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IDENTITIES INVOLVING 

COVERING SYSTEMS I 

STEFAN P O R U B S K Y 1 

(Communicated by Milan Pas teka) 

ABSTRACT. It is shown in this paper (following an idea of J. Beebee) how the 
notion of the covering system of congruences can be used to generalize some 
identities involving Bernoulli numbers and polynomials. 

1. Introduction 

In [5], V . N a m i a s used Stirling's series 

Г t n H n ^ e - v ^ e x p E , \ „,_, (1) 
\ z — ' ттì.lm. — 1 )rì. x / 

vra=2 

and the GauB-Legendre duplication and triplication formula for the gamma func­
tion F to derive the following two recurrence relations for the Bernoulli numbers 

Bn, : 

m — 1 

fl™ = 2(T^)§2"(T)B'' 
ra-1 , \ 

Bm = -r-± r Y 3*(1 + 2m~8) m BH. 
3 ( 1 - 3 - ) ^ K \s) A 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11B68. Secondary 11A07. 
K e y w o r d s : Bernoulli numbers and polynomials, Covering systems of congruences. 
1 Research supported by the Grant Agency of the Czech Republic, Grant #201/93 /2122 . 

153 



STEFAN PORUBSKY 

V . N a m i a s further conjectured that an infinity of related recurrences can be 
proved for Bernoulli numbers, all giving the same Stirling's series (1). 

The first recurrence coincides essentially with identity (Sin) proved by 
J . S t e r n in [11]. 

In [2], E . Y . D e e b a and D . M . R o d r i g u e z proved N a m i a s " 
conjecture with the recurrence relations 

m—1 / x n—1 
my 

вn = lл

 x Vиf"ďVг 
n(l-nm) Z-, W £ í 

Their proof is based on an elementary procedure (without any recall to Gaufi-
Legendre multiplication formula), using the elementary finite geometric series 
summation 

-1 
i — e _ "-—-v -^—A j x 

E-т- («) 
-—-*' rri 1 

l-ex --—' 
m=0 j=0 

and the formal power series generating function for Bernoulli numbers. 

In [1], J . B e e b e e observed on one hand that this reasoning can be further 
simplified, using the Raabe multiplication formula for the Bernoulli polynomials 
(see (15)). On the other hand, he observed that the partition of the set of non-
negative integers into n arithmetic progressions with respect to the same mod­
ulus n, which lies behind (2), can be replaced by an arbitrary disjoint covering 
system of arithmetic progressions. These enabled him to extend further the result 
of 
E . Y . D e e b a and D . M . R o d r i g u e z . Moreover, distinct disjoint cover­
ing systems formally lead to different recurrence relations. J . B e e b e e showed 
that this result can even be reversed in the sense that his relations characterize 
the underlying system of arithmetical sequences as a disjoint covering system. 
In this paper, we shall present a further extension of these formulas to systems 
more general than disjoint covers. 

Consider a system of congruence classes 

at (mod nt) , 0 < at < nt , t = 1, 2. . . . , k , k > 1 . (D 

Let a real valued function fi(t) = \it be defined on the system (4). Then the 
function m introduced in [7], 

(™) = ^2^tXt{n), n є Z , 
t=i 
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where \t 1S the indicator of the class at (modn*), and Z the set of all integers, 
is the so-called covering function of the system (4), and the system (4) is called 
(//, m)-covering. The function m is periodic and its (least nonnegative) period, 
say 7/Q , divides the l.crn. [ni, n2 , . . . , n^] . In what follows n0 will always denote 
the (least nonnegative) period of the covering function m of the corresponding 
(//. m) -covering system (4). 

The notion of the (/i, m) -covering system includes some previously investi­
gated notions. For instance, if m(n) — 1 for every n E Z, then the (/i, ^-cover­
ing systems are just the e-covering systems from [12]. Further, if the function 
// is constant and equal to 1, and if m(n) > 1 for every n £ Z, then we obtain 
t he so called covering systems. The notion of covering system was introduced by 
P . E r d 6 s in the thirties as a tool in the disproof of a question of Romanoff 
from additive number theory (for more details see [3]). 

One of the simplest nontrivial covering system is 

0 (mod2) , 0 (mod3) , l ( m o d 6 ) , 5 (mod 6) . (5) 

Its covering function 

1 if n = 1 ,2,3,4,5, 
m(n) - , v J \2 if n = 0 

lias period no = 6. 

