Mathematica Slovaca

Štefan Porubský

Identities involving covering systems. I.

Mathematica Slovaca, Vol. 44 (1994), No. 2, 153--162

Persistent URL: http://dml.cz/dmlcz/136606

Terms of use:

(C) Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

IDENTITIES INVOLVING COVERING SYSTEMS I

ŠTEFAN PORUBSKÝ ${ }^{1}$
(Communicated by Milan Paštéka)

Abstract

It is shown in this paper (following an idea of J. Beebee) how the notion of the covering system of congruences can be used to generalize some identities involving Bernoulli numbers and polynomials.

1. Introduction

In [5], V. N a mias used Stirling's series

$$
\begin{equation*}
\Gamma(n)=n^{n-1} \mathrm{e}^{-n} \sqrt{2 \pi n} \exp \left(\sum_{m=2}^{\infty} \frac{B_{m}}{m(m-1) n^{m-1}}\right) \tag{1}
\end{equation*}
$$

and the Gauß-Legendre duplication and triplication formula for the gamma function Γ to derive the following two recurrence relations for the Bernoulli numbers $B_{1 \prime \prime}$:

$$
\begin{aligned}
& B_{m}=\frac{1}{2\left(1-2^{m}\right)} \sum_{s=0}^{m-1} 2^{s}\binom{m}{s} B_{s} \\
& B_{m}=\frac{1}{3\left(1-3^{m}\right)} \sum_{s=0}^{m-1} 3^{s}\left(1+2^{m-s}\right)\binom{m}{s} B_{s} .
\end{aligned}
$$

AMS Subject Classification (1991): Primary 11B68. Secondary 11A07.
Key words: Bernoulli numbers and polynomials, Covering systems of congruences.
${ }^{1}$ Research supported by the Grant Agency of the Czech Republic, Grant \#201/93/2122.

ŠTEFAN PORUBSKÝ

V.Namias further conjectured that an infinity of related recurrences can be proved for Bernoulli numbers, all giving the same Stirling's series (1).

The first recurrence coincides essentially with identity ($\mathrm{S}_{\mathrm{III}}$) proved by J. Stern in [11].

In [2], E. Y. Deeba and D. M. Rodriguez proved Namias. conjecture with the recurrence relations

$$
\begin{equation*}
B_{m}=\frac{1}{n\left(1-n^{m}\right)} \sum_{s=0}^{m-1} n^{s}\binom{m}{s} B_{s} \sum_{t=1}^{n-1} t^{m-s} \tag{2}
\end{equation*}
$$

Their proof is based on an elementary procedure (without any recall to GaußLegendre multiplication formula), using the elementary finite geometric series summation

$$
\begin{equation*}
\frac{1-\mathrm{e}^{n x}}{1-\mathrm{e}^{x}}=\sum_{m=0}^{\infty} \sum_{j=0}^{n-1} \frac{j^{m} x^{m}}{m!} \tag{:3}
\end{equation*}
$$

and the formal power series generating function for Bernoulli numbers.
In [1], J. B e e bee observed on one hand that this reasoning can be further simplified, using the Raabe multiplication formula for the Bernoulli polynomials, (see (15)). On the other hand, he observed that the partition of the set of nonnegative integers into n arithmetic progressions with respect to the same modulus n, which lies behind (2), can be replaced by an arbitrary disjoint covering system of arithmetic progressions. These enabled him to extend further the result of
E.Y.Deeba and D.M.Rodriguez. Moreover, distinct disjoint covering systems formally lead to different recurrence relations. J. B e e bee showed that this result can even be reversed in the sense that his relations characterize the underlying system of arithmetical sequences as a disjoint covering system. In this paper, we shall present a further extension of these formulas to systems. more general than disjoint covers.

