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ABSTRACT. The purpose of this p>aper is to show tha t BC-commutative 
semigroups and GC-commutat ive A-semigroups satisfying (5) are weakly 
exponential. 

A semigroup whose congruences form a chain with respect to inclusion is 
called a A-semigroup. A complete description of commutative A-semigroups was 
given by S c h e i n [1] and T a m u r a [2] independently. E t t e r b e e k [3] has 
obtained a generalization of their results for medial A-semigroups, T r o t t e r 
[1] has characterized the exponential A-semigroups and N a g y [5] has described 
the weakly exponential A-semigroups. 

Recall that a semigroup S is called a weakly exponential semigroup if for 
every (x,y) £ S x S and every positive integer n there is a positive integer rn 
such that 

(xy)n+rn = xnyn(xy)m = {xy)mxnyn . 

By [(>], a semigroup S is said to be conditionally commutative if ab — ba implies 
a.vb — bxa for any a, 6, x £ S. A conditionally commutative semigroup S is 
called an RC-commutative semigroup (see [7]) if for (a, b) E S x S there is an 
element x G S1 such that ab — bax. 

In this paper, we shall show that every 7?.C-commutative semigroup is weakly 
exponential. We shall define a class of semigroups whose A-semigroups are 
weakly exponential. This class contains semigroups which are not weakly ex­
ponential. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 20L99. 
K e y w o r d s : Conditionally commutative semigroup, Weakly exponential semigroup, 

A-scniigroup. 
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D E F I N I T I O N . A semigroup S is called a generalized conditionally cormmitatin 
semigroup (briefly a GC-commutative semigroup) if 

x yx = xyx2 

for every (x\ y) £ S x S. 

LEMMA 1. Let S be a GC-commutative semigroup. Then x" yx = xyx" for 

every (x, y) G S x S and for every positive integer n . 

LEMMA 2 . Let S be a GC-commutative semigroup. Then 

(xy)mxnyn = x"y"(xyr 

for every (x,y) £ S x S and for any positive integers ni. n . 

P r o o f. According to L e m m a 1, we have (xy)1"x"y" = x(y(.ry)"! 'l).r"y" 

xn(y(xy)m-1)xyn = xny((xy)m-~x)yn = x"yn{xy)m--xy = x"y"(xy)'" . where 

(xy)() is the uni ty in S1 . 

LEMMA 3 . Every conditionally commutative semigroup is a (K1-cominitiative 

semigroup. 

P r o o f . It follows from x2x = xx2 that x2yx — xyx2 . 

N o t e 1 . It is easy to show that every non-commu ta t ive idempotenl monoid 

is a (7C-commu ta t ive semigroup bu t no t condi t ionally commuta t ive . 

THEOREM 1. A GC -commutative semigroup S is weakly exponential if and 

only if for every (xry) £ S x S there exists a positive integer rn such that 

(xy)">+2 = x2y2(xyy" • M < 

P r o o f . Let S be a (7C-commu tat ive semigroup and x. y be arbitrary 

elements of S. Suppose tha t for some positive integer ni we have ( 1) . 

First we shall show tha t 

(xyr+2 = (xyr(yx1y). , 1 • 

Indeed, according to Lemma 1. we obta in (xy)'"^^ = x2y-(xy ) m ----- x2 y[.ry)'" y 

•r(-nj)"iny = x(xy)m(xy)y = x(xy)my(xy) = (xy)m (yx2y) . 

Now we shall prove that 

(xy)m+2n = x"y"UyY"¥" ^ • :?• 
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for every positive integer n. 

It is clear for n = 1. Assume t h a t (3) is fulfilled for a positive integer n. 
From (2) and Lemma 1 it follows t h a t 

(xy)'n + 2{n+]) = (xy)m+2n(xy)2 = xnyn(xy)n,+n+2 = xnyn(xy)ni+n(yx2y) 

= xn-lyn(xy)m+n(yxy) = xn+iyn+1(xy)m+n(xy) 

= xn + iyn+i(xy)n,+n + ] . 

Finally. Lemma 2 and (3) imply t h a t S is weakly exponent ia l . 

T H E O R E M 2. If every right ideal of a CC-commutative semigroup S is a two-
sided id cat. then S is weakly exponential. 

