 ) ) | 0 < i , j < I Y - i = 2 " h~ 

according to 4.5 (a). This determinant is the determinant of the transition matrix 
from the basis Si = sl(l — sN) (0 < i < N — l ) o f the Z-module R~ to the 
elements fa (0 < j < N - 1). Thus we get from 3.2, 3.6 and 3.7 (a): 

4.6. P R O P O S I T I O N . 

(a) | d e t ( a _ i i n d ( j + 1 ) ) | o < i , j<jv-i = 2N~1h~ . 

(b) The elements (f)j (0 < j < N — 1) form a basis of the Z-module I~ 
for each odd prime ~ . 

The parts (a) and (b) of the following proposition are obvious and the part 
(c) follows from 4.5 (b). 

4.7. PROPOSITION. Let i,j,p,a e Z . Then we have 

\&) OLip = 1 2>Kip . 

(b) fa = S - 2«; i n d ( j + 1 ) (0 < j < N - 1). 

(c) For p ^ N ^ a (mod M) the equality Kip = K^ for each i G Z 
is satisfied if and only if a = p (mod M) or a = ind(p — 1 — rp) 
(mod M). Hence KP = KG if and only if a = p (mod M) or a = 
ind(p - 1 - rp) (mod M ) . 
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4.8. THEOREM. Kummer's elements 

«indO+i) (0 < j < /V - 1 ) , KN = 6 

form a basis of the 7L -module I. 

P r o o f . According to 2.3 the elements et = sl(l - sN) (0 < I < N - 1) 
N-l 

and e = Yl s* f ° r m a basis <S* of the Z-module i?* . For 4.2 (bl) we have for 
i=0 

peZ: 
N-l 

np=^2 (K-IP - !)c- + £ (p^N ( m o d M)) i 
i=o 

N-l 

Kp = KN = 8 = Y^ {~l)ei +2e (P = N (m o d M)) • 
l=0 

Thus the transition matrix C from the basis <S* to Kummer's elements 
K = {rc i n d ( j + 1 ) : 0 <j <N - l}\j{nN] has form CT = (c y ) (0 < i , j < JV), 
where 

f «-tindy+i) - 1 for 0 < z, j < /V - 1, 

1 for % = N , 0 < j < N - 1, 

-1 for 0 < z < 7 V - 1 , j = N, 

2 for i = j = N . 

According to 4.7(a) rc_iind(j+1) = -^-(1 - a _ i i n d y + 1 ) ) , hence 

i-DN 
detC= K J -detD, 

where D = (dij) (0 < i, j < N) and 

r 1 + a_tind(i+i) for 0 < i , j < N - 1, 

1 for i = TV, 0 < j < N - 1, 

2 for 0 < i < N , j = N. 

If we subtract the last row of the determinant of D from the others, we get 

d e t i ) = 2 d e t ( a _ i i n d ( i + 1 ) ) ( 0 < t , j<N-l). 

Proposition 4.6 (a) gives then 

| d e t C | = f r 

aud Main Theorem 2.7 completes the proof. 

Using 4.2 (b4) we obtain the following relation between Kummer's elements 
and elements 7 's . 
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4.9. P R O P O S I T I O N . We have for 1 < j < p - 2 : 

(a) rCindj = 7ind(j+l) "~ 7indj i 
3 

(b) ] ~ ^indi/ = 7ind(j+l) • 
v=\ 

4.10. R e m a r k s . 

To show the decomposition of the Lagrange resolvent K u m m e r ([7, 
p. 363]) used in fact the following equality: 

4 .10.1. 
p - 2 

/ \ ^indiv = 7ind(p-l) = 7 - S . 
v=\ 

V a n d i v e r [20, Section 1] himself was interested in transformations of 
V — 1 Rummer's elements KP (0 < p < p — 2, p ^ — - — ) and he obtained, using 

4.9(b), in fact the equality ([20, (3)]): 

4.10.2. 

3 

~ ^2 K[ndl/ ~ JS " ^indy+l) ( 1 < 3 < P ~ 2 ) 
5 2 

i / = l 

since s ^ T i n d O + i ) = j& ~ 7ind(j+i) ( 2 - 5 ( a ) ) -

When operating with Fermat's equation, F u e t e r [3, (V)] showed in essence 
4.9(a). 