Consider a system of congruence classes

$$
\begin{equation*}
a_{t}\left(\bmod n_{t}\right), \quad 0 \leq a_{t}<n_{t}, \quad t=1,2 \ldots, k, \quad k>1 . \tag{1}
\end{equation*}
$$

Let a real valued function $\mu(t)=\mu_{t}$ be defined on the system (4). Then the function \mathfrak{m} introduced in [7],

$$
\mathfrak{m}(n)=\sum_{t=1}^{k} \mu_{t} \chi_{t}(n), \quad n \in \mathbb{Z}
$$

where χ_{t} is the indicator of the class $a_{t}\left(\bmod n_{t}\right)$, and \mathbb{Z} the set of all integers, is the so-called covering function of the system (4), and the system (4) is called (μ, \mathfrak{m})-covering. The function \mathfrak{m} is periodic and its (least nonnegative) period, say n_{0}, divides the l.c.m. $\left[n_{1}, n_{2}, \ldots, n_{k}\right]$. In what follows n_{0} will always denote the (least nonnegative) period of the covering function \mathfrak{m} of the corresponding (μ, \mathfrak{m})-covering system (4).

The notion of the (μ, \mathfrak{m})-covering system includes some previously investigated notions. For instance, if $\mathfrak{m}(n)=1$ for every $n \in \mathbb{Z}$, then the ($\mu, 1$) -covering systems are just the ε-covering systems from [12]. Further, if the function μ is constant and equal to 1 , and if $\mathfrak{m}(n) \geq 1$ for every $n \in \mathbb{Z}$, then we obtain the so called covering systems. The notion of covering system was introduced by P . Erdős in the thirties as a tool in the disproof of a question of Romanoff from additive number theory (for more details see [3]).

One of the simplest nontrivial covering system is

$$
\begin{equation*}
0(\bmod 2), \quad 0(\bmod 3), \quad 1(\bmod 6), \quad 5(\bmod 6) \tag{5}
\end{equation*}
$$

Its covering function

$$
\mathfrak{m}(n)= \begin{cases}1 & \text { if } n=1,2,3,4,5 \\ 2 & \text { if } n=0\end{cases}
$$

has period $n_{0}=6$.
If the covering function of a covering system (4) is constant, say $\mathfrak{m}(n)=m$ for every $n \in \mathbb{Z}, \mu(t)=1$, then the system is called an m times covering ([8]). Prototypes of m times covering systems are disjoint covering systems, which correspond to the case $m=1$. The system

$$
\begin{equation*}
0(\bmod n), \quad 1(\bmod n), \quad \ldots, \quad n-1(\bmod n) \tag{6}
\end{equation*}
$$

is the most trivial example of a disjoint covering system. One of the surprising results involving disjoint covering systems says that there is no disjoint covering system with all the moduli distinct. One wide class of disjoint covering system, the so called natural covering systems ([6]), can be obtained by successive splitting of the set of all the integers into arithmetic progression, e.g.

$$
\begin{array}{llll}
1(\bmod 2), & 2(\bmod 4), & \ldots, & 2^{f-1}\left(\bmod 2^{f}\right) \\
0\left(\bmod n 2^{f}\right), & 2^{f}\left(\bmod n 2^{f}\right), & \ldots, & (n-1) 2^{f}\left(\bmod n 2^{f}\right) \tag{7}
\end{array}
$$

for arbitrary positive integers f, n.

ŠTEFAN PORUBSKÝ

Obviously, m disjoint covering systems taken together form an m times corering system. Our question whether there is an m times covering system which is not a union of m disjoint covering systems was answered by S.L.G.Choi, who essentially constructed the following twice covering system ([8]) which is not a union of two disjoint covering systems:

$$
\begin{array}{lllll}
1(\bmod 2), & 0(\bmod 3), & 1(\bmod 3), & 2(\bmod 6), & 0(\bmod 10) . \\
4(\bmod 10), & 6(\bmod 10), & 8(\bmod 10), & 2(\bmod 15), & 5(\bmod 30) . \tag{8}\\
11(\bmod 30), & 12(\bmod 30), & 22(\bmod 30), & 23(\bmod 30), & 29(\bmod 30) .
\end{array}
$$

The reader may consult [9] for more information about covering systems and related notions.