V r o o f. Suppose tha t every right ideal of a C C - c o m m u t a t i v e semigroup S 

is a two-sided ideal. Let x,y £ S. We shall show tha t 

( \4 2 2 / \2 
\xy) = x y (xy) . 

( l ea r ly . ySl is a right ideal of 5 , arid so, by hypothesis , yS1 is a two-sided 

ideal of .S\ Thus we have xy £ SyS1 C yS1 . If xy = y, then (xy)1 = yl = 

.r2y2(xy)" . Suppose t h a t xy = yz for some z £ S. By Lemma I, wre obtain 

(./7/)1 -- xy(xy)2yz = xy2(xy)2z = xy2(xy)x(yz) = xy2(xy)x2y = x2y2(xy)2 . 

The rest of the proof follows from Theorem 1. 

T H E O R E M 3 . Every RC-commutative semigroup is weakly exponential. 

'I'he proof follows from Lemma 3, Theorem 2, and [7; L e m m a 6j. 

N o t e 2 . According to Theorem 3, the result [7; Theorem 20] follows from 

!T>; Theorem L l j . 

Recall that a semigroup S is called /-archimedean if for every ('J\y) £ .S x ,S' 
there is a positive integer n such t h a t 

•rn tySy. (I) 

T H E O R E M 4. A C(."-commutative semigroup S is a band, of t-arcJrrmcdcari 
s( nitfiroups ij and only if for every {./'.//) £ S X S there is a positive integer" n 
such ill a I 

(xy)" £ x^yS . f-Vi 
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P r o o ' ; . According to [8; Lemma 1], a semigroup S is a band of f-archi-
medean semigroups if and only if for every (x, y) £ 5 x S we have 

(xy) n x2yS i=- 0 ^ Sxy2 n (xy) , 

(x2H) n xyS ^ 0 ^ S.TH n ( x ^ ) , 

where, by (z), we denote the subsemigroup of S generated by z E S. 

Suppose that S is a band of t-archimedean semigroups, and let (x, //) f_ 5 x S . 
It follows from (6) that for some positive integers n we obtain (5). 

Conversely, assume that for arbitrary pair (x.y) of elements of a GC-com-
mutative semigroup S there are positive integers n , m such that we have (5) 
and 

(yx)m ey2xS. 

Then there is an element u G S such that (yx)m = y xu. It follows from 
Lemma 1 that (xH)m+2 = x(yx)myxy = xy2(xuyx)y = xy(xuyx)y2 E Sxy2 . By 
Definition, we have (x2y)2 = x2yx2y = xyx3y G xHS and (xy2)2 = xy2xy2 = 
xy^xy £ 5xH. According to (6), S is a band of t-archimedean semigroups. 

N o t e 3 . The following example shows that a GC-commutative semi­
group S (which is a band of t-archimedean semigroups) need not be weakly 
exponential. 

By N, we denote the set of all positive integers, and I = {0.1}. Define a 
mapping IT : N —> 1 "by 

f 0 if n is even . 
ir(n) = < 

[ 1 if n is odd . 

Pu t S = I x N, and let a multiplication on S be defined as follows: 

(i, m)^), n) = (i, m -f n -f TT(z -f j 4- m)) . 

First we shall show that S is a GC-commutative semigroup. Let x. y. z f f 
and x — (i./m), y = (j.n), z = (k\p). It can be easily verified that 

(xy)z = (i, m -f n -f p -f 7i(i -f j -f m) + vr(j -f k -f /?.)) -• ./'(//.:) 

arid 

X"yX = (?', 37T1 -f 71 -f 7T(? -f j - f TO,) -f ?r(^ f j 4- /j ') -f- 7r(!O ) ) — XljX~ . 
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Now we shall show that S is a band of /j-archimedean semigroups. Let 

,r. y G £ and x = (i, m), y = (j, n). It is easy to show that 

x2y2 = (i, 2ra -f 2n + 7r(ra) -f 7r(n) + 7r(i -j- j + n)) . 

Further we have the following two possibilities: 

Case 1. i = j. Then (xy)2 = x2y2 G x2yS. 

Case 2. i ^ j . It is easy to show that 

(xy)4 = (i, 4ra + An + 4TT(1 + ra) + 3TT(1 + n)) . 