If the covering function of a covering system (4) is constant, say m(n) = m 
for every n £ Z, /i(t) = 1 ,then the system is called an m times covering ([8]). 
Prototypes of m times covering systems are disjoint covering systems, which 
correspond to the case m = 1. The system 

0 (mod n) , 1 (mod n) , . . . , n — 1 (mod n) (6) 

is the most trivial example of a disjoint covering system. One of the surprising 
results involving disjoint covering systems says that there is no disjoint covering 
system with all the moduli distinct. One wide class of disjoint covering sys­
tem, the so called natural covering systems ([6]), can be obtained by successive 
splitting of the set of all the integers into arithmetic progression, e.g. 

l ( m o d 2 ) , 2 (mod 4) , . . . , 2 / _ 1 ( m o d 2 / ) , 

0 (mod n2f), 2f (mod n2f), . . . , (n - l ) 2 / (mod n2f] 

for arbitrary positive integers / , n . 

(7) 
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Obviously, m disjoint covering systems taken together form arr m times cov­
ering system. Our question whether there is arr m times covering system which is 
not a union of m disjoint covering systems was answered by 
S . L . G . C h o i , who essentially constructed the following twice covering sys­
tem ([8]) which is not a union of two disjoint covering systems: 

I (mod 2) , 0 (mod 3) , 1 (mod 3), 2 (mod 6), 0 (mod 10). 

4 (mod 10), 6 (mod 10), 8 (mod 10), 2 (mod 15) , 5 (mod 30). (8) 

I I (mod 30), 12 (mod 30), 22 (mod 30), 23 (mod 30), 29 (mod 30) . 

The reader may consult [9] for more information about covering systems and 
related notions. 

2. Identities 

We shall employ the following generating series for the Bernoulli polvnomials 
Br(x) 

p = _ 3 r ( a 0 f p | Z | < 2 T T , (9) ze _ 
-1 

r=0 
arrd for the Bernoulli numbers 

-r — 2 , Br —г , z < 2ҡ . 
r! ' 

r=0 

These expansions immediately imply that Br — Br(0) for every r £ Z* , where 
Z* is the set of nonnegative integers, and the identity 

r=0 r=0 

implies the explicit formula 

Br(x) = ^2 ([)xr-tBt. (10) 
t=0 ^ ' 

In 1973, A . S . F r a e n k e l [4] proved that (4) is a disjoint covering systems 
if and only if 

k 

Br = Y,^~1Br(^-) (11) 
t=o 

for every r £ Z* . In [7], this relation was extended to general systems of con­
gruences, namely: 
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LEMMA 1. The following statements are equivalent: 

A. The system (4) is (lt,m)-covering. 
B . For every r £ Z* we have 

n o - l 

n-1 £ m(n)Br(f-) =^2„tn
r
t-

1Br{f-) . (12) 
n=0 t=l 

For ra times covering systems the left hand side has a more simple form ([8]): 

LEMMA 2. The system (4) is m times covering (ra G Z , ra > 1) if and only 

if 

mBr = j^nr'Br(^) (13) 

for every r £ Z* . 

Since BQ(X) is identically equal to 1, we immediately have ([7]): 

LEMMA 3. If a system (4) is a (/i,m)-covering, then 

k no —1 

^ i - l = J - . V ) m(n) . (14) 
z=l n=0 

J . B e e b e e observed that F r a e n k e l ' s identity (11), when applied 
to the disjoint covering system (6), reduces to a special case (x = 0) of the 
R a a b e multiplication formula [10; pp. 23-28]: 

n - l 

Br(x)=nr-1YlBr(^
1)- (15) 

t=0 

Raabe's formula plays an important role in the theory of the Bernoulli polyno­
mials. 

Using a classical rearrangement of absolutely convergent series the following 
generalization of Raabe's multiplication formula can be proved: 
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THEOREM 1. Let x be any real number. Then a system (4) is (/x,m)-covering 
if and only if 

no-l 
r - 1 

71KJ 

n=0 " ' " " ' t=l 

ПQ — i л; 

г1 E - н ^ ( ^ ) = E l^Ч^f 1 - ) (iб) 
liO/els /Or every r G Z* . 

P r o o f . As in [7], the fact that (4) is (/x, m) -covering is equivalent with 
the identity 

m(0) + m(l)y + m(2)y2 + • • • = ̂  ^ty
a< (1 + yn< + y2n* +...), \y\ < 1. 

t = l 

and this is equivalent with 

n°~ l n k a 

E m(")y^r = E > T r ^ • 
n = 0 £=1 I 

Then the substitution y — ez and corresponding algebraic manipulation give 

1 n ° _ 1 n o 2 - ^ fc ,, n tz-----

— > m(n) u
 n , y — - — = > — L-777^— . (17) 

n0 ^ en°" - 1 ---—' n t en*z - 1 v 
U n=0 fc=0 

Substituting the generating series (9) for the Bernoulli polynomials shows that 
the relation (17) is equivalent to 

oo s riQ — 1 \ O C / / c x 

r=0 v n=0 7 r=0 v t = l 7 

which yields (16), and the proof is finished. 