2. Identities

We shall employ the following generating series for the Bernoulli polynomials $B_{r}(x)$

$$
\begin{equation*}
\frac{z \mathrm{e}^{x z}}{\mathrm{e}^{z}-1}=\sum_{r=0}^{\infty} B_{r}(x) \frac{z^{r}}{r!}, \quad|z|<2 \pi \tag{9}
\end{equation*}
$$

and for the Bernoulli numbers

$$
\frac{z}{\mathrm{e}^{z}-1}=\sum_{r=0}^{\infty} B_{r} \frac{z^{r}}{r!}, \quad z<2 \pi
$$

These expansions immediately imply that $B_{r}=B_{r}(0)$ for every $r \in \mathbb{Z}^{*}$, where \mathbb{Z}^{*} is the set of nonnegative integers, and the identity

$$
\sum_{r=0}^{\infty} B_{r}(x) \frac{z^{r}}{r!}=\mathrm{e}^{x z} \sum_{r=0}^{\infty} B_{r} \frac{z^{r}}{r!}
$$

implies the explicit formula

$$
\begin{equation*}
B_{r}(x)=\sum_{t=0}^{r}\binom{r}{t} x^{r-t} B_{t} \tag{10}
\end{equation*}
$$

In 1973, A.S.Fraenkel [4] proved that (4) is a disjoint covering systems if and only if

$$
\begin{equation*}
B_{r}=\sum_{t=0}^{k} n_{t}^{r-1} B_{r}\left(\frac{a_{t}}{n_{t}}\right) \tag{11}
\end{equation*}
$$

for every $r \in \mathbb{Z}^{*}$. In [7], this relation was extended to general systems of congruences, namely:

IDENTITIES INVOLVING COVERING SYSTEMS I

LEMMA 1. The following statements are equivalent:
A. The system (4) is (μ, \mathfrak{m})-covering.
B. For every $r \in \mathbb{Z}^{*}$ we have

$$
\begin{equation*}
n_{0}^{r-1} \sum_{n=0}^{n_{0}-1} \mathfrak{m}(n) B_{r}\left(\frac{n}{n_{0}}\right)=\sum_{t=1}^{k} \mu_{t} n_{t}^{r-1} B_{r}\left(\frac{a_{t}}{n_{t}}\right) \tag{12}
\end{equation*}
$$

For m times covering systems the left hand side has a more simple form ([8]):
LEMMA 2. The system (4) is m times covering ($m \in \mathbb{Z}, m \geq 1$) if and only if

$$
\begin{equation*}
m B_{r}=\sum_{t=1}^{k} n_{t}^{r-1} B_{r}\left(\frac{a_{t}}{n_{t}}\right) \tag{13}
\end{equation*}
$$

for every $r \in \mathbb{Z}^{*}$.
Since $B_{0}(x)$ is identically equal to 1 , we immediately have ([7]):

LEMMA 3. If a system (4) is a (μ, \mathfrak{m})-covering, then

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{\mu_{i}}{n_{i}}=\frac{1}{n_{0}} \sum_{n=0}^{n_{0}-1} \mathfrak{m}(n) \tag{14}
\end{equation*}
$$

J. Beebee observed that Fraenkel's identity (11), when applied to the disjoint covering system (6), reduces to a special case $(x=0)$ of the R a a be multiplication formula [10; pp. 23-28]:

$$
\begin{equation*}
B_{r}(x)=n^{r-1} \sum_{t=0}^{n-1} B_{r}\left(\frac{x+t}{n}\right) . \tag{15}
\end{equation*}
$$

Raabe's formula plays an important role in the theory of the Bernoulli polynomials.