Therefore (xy)4 = x2y2u, where u = (i, 2ra -f- 2n + 37r(l -f ra,) + 27r(l -f n) — 

Trfm) — 7r(n)) , and so (xy)4 G x2yS. 

It follows from Theorem 4 that S is a band of £-archimedean semigroups. 

Finally wre shall show that S is not wreakly exponential. Denote e = (0, 1) and 

/ -- (1, I). By way of contradiction, assume that there exists a positive integer 

// such that (ef)n+2 = e2f2(ef)n. It can be easily verified that (0, 2rc + 4) = 

(r/)"+2 = e2f2(efyi = t0j 6 ^ Q 5 2n) = (0, 2n+6), which is impossible. Therefore 

S is not weakly exponential. 

THEOREM 5. Let S be a GC-commutative semigroup satisfying the conditions 

(5) . / / S is a A-semigroup, then S is weakly exponential. 

P r o o f. Assume that S is a GC-commutative semigroup satisfying (5) and 
a A-semigroup. It follows from Theorem 4 that S is a band of l-archimedean 
semigroups. By ~ we denote the corresponding congruence. According to [1; 
Lemma 2], every homomorphic image of a A-semigroup is also a A-semigroup. 
This implies that the band 5 / ~ is a z\-semigroup. It follows from [4] that 5 / ~ 
is isomorphic to G or G° or B or B° or Bl, where card G = 1, B is either a 
left zero semigroup of order 2 or a right zero semigroup of order 2. It is easy to 
show that for every (.x\ y) £ S- x 5 we have 

xH ~ x or ,rH ~ y. (7) 

Now we shall prove that S is weakly exponential. Suppose that x,y G S. 
Assume that xy ~ ;/•. Then there is a l-archimedean subsemigroup A of S such 
that .r//..r G A. It follows from (4) that (xy)7n = xux for some u G ̂ 4 and some 
positive integer ra. According to Definition, we have 

x(xy)m = (xy)mx. (H) 
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We shall show that 
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(xyr+» = ťyn(xyyn 

for all positive in tegers n. Suppose that (9) is true for some positive integer 

n. T h e n , by (8) , (9) and L e m m a 1, we have (.7;H)m + , ,"+ 1 = xnyri(xy)'nxy 

xnynx(xy)my = xn^iyn(xy)7ny = xn+iyn]](xy)w. It follows from Lemma 2 

that 

(xy)m+n = (xy)mxnyn. i lUi 

If xy ~ y. then dually we can show that (10) and (9) are t rue . 

Consequently, S is weakly exponen t ia l . 

N o t e 4 . A descrip t ion of weakly exponen t ia l A-semigroup was given i>> 

N a g y in [5]. 

R E F E R E N C E S 

[1] SCHE1N, B. M. : Commutative semigroups where, congruences form a chain. Bir... A c e 
Pol. Sci.r Ser. Sci. Math. 17; 23 (1969; 1975). 523-527, 1247 124*. 

[2] TAMURA, T. : Commutative, semigroups whose lattice, of congruences is a chain. Bui 
Soc. Math. France 97 (1969), 369 380. 

[3] E T T E R B E E K , W. A.: Semigroups Whose Lattice of Congruences Forms a Chain. I )• >; 
toral Dissertation. University of California, Davis, 1970. 

[4] T R O T T E R , P. G. : Exponential A-semigroups. Semigroup Forum 12 (,1976). 313 331 

[5] NAGY, A. : Weakly exponential A-semigroups, Semigroup Forum 40 (1990). 297 3 13. 

[6] P E T R I C H , M.: Lectures in Semigroups. Akademie-Yerlag. Berlin. 1977 

[7] NAGY, A. : RC-commutative A-semigroups, Semigroup Forum 44 (1992). 332 34u. 

[8j P O N D E L I C E K , B. : Aro/r on band decompositions of weakly exponential semigroups. .\m 
Univ. Sci. Budapest. Eotvos Sect. Math. 29 (1986), 139-141. 

Received October 25, 1993 Department nť Matticrnatic-

Faculty of Electrical Engaof r: 

Czech Technical I nt> > rsit/. 

Suchbátof-oca ..•' 

CZ-Um 2 7 Vvahe. > 

Czech HcVnbi.-< 

'My 


		webmaster@dml.cz
	2012-08-01T09:20:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




