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ABSTRACT. The purpose of this paper is to show that RC-commutative

semigroups and GC-commutative A-semigroups satisfying (5) are weakly
exponential.

A semigroup whose congruences form a chain with respect to inclusion is
called a A-semigroup. A complete description of commutative A-semigroups was
given by Schein [1]and Tamura [2] independently. Etterbeek [3] has
obtained a generalization of their results for medial A-semigroups, Trotter
[1] has characterized the exponential A-semigroups and N a gy [5] has described
the weakly exponential A-semigroups.

Recall that a semigroup S is called a weakly exponential semigroup if for
every (x,y) € S xS and every positive integer n there is a positive integer m
such that
T

(J:y — I'Ilu'l/'llv(:ny)'"l — (:I:y)m:ll,'”?/'n .
By [6]. a semigroup S is said to be conditionally commutative if ab = ba implies
arb = bra for any a,b,x € S. A conditionally commutative semigroup S is
called an RC'-commutative semigroup (see [7]) if for (a,b) € S x S there is an
element o € St such that ab = bax .

In this paper, we shall show that every RC-commutative semigroup is weakly
exponential. We shall define a class of semigroups whose A-semigroups are
weakly exponential. This class contains semigroups which are not weakly ex-
ponential.

ANS Subject Classification (1991): Primary 20L99.

Kev words: Conditionally commutative semigroup, Weakly exponential semigroup.
A-semigroup.
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DEFINITION. A semigroup S is called a generalized conditionally commutalive
semigroup (briefly a GC-commutative semigroup) if

2 2
riyxr = ryr

for every (r,y) € S x S.

LEMMA 1. Let S be a GC-commutative semigroup. Then o'y = vy’ for
cvery (r,y) € S x S and for every positive integer n .

LEMMA 2. Let S be a GC-commutative semigroup. Then

n

(zy)"a"y" = x"y" (xy)

m

Jor cvery (x,y) € S xS and for any positive integers m. n.

m "

eyt = ()™t y

)H!

Proof. According to Lemma 1, we have (ry)

.I'” (:l/(;l';(/)m_l):Ifyn — J,Tn"I/((.’I"?/)""vl.l')’_l/” — ,1-” !/” (',l'!/)m 771.1.!/ - ".N"/II('I,U
(ry)" is the unity in ST,

. where

LEMMA 3. FEvery conditionally commutative semigroup is a (GCC'-commniuiative
SemIgroup.

Proof. It follows from x%x = xa? that r2yr = ryr?.

Note 1. Itiseasytoshow thatevery non-commutative idempotent monoid
is a (GC'-commutative semigroup but not conditionally commutative.

THEOREM 1. A GC-commutative semigroup S is weakly coeponcntial if and
only if for every (x,y) € S x S there exists a positive integer m such thal

)m+‘.2 _ ,1.2!/‘_’(',1,!/)711 ] 0l

(y
Proof. Let S be a GC-commutative semigroup and .. ¢ be arbitrar,
elements of S. Suppose that for some positive integer m we have (1.

First we shall show that

(ry)" 2 = (ry)" (g 2

I

ey — '[,‘_’!/'_’(”,A!/x’m . "':,[/(J‘,‘/) U

Indeed. according to Lemma 1. we obtain (.ry)
wley)" Hy = a(ay)" (ry)y = x(ry)
Now we shall prove that

ylry) = (ey)" gy,

m

)nw} 2n e !

oty ey

)'u o N

Ly

360



ON GENERALIZED CONDITIONALLY COMMUTATIVE SEMIGROUPS

for every positive integer n.
It is clear for n = 1. Assume that (3) is fulfilled for a positive integer n.

Irom (2) and Lemma 1 it follows that

(,l'!/)”” 2(n+1) — ('I,y)znjL'Jn(,U) / (11/)7”+n+2 — J'”y” (',17:{/)'::1%'71(:{/.1,2!/‘)
— In-—ll/ (I'U)m+” UTU) _ rn—{—l n+1(1y)7n+n(‘ry)

n-+1. n+l( )m+71+] )

= Iy

Finally. Lemma 2 and (3) imply that S is weakly exponential.

THEOREM 2. [f cvery right ideal of a GC-commutative semigroup S is a Lwo-
sided ideal. then S is weakly caxponential.

Proof. Suppose that every right ideal of a GC-commutative semigroup S

is a two-sided ideal. Let @,y € S. We shall show that
(ey)" = a2y (xy)? .

Clearlyv. yS! is a right ideal of S, and so, by hypothesis, yS! is a two-sided
ideal of S, Thus we have zy € SyS' < yS*. If 2y = y, then (xy)! = y' —
22yt ey)? . Suppose that ry = yz for some z € S. By Lemma 1, we obtain
() ry(ey) iy = xy? (11/\’“" = sy (ey)e(yz) = xy(ey)r?y = 22y° (ry)?
The rest of the proof follows from Theorem 1.