Using a classical rearrangement of absolutely convergent series the following generalization of Raabe's multiplication formula can be proved:

ŠTEFAN PORUBSKÝ

THEOREM 1. Let x be any real number. Then a system (4) is (μ, \mathfrak{m})-covering if and only if

$$
\begin{equation*}
n_{0}^{r-1} \sum_{n=0}^{n_{0}-1} \mathfrak{m}(n) B_{r}\left(\frac{x+n}{n_{0}}\right)=\sum_{t=1}^{k} \mu_{t} n_{t}^{r-1} B_{r}\left(\frac{x+a_{t}}{n_{t}}\right) \tag{16}
\end{equation*}
$$

holds for every $r \in \mathbb{Z}^{*}$.
Proof. As in [7], the fact that (4) is (μ, \mathfrak{m})-covering is equivalent with the identity

$$
\mathfrak{m}(0)+\mathfrak{m}(1) y+\mathfrak{m}(2) y^{2}+\cdots=\sum_{t=1}^{k} \mu_{t} y^{a_{t}}\left(1+y^{n_{t}}+y^{2 n_{t}}+\ldots\right), \quad|y|<1
$$

and this is equivalent with

$$
\sum_{n=0}^{n_{0}-1} \mathfrak{m}(n) \frac{y^{n}}{1-y^{n_{0}}}=\sum_{t=1}^{k} \mu_{t} \frac{y^{a_{t}}}{1-y^{n_{t}}} .
$$

Then the substitution $y=\mathrm{e}^{z}$ and corresponding algebraic manipulation give

$$
\begin{equation*}
\frac{1}{n_{0}} \sum_{n=0}^{n_{0}-1} \mathfrak{m}(n) \frac{n_{0} z \mathrm{e}^{n_{0} z \frac{x+n}{n_{0}}}}{\mathrm{e}^{n_{0} z}-1}=\sum_{t=0}^{k} \frac{\mu_{t}}{n_{t}} \frac{n_{t} z \mathrm{e}^{n_{t} z \frac{x+a_{t}}{n_{t}}}}{\mathrm{e}^{n_{t} z}-1} \tag{17}
\end{equation*}
$$

Substituting the generating series (9) for the Bernoulli polynomials shows that the relation (17) is equivalent to

$$
\sum_{r=0}^{\infty} n_{0}^{r-1}\left(\sum_{n=0}^{n_{0}-1} \mathfrak{m}(n) B_{r}\left(\frac{x+n}{n_{0}}\right)\right) \frac{z^{r}}{r!}=\sum_{r=0}^{\infty}\left(\sum_{t=1}^{k} \mu_{t} n_{t}^{r-1} B_{r}\left(\frac{x+a_{t}}{n_{t}}\right)\right) \frac{z^{r}}{r!}
$$

which yields (16), and the proof is finished.
The identity (17) can be used to prove another form of (16). Namely, if $\{x\}$ denotes the fractional part of x, then

$$
\{x\}=\{x+a\}=\left\{\frac{x+a}{n}\right\} n
$$

for every $a, n \in \mathbb{Z}^{*}, n>0, a<n$. Thus (16) can be written in the form

$$
\begin{equation*}
n_{0}^{r-1} \sum_{n=0}^{n_{0}-1} \mathfrak{m}(n) B_{r}\left(\left\{\frac{x+n}{n_{0}}\right\}\right)=\sum_{t=1}^{k} \mu_{t} n_{t}^{r-1} B_{r}\left(\left\{\frac{x+a_{t}}{n_{t}}\right\}\right) . \tag{18}
\end{equation*}
$$

IDENTITIES INVOLVING COVERING SYSTEMS I

There is an interesting formula due to Hermite involving the integer part function ${ }^{1)}$:

$$
[n x]=[x]+\left[x+\frac{1}{n}\right]+\cdots+\left[x+\frac{n-1}{n}\right]
$$

or, equivalently,

$$
[x]=\left[\frac{x}{n}\right]+\left[\frac{x+1}{n}\right]+\cdots+\left[\frac{x+n-1}{n}\right]
$$

for every real number x and positive integer n.
Hermite's identities are in fact a consequence of the Raabe multiplication formula for the first Bernoulli polynomial $B_{1}(x)=x-\frac{1}{2}$ as the following generalization shows:

THEOREM 2. If a system (4) is (μ, \mathfrak{m})-covering, then for every real number .r we have

$$
\begin{aligned}
& \mathfrak{m}(0)\left[\frac{x}{n_{0}}\right]+\mathfrak{m}(1)\left[\frac{x+1}{n_{0}}\right]+\cdots+\mathfrak{m}\left(n_{0}-1\right)\left[\frac{x+n_{0}-1}{n_{0}}\right] \\
= & \mu_{1}\left[\frac{x+a_{1}}{n_{1}}\right]+\mu_{2}\left[\frac{x+a_{2}}{n_{2}}\right]+\cdots+\mu_{k}\left[\frac{x+a_{k}}{n_{k}}\right] .
\end{aligned}
$$

For the proof simply subtract (18) from (16) with $r=1$.
COROLLARY 1. If (4) is an m times covering system, then for every real number x we have

$$
m[x]=\left[\frac{x+a_{1}}{n_{1}}\right]+\left[\frac{x+a_{2}}{n_{2}}\right]+\cdots+\left[\frac{x+a_{k}}{n_{k}}\right] .
$$

Beebee [1] proved the following generalization of (2):
System (4) is a disjoint covering system if and only if

$$
\begin{align*}
\sum_{t=1}^{k} \frac{1}{n_{t}} & =1 \tag{19}\\
B_{r} & =\frac{1}{1-\sum_{j=1}^{k} n_{j}^{r-1}} \sum_{s=0}^{r-1}\binom{r}{s} B_{s} \sum_{t=1}^{k} n_{t}^{r-1}\left(\frac{a_{t}}{n_{t}}\right)^{r-s} \tag{20}
\end{align*}
$$

for every positive integer r.
Note that in every covering system (4) the classes can be rearranged in such a way that $a_{1}=0$, and thus in (20) the summation in the last sum can run from $t=2$.

Now we can prove the following generalization of this result:
${ }^{1)}$ I would like to thank Professor A. Schinzel for calling my attention to it

ŠTEFAN PORUBSKÝ

THEOREM 3. System (4) is a ($\mu, \mathfrak{m})$-covering if and only if

$$
\begin{align*}
& \left(n_{0}^{r-1} \sum_{n=0}^{n_{0}-1} \mathfrak{m}(n)-\sum_{t=1}^{k} \mu_{t} n_{t}^{r-1}\right) B_{r} \\
= & \sum_{s=0}^{r-1}\binom{r}{s} B_{s} \cdot\left(\sum_{t=1}^{k} \mu_{t} a_{t}^{r-s} n_{t}^{s-1}-n_{0}^{s-1} \sum_{n=1}^{n_{0}-1} \mathfrak{m}(n) n^{r-s}\right) \tag{21}
\end{align*}
$$

for every $r \in \mathbb{Z}^{*}$.
The proof is based on Lemma 1 and formula (10).
Note that for $r=0$ the right-hand side of (21) is empty, which (again) implies (14). This avoids formal splitting into two seemingly nonconnected parts (19) and (20).

For covering systems this yields:
COROLLARY 1. A system (4) is a covering with covering function \mathfrak{m} if and only if

$$
\begin{aligned}
& \left(n_{0}^{r-1} \sum_{n=0}^{n_{0}-1} \mathfrak{m}(n)-\sum_{t=1}^{k} n_{t}^{r-1}\right) B_{r} \\
= & \sum_{s=0}^{r-1}\binom{r}{s} B_{s} \cdot\left(\sum_{t=1}^{k} a_{t}^{r-s} n_{t}^{s-1}-n_{0}^{s-1} \sum_{n=1}^{n_{0}-1} \mathfrak{m}(n) n^{r-s}\right)
\end{aligned}
$$

for every $r \in \mathbb{Z}^{*}$.
For m times covering systems this yields a formula closer to that proved J. Beebee:

COROLLARY 2. A system (4) is m times covering if and only if

$$
\left(m-\sum_{t=1}^{k} n_{t}^{r-1}\right) B_{r}=\sum_{s=0}^{r-1}\binom{r}{s} B_{s} \sum_{t=1}^{k} a_{t}^{r-s} n_{t}^{s-1}
$$

for every $r \in \mathbb{Z}^{*}$.
In the introduction, we gave some examples of covering systems. Substitution of such concrete examples in the proved recurrences does not always lead to nice formulas because of the irregular assembly structure of general covering systems. So, e.g. covering system (5) gives:

IDENTITIES INVOLVING COVERING SYSTEMS I

COROLLARY 3. For every positive integer r we have

$$
B_{r}=\frac{1}{3 \cdot 2^{r}+2 \cdot 3^{r}-5 \cdot 6^{r}} \sum_{s=0}^{r-1}\binom{r}{s} B_{s} \cdot\left(6^{s}\left(2^{r-s}+3^{r-s}+4^{r-s}\right)\right) .
$$

Systems of type (7) together with Corollary 2 yield the following recurrence relations:

Corollary 4. For positive integers r, n, and $f \in \mathbb{Z}^{*}$, we have

$$
\begin{aligned}
& B_{r}=\frac{1}{2^{f+1}\left(2^{r}-1\right)+2^{f r}\left(2 n^{r}-2^{r}\left(n^{r}+1\right)\right)} \sum_{s=0}^{r-1}\binom{r}{s} B_{s} . \\
& \cdot\left(2^{f r+s}-2^{s+f}+n^{s-1}\left(2^{r(f+1)}-2^{f r+1}\right) \sum_{t=1}^{n-1} t^{r-s}\right) .
\end{aligned}
$$

For $f=0, r=m$, this identity reduces to (2) because in this case (7) reduces to (6). For $f=1$ we obtain:

COROLLARY 5. For positive integers r and n we have

$$
B_{r}=\frac{2^{r}}{2-2^{r}\left(n^{r}+1\right)} \sum_{s=0}^{r-1}\binom{r}{s} B_{s} \cdot\left(2^{s-r}+n^{s-1} \sum_{t=1}^{n-1} t^{r-s}\right)
$$

REFERENCES

[1] BEEBEE, J.: Bernoulli numbers and exact covering systems, Amer. Math. Monthly 99 (1992), 946-948.
[2] DEEBA, E. Y.--RODRIGUES, D. M.: Stirling's series and Bernoulli numbers, Amer. Math. Monthly 98 (1991), 423-426.
[3] ERDÖS, P.: On integers of the form $2^{k}+p$ and some related problems, Summa Brasil. Math. 2 (1950), 113-123.
[1] FRAENKEL, A. S.: A characterization of exactly covering systems, Discrete Math. 4 (1973), 359-366.
[5] NAMIIAS, V.: A simple derivation of Stirling's asymptotic series, Amer. Math. Monthly 93 (1986), 25-29.
[6] PORUBSKÝ, Š.: Natural exactly covering systems of congruences, Czechoslovak Math. J. 24(99) (1974), 598-606.
[7] PORUBSKÝ, Š.: Covering systems and generating functions, Acta Arith. 26 (1975), 223-231.
$[8]$ PORUBSKY, Š.: On m times covering systems of congruences, Acta Arith. 29 (1976), 159-169.

ŠTEFAN PORUBSKÝ

[9] PORUBSKÝ, S. .: Results and Problems on Covering Systems of Residue Classes. Mitt. Math. Sem. Giessen. Heft 150, Univ. Giessen, Giessen, 1981.
[10] RAABE, J. L.: Die Jacob Bernoulli'sche Function, Zürich, 1848.
11] STERN, J.: Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen, Abh. Ges€lschaft Wiss. Göttingen 23 (1878), 1-44.
12] ZNÁM, Š.: Vector-covering systems of arithmetical sequences, Czechoslovak Math. J. $\mathbf{2 4 (9 9)}$ (1974), 455-461.

Received November 29, 1993
Department of Mathematics
Prague Institute of Chemical Technology
Technická 1905
CZ-166 28 Prague 6
Czech Republic
E-mail:porubsks@vscht.cz