Denote q{ = TTi ~ n + l for i G Z . Then 

7i = 5 Z 9 - i S ' = X^9iS~1' *fc7i = X l 9 - i + f c s t = X^ 9 i + f c S _ t ( f c e Z ) -

We have 

<7t+fc = rr. i+k 

P 

ГiГk+l 

rr^k 
— r 

ГiTfc 

L p 

since r^k = n+jfe + p 

It follows 

p 

ГiГк 

+ 
j.fc+1-i г r fc-

— Г 

P J LpJ > < -
nrfc 

L p J 

and r fc = Гk + p 
г r k 

L p 
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r-fc + l 1 
[—1)7 ( 0 < k < P - 2 ) , which is 

a slight modification of F u e t e r 's proof of (IV) in [3]. 

We can obtain from 2.7 and the relation qi+N = r — 1 — qi on the basis of 
4.10.3: 

4.10.4. PROPOSITION. Let K C {0, l , . . . , p - 3} have the basis property, 
\K\ = _V - 1 and N - 1 <£ K . Then the system 

{яfc7i = £?- .+*«*: fcЄK}u{7,г} 

forms a basis of the X-module I. 

For a £ Z, p f a denote <j(a) the Fermat quotient with base a (with respect 
to the prime p), thus 

/ x q P " 1 - 1 
q(a) = . 

v ; p By L e r c h [9, (8)] we have 

9 ( a ) _ ^ K - 2 [ ^ ] (modp). (L) 
X = l 

From the considerations of F u e t e r [3] leading to his formula (VII) we can 
formulate the following: 

4.10.5. For 0 < h < p — 2 there exists /3h G R such that 

Vh = ^2 r-i q(r-i+h)s
l + pfih , 

i 

where uh = r-hs
h ]£ r_fc Ik € I • 

Proof . We have 

«fc = £ r-,r_fc £ [ I f ^ ] .<+* = £ S< £ r_hr_, 
k i i k 

r-i+hrk 

According to L e r c h 's Theorem (L) the following holds 

r-iq(r-i+h) = r-ťУjГi-_/lr-fc ^-i+liУfe] 
P 

(mod p) 

= £ r _ h r _ J ^ Í ± ^ l (modp), 
p J 

which concludes the proof. 
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5. The Stickelberger ideal mod p 

Remind that we assume n = 0, thus 

v- 1 q = p, M = p - 1 , N = £--—, e t c 

Denote further by: 

Z(p) the ring of residue classes mod p , thus Z(p) = Z/pZ; 
the elements from Z are often considered as the elements from Z(p), 

R(p) = Z(p)[G] the group ring of G over the ring Z(p); thus 

R(P) = \ ~Z aist : ai ~ %(P) \ for a = 5~ a>iSl 6 R(p) we put aj = a;, 
^ i ' i 

where j , z E Z, 0 < i < M - 1, j = i (mod M), 

^*(P) = { a = zC ai5* € R(p) : ak + ak+N = ai + ai+N for each fc, Z E Z > , 

R~(p) = \a = ~~ aiS1 G i?(p) : a*. + afc+jy = 0 for each k £ Z \ , 

i(p) index of irregularity of p ; thus i(p) = card< 1 < a < +—-— : p/B^a \ ? 

where F?2a mean the Bernoulli numbers, 
if) the canonical mapping from Z onto Z(p) (ip(a) = a + pZ, a E Z) . 

The mapping -0 will also be considered as the mapping from R onto 
R(p) in this way: 
For a = ~~°>isl ^ -R we have V>(a) = ]C VK0*)** € ^ ( P ) • 

Obviously, </)(#*) = -R*(p), </>(#") = -R"(p) • 
J(p) = ip(I) the Stickelberger ideal of the ring i?(p), 

I~(p) — V>(^~) the Stickelberger ideal of the ring R~(p) • 
J?(p), i?*(p), R~(p), I(p), I~(p) are considered as Z(p)-modules (hence 

vector spaces over the field Z(p)). 

The following addition to Iwasawa's class number formula (0.1) was shown 
in [19, 2.2]: 

5.1. T H E O R E M . (Skula) 

[R-(p):I-(p)]=pi{p). 

We show a similar addition to Sinnott's formula (0.2): 

5.2. T H E O R E M . 

[i?*(p):/(p)]=p^). 

First we prove the following lemma: 
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5 .3 . LEMMA. For Z(p) -modules R*(p), R~(p), I(p) and I~(p) we have 

(a) R*(p) = R~ (p) © eZ(p) = R~ (p) © 6R(p), 
(b) I(p) = I-(p)(B6R(p). 