THEOREM 3. Fovery RC-commutalive semigroup is weakly exponcential.
The proof follows from Lemma 3. Theorem 2, and |[7; Lemma 6].
| [

Note 2. According to Theorem 3, the result [7; Theorem 20] follows from

Theorem .17,

Recall that a semigroup S is called (-archimedean if for every (r,y) € S x5
there is a positive integer n such that
e ySy. (1)

THEOREM 4. A GO -connmmulative semgroup S is a band of t-archimedean
scmiqroups if and onty if for ceery {eoy) € S xS there is a posilive inleger n
sacti that

()" € a?ys.
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Proot. According to [8; Lemma 1], a semigroup S is a band of t-archi-
medean semigroups if and only if for every (z,y) € S x S we have

(xy) N2%yS # 0 # Sxy? N (xy),

: 5 (6
(2*y) NayS # 0+ Szy 0 (xy?) .

where, by (z), we denote the subsemigroup of S generated by =z € 5.

Suppose that S is a band of t-archimedean semigroups, and let (x.y) € Sx5.
It follows from (6) that for some positive integers n we obtain (5).

Conversely, assume that for arbitrary pair (z,y) of elements of a (;C’-com-

mutative semigroup S there are positive integers n, m such that we have (5)
and

(yz)™ € y*xS.
Then there is an element u € S such that (yz)” = y?xu. It follows from

Lemma 1 that (zy)™*? = z(y2)"yzy = 2y’ (ruyz)y = ry(ruyr)y? € Sey*. By

Definition, we have (x%y)? = 2%yx?y = xy2’y € ryS and (ry?)? = vy’ry” =

xy*ry € Szy. According to (6), S is a band of t-archimedean semigroups.
Note 3. The following example shows that a GC-commutative semi-

group S (which is a band of t-archimedean semigroups) need not be weaklv
exponential.

By N, we denote the set of all positive integers, and I = {0.1}. Define a
mapping 7: N — [ by

0 if n iseven.
7(n) = ) )
1 if nisodd.

Put S =1 x N, and let a multiplication on S be defined as follows:
(i,m)(j,n) = (i, m+n+7(i+j+m)).

First we shall show that S is a GC-commutative semigroup. Let ».y.: < &
and & = (i,m), y = (j.n), z = (k.p). It can be easily verified that

(xy)z=(i,m+n+p+ali+j+m)+7(j+hk+n)) = riy:)
and

Py = (i.3m+n+r(i+j+m)+ali+j+nm=nlmi) =y .
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Now we shall show that S is a band of t-archimedean semigroups. Let
roy €S and = (i,m), y = (j,n). It is easy to show that

2?y? = (i,2m+ 2n+ w(m) + w(n) + w(i + j +n)).

Further we have the following two possibilities:
Case 1. i = j. Then (zy)? = 2%y* € 2%yS.
Case 2. 1 # j. It is easy to show that

(zy)* = (i, 4m +4n +4n(1+ m) + 3n(1 + n)) .

Therefore (xy)! = 2%y%u, where u = (i, 2m + 2n + 37(1 + m) + 27(1 +n) —
7(m)—m(n)), and so (zy)* € z?yS.

[t follows from Theorem 4 that S is a band of ¢-archimedean semigroups.

Finally we shall show that S is not weakly exponential. Denote e = (0, 1) and
J = (L, 1). By way of contradiction, assume that there exists a positive integer
n such that (ef)"2 = e?f2(ef)™. It can be easily verified that (0, 2n + 4) =
(cf)"+2 =e2f2(ef)" = (0,6)(0,2n) = (0, 2n+6), which is impossible. Therefore
S is not weakly exponential.

THEOREM 5. Let S be a GC-commutative semigroup satisfying the conditions
(D). If S is a A-semigroup, then S is weakly exponential.

Proof. Assume that S is a GC-commutative semigroup satisfying (5) and
a A-semigroup. It follows from Theorem 4 that S is a band of t-archimedean
semigroups. By ~ we denote the corresponding congruence. According to [l;
Lemma 2], every homomorphic image of a A-semigroup is also a A-semigroup.
This implies that the band S/~ is a A-semigroup. It follows from [4] that S/~
is isomorphic to G or G or B or B" or B!, where card G = 1, B is either a
left zero semigroup of order 2 or a right zero semigroup of order 2. It is easy to
show that for every (x,y) € S'x S we have

Ty ~r or xYy~1uy. (7)

Now we shall prove that S is weakly exponential. Suppose that x,y € 5.
Assume that ry ~ r. Then there is a t-archimedean subsemigroup 4 of S such
that ry..r € A, It follows from (4) that (xy)™ = zux for some v € A and some
positive integer m. According to Definition, we have
m ma. (8)

xrlay)"™ = (xu)
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We shall show that

that

i

*)

(;Y,’y)"”+7' — ',I_Il,yrl(‘,ry‘)m e
all positive integers n. Suppose that (9) is true for some positive intever
Then, by (8), (9) and Lemma 1, we have (ay)" """ = 2"y (ry)" 0y

eyt (ey)my = 2"y (ey)My = "y ay)™ . Tt follows from Lemma 2

(J.y)m'kn — (.’I’]])mlr"”'l/” ) Clon

If &y ~ gy, then dually we can show that (10) and (9) are true.

Consequently, S is weakly exponential.

Note 4. A description of weakly exponential A-semigroup was given i

Nagy in [5].

3
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