The identity (17) can be used to prove another form of (16) . Namely, if {x} 
denotes the fractional part of x, then 

{X} = {x + a} = {2±±}n 

for every a, n £ Z* , n > 0, a < n. Thus (16) can be written in the form 

nyj 
n=0 
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There is an interesting formula due to Hermite involving the integer part 

1 unction i . 

\nx\ = \x\ + 

or, equivalently, 

x = + 

П 

x + 1 

+ ••• + 

+ ••• + 

x + 
n- 1 

x + n — 1 

for every real number x and positive integer n. 

Hermite's identities are in fact a consequence of the Raabe multiplication 

formula for the first Bernoulli polynomial B\(x) = x — — as the following 

generalization shows: 

THEOREM 2. If a system (4) is (n, m)-covering, then for every real number 
x we have 

m(0)[£J+m(l) x + 1 

Џi 
X + Oi 

Tli 
+ M2 

L n 0 . 

x + a2 

n2 

H h m(n 0 - 1 

x + ӣk 

X + ПQ — 1 

n 0 

H r- Џk 
Пk 

For the proof simply subtract (18) from (16) with r = 1. 

COROLLARY 1. If (4) is an rn times covering system, then for every real 
number x we have 

x + Oi 

П i + 
x + a2 

n2 
+ ••• + 

x + ӣk 

Пk 

B e e b e e [1] proved the following generalization of (2): 

System (4) is a disjoint covering system if and only if 

k 

t = l 

3 = 1 

(19) 

(20) 

for every positive integer r . 

Note that in every covering s}^stem (4) the classes can be rearranged in such 
a way that Oi = 0, and thus in (20) the summation in the last sum can run 
from t = 2 . 

Now we can prove the following generalization of this result: 

^ I would like to thank Professor A. Schinzel for calling my at tention to it 
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THEOREM 3. System (4) is a (/T,m)-covering if and only if 

(
n 0 - l k x 

^o"1 Y2 m(n) - Yl ^ t̂""1 ) Br 
n=0 t=l ' 

= E (r)B« • ( x>arx _ 1 -^r1 E m(">"" 
.9=0 ^ ' M = l n = l 

/Or every r £ Z* . 

The proof is based on Lemma 1 and formula (10). 

Note that for r = 0 the right-hand side of (21) is empty, which (again) 
implies (14). This avoids formal splitting into two seemingly nonconnected parts 
(19) and (20). 

For covering systems this yields: 

COROLLARY 1. A system (4) is a covering with covering function m if and 
only if 

n0-i / no — -L K \ 

K-1Em(>)-EnV1)s-
^ n = 0 t=l ' 
r-1 , x , k rip - 1 

= E L )B> • E^r^r 1 -<~l E ™("K"s 

.s=0 ^ ' ^ t = l n = l 

/Or ewen/ r £ Z* . 

For ra times covering systems this yields a formula closer to that proved by 
J . B e e b e e : 

COROLLARY 2. A system (4) is m times covering if and only if 

( m - t ^ B r ^ h B ^ a - n r 
^ t = l ' .9 = 0 ^ ' t=l 

for every r £ Z* . 

In the introduction, we gave some examples of covering systems. Substitution 
of such concrete examples in the proved recurrences does not always lead to nice 
formulas because of the irregular assembly structure of general covering systems. 
So, e.g. covering system (5) gives: 
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COROLLARY 3. For every positive integer r we have 

Br = — -1 V (T)BS • (6*(2r~* + 3 r ~* + 4 r- ' s)) . 
3 • 2 r + 2 • 3 r - 5 • 6 r ^ \sj V V n 

.s=0 v 7 

Systems of type (7) together with Corollary 2 yield the following recurrence 
relations: 

COROLLARY 4. For positive integers r . n. and / G Z* ; we have 

1 r _ 1 / A 
r ~ 2 / + ! ( 2 r - 1) + '2^ r (2n r - 2r(nr + 1)) ^ \s) *' 

. (Vr+* - 2*+f + IIs-1 (2r(/+1^ - 2 /r+1) ^ r - s ) . 
^ t=i ' 

For / = 0, r = ra, this identity reduces to (2) because in this case (7) 
reduces to (6). For / = 1 we obtain: 

COROLLARY 5. FOr positive integers r and n we have 

* = r^^gtK(y"'+""-,gV-' 
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