(The elements £, 6 are considered to be elements from R(p) • Note 
6R(p) = 6Z(p).) 

P r o o f . The assertion (a) is obvious. According to 2.11 we have [/ : I0] = 2 , 
where 1° = I~ ®8R. Thus I(p) = ip(I°) = </>(/") + 8R(p). The lemma follows 
by noting that 8 £ R~(p). 

P r o o f of T h e o r e m 5.2. According to 5.3 we have 

[R*(p):R-(p)]=p, [I(p):r(p)]=p. 

Using 5.1 we get 

pKP>+- = [R*(p) : R-(p)] . [R~(p) : r(p)] = [R*(p) : I~(p)] 

= [R*(p) : I(p)] • [I(p) : r(p)] = [R*(p) : I(p)] -p. 

The theorem follows. 

Let l < L < p - 2 , L odd. Put 

~L = ^2r-iLs1' eR~(p). 
i 

It was shown in [18, 3.3, 6.4] (the element aL is designated by aL) that the 
system {aL : 3 < L < p — 2 , L odd, Bp-L ^ 0 (mod p)} U {a\ = 7} forms 
a basis of the vector space I~(p) over the field Z(p). Together with 5.3 (b) we 
get 

5.4. P R O P O S I T I O N . The system 

{aL: 3 < L < p - 2 , L odd, Bp-L =2_ 0 (mod p)} U {-y,6} 

forms a basis of the vector space I(p) over the field Z(p). 

6. R u m m e r ' s sys tem of cong ruences 

Considering the first case of Fermat's Last Theorem, K u m m e r [8] intro
duced a certain system of congruences, which can be transformed in the following 
form: 

^ - 2 i W - 5 2 i - - 0 ( m o d p ) , i < j < £ - Z - A , (K) 

P - i 
where (fi(t) = ~~] (—l)v 1vl 1tv (1 < i < p — 1) are Mirimanoff polynomials. 

v=l 
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K u m m e r [8] also proved: 

If (x,y,z) is a solution of the first case of Fermat's Last Theorem 

(xp + yp + zp = 0 , p \ xyz), then the numbers — , — , . . . must fulfil the 
y % 

congruences (K) and the congruence 

<pp-i(t) = 0 ( m o d p ) . 

In [17] we introduced the'following system of congruences depending on the 
Stickelberger ideal I~ : 

fa(t) = 0 (mod p) (aelp), 

ipp-x(-t) = 0 ( m o d p ) , 

where for a — ]T] ai sl G Rp (or a £ R(p)) put 

i 

P - 1 

fa(t) = 22a~'mdv^V (v eTL, 0<v<p, vv = 1 ( m o d p ) ) . 
v=l 

From the results of [17] we can find that the system (S) and (K) are equiv
alent in the following sense: 

6 .1 . PROPOSITION. Let r e Z, r ?- — 1 ( m o d p ) . Then r is a solution of 
the system (K) and the congruence ipp-i(t) = 0 (mod p) if and only if —r is 
a solution of (S). 

The polynomial c/?p_i(£) does indeed occur among the polynomials fa(t) 
since we have fs(t) = —(pp-i(—t) (mod p). Then we get from 5.3 (b): 

6.2. PROPOSITION. The system (S) is equivalent to the following system of 
congruences or equations: 

fa(t) = 0 (modp) (aeJ), 

where J means Ip or I, or 

fa(t) = o (aei(P)). 

Note that fGL(t) = —<pL(—t) (mod p) for elements aL (1 < L <p — 2) and 
the "equivalence" between (K) and (S) can be obtained by the choice of the 
basis 

{aL : 3 < L < p - 2 , L odd, Bp-L^0 (mod p)} U {7,6} 
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of the vector space I(p) (5.4). 

L e L i d e c ([10], [11]) introduced and investigated for 1 < n < p — 2 the 
following polynomials: 

p - i 

Ln(t) = £ vt*-l-v ((n + 1) • n • v < v ), 
v=l 

where the inequality (n + 1) • n • v < v means that m < v for 1 < ra < p — 1, 

m = (n + 1) • n • v (mod p). 

Consider the following system of congruences: 

Ln(t) = 0 (mod p) (1 < n < p - 2 ) , 

¥ > P - I ( — ! ) = 0 ( m o d p ) . 

In [17, (1.4)] it was shown that the system (S) and (L) are "equivalent" in 
the following sense: 

6 .3 . PROPOSITION. Let A , a be integers with the property A-cr = 1 (mod p). 
Then X is a solution of the system (L) if and only if a is a solution of the system 
(S) . 

We can obtain a proof of this proposition by choice of the basis from Rum
mer's elements 

{«ind(j+i) : 0 < j < N - 1} U {KN = 8} 

(4.8) of the Z-module I. We have namely for 1 < n < p — 2, 0 < p < p — 2, 
p — 1 

p ^ ^ r — , rp = - ( n + l )n (mod p) 

/Kp(t) = L n ( i - ) (modp). 

F u e t e r , solving the first case of Fermat's Last Theorem, derived the following 
system of congruences ([3, (VI), (VII)]): 

J i H f E O ( m o d p ) ( l < a < p - l ) , 
n = l P 

£ i t » = 0(modp)f (Fx) 
n = l 

^ q ( r i + h ) í r ť = 0 (modp) (0<h<p-2). (F 2 ) 
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If we put a = r*. ( l < a < p — 1 , 0 < f c < p — 2) ,we get 

p - i 

•м<) = £ i H r ] *n (modp)-
n = l 

p - 1 , p - 1 
Further /4(ť) = VJ -±-ť" (mod p ) , / 7(ť) = _ ť" (mod p) and 

П = l П v = l 
fUh(t) = Yl <l(ri+h)tri (mod p ) . (Note that 1 is no solution of (Fi) (a = p— 1.)) 

This follows from 

6.4. PROPOSITION. The system congruences (Fi) and (S) are equivalent. 
Each solution of (S) is also a solution of the system of congruences (F2). 

R e m a r k . Suppose 0 < h < p — 2. Put a = rh and n = r_i for 
0 < i < p - 2. Then 

ПP-IПP-I _ rP-i — —nrP-2 

a n r-i+h — Pr-i+h an (mod p2) 

since an = p an 
L p 

+ r-i+h. Hence 

a P - i _ 1 + flP-i ( n P - i _ 1) _ (rp_-lh - 1) = - P r 

which implies 

P-2 
i+h 

an 
L P 

(mod p 2 ) , 

g(rh) + q(r-i) - q(r-i+h) = - т _ Д 

MultІplyІПg Ьy Г/гГ.î WЄ get 

an 
- p 

(mod p), 

rh(r_iq(rh) + r-{q(r_i) - r _ ^ ( r _ i + / l ) ) = - — (r-{rh - r _ i + / l ) (mod p ) . 

Therefore according to 4.10.5 there exists vh G R such that 

rli ( 9 ( ^ ) 7 + ̂ 0 - PPO ~uh+ p(3h) = --yh + pvh , 

which implies existence of an element fih E R such that 

-yh = 7 7 ^ - r ^ o - rhq(rh)-y + p/x^ (0 < /i < p - 2 ) . (A) 
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We get from (A): 
each solution r of the system (F2), r ^ 1 (mod p) and the congruence 

P - i j 
fs(t) = ]T — ^ n ( m ° d p) is a solution of the system (S). 

n = l n 

A c k n o w l e d g e m e n t . T . A g o h called my attention to this implica
tion ( ( F 2 ) ==> (S)), which was proved by him. The equality (A) is a translation 
of Agoh's formulas using polynomials to the language of the group ring R. 

B e n n e t o n [2] considered the following system of congruences 

p - i 

] Г vť = 0 (mod p) ( 1 < n < p - 1 ) , (B) 
v=l 

where vn means the least positive residue of vn mod p . (Quotation from [4, 
Theorem L3 (h)].) He proved that for each solution t of (K) ( t ^ — 1 (mod p)) 
—t is a solution of (B), therefore each solution of (S) is a solution of (B) . 

For i,p E Z put 

ßp^Ysß-ipS^R. 

Then we have 

6.5. P R O P O S I T I O N . 

(a) /3P = K$SP (E / for each integer p (no is Rummer's element), 

(b) fPp(t)= Zap (55i>f), 
v=l L 

where 1 < n < p — 1 and p = ind n , hence 
(c) each solution of (S) is a solution of (B) . 

Note that A g o h [1] proved in fact both systems (S) and (B) are equivalent 
in case 2 is a primitive root mod p. 
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