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REMARKS ON MAXIMUM AND 

MINIMUM EXPONENTS IN FACTORING 

ANDRZEJ SCHINZEL* — TIBOR SALÁT*** 

(Communicated by Stanislav Jakubec) 

A B S T R A C T . Let n > 1 be an integer, n = p"1 • p™2 • . . . . p^k ( s tandard 
for n ) . P u t H(n) = m a x { a i , a 2 , . . - ,CKAJ, h(n) = m i n { a i , a 2 , . . . , a f c } , h(l) = 1 
= H(l). In the paper, asymptotic densities of t h e sets Mf = {n : f(n) \n} for 
f = H and f = h are established. Further some properties of functions h, H 
are investigated in connection with the concepts of statistical convergence and 
normal order . 

I n t r o d u c t i o n 

In their papers [1], [2], [6], the authors deal with determining the natural 
(asymptotic) densities of sets of the form Mf = {n : f(n) | n} , where / : N —> N 
is a given function. This aim is achieved in [1], for the function s(n) (the sum of 
digits of n ) , u(n) (the number of distinct prime factors of n ) , £(n) = [logfen] 
(b > 1) and r(n) = [n1//2] , and the proof is based on a result derived with 
the help of the classical Chebyshev inequality from probability theory. A related 
result covering the functions s (n) , o;(n), fi(n) (the number of prime factors of 
n counted with multiplicities), n(n) (the number of primes not exceeding n ) , 
S(n) = Y2P (the sum of prime factors of n ) is proved in [2]. In [6], the density 

p\n 

of the set MT is evaluated, where r(n) denotes the number of divisors of n . 

In this note, we shall investigate similar questions for the functions h and H 
introduced in [7] (see also [13]). Further we shall study the properties of functions 
h and H from the standpoint of statistical convergence and investigate normal 
order of these functions. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11A25, 11B05. 
K e y w o r d s : Asymptotic density, Statistical convergence, Normal order. 
1 Research on this work was partially supported by the Grant No. 363 of the Slovak Acad­

emy of Sciences. 
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In what follows, we shall use the following usual notations: If A C N and 
— A(x) 

A(x) = ]P 1, then we put d(A) = l imsup (the upper asymptotic 
aeA.a^x x-*°° X 

A(x) 
density of ^4), d(A) = liminf——- (the lower asymptotic density of A) and 

x—>oo X 
A(x) 

d(A) = lim — — (the asymptotic density of A), if the limit on the right-hand 
x—»oo X 

side exists (cf. [9; p . 71]). 

If T(n) is a prediction formula (a property of n ) defined for n G N and the 
set of all n G N satisfying T(n) (having the property T(n)) has the asymptotic 
density 1, then we briefly say that almost all n G N satisfy T(n) (have the 
property T(n)). 

1. O n sets Mh a n d MH 

If n > 1 is a positive integer, n = p*1 • p^2 • ... • p%k is the standard form 
of n , then we put h(n) = min aj , H(n) = max otj and h(l) = 1 = H(l) 

(cf. [7]). It is proved in [7] that 

i i m h W + h { 2 ) + . . . + h ( n K i 

n—>-oo n 

This result is strengthened in [13]. 

The equality (1) eliminates the possibility of applying the method of [1] for 
determining the density of Mh. We shall determine this density in another way. 

T H E O R E M 1.1. We have d(Mh) = 1. 

P r o o f . In [8], the following result is proved (see [8; p. 254, Theorem 11.7]): 
oo 

Let (pj)<jl:1 be a sequence of prime numbers with ^ pj1 = +oo . Let A C N , 

and denote by APj (j = 1, 2 , . . . ) the set of all a G A such that Pj\a, but p2 \ a. 

If d(AP]) = 0 (j = 1,2, . . . ), then d(A) = 0. 

Put W\ = [n : h(n) = l } . Then we have evidently 

WxQMh. (2) 

Set A = N \ W\. If n G A and p is an arbitrary prime number such that p \ n, 
then p2 | n , as well. Hence Ap = § for each prime and applying the quoted result 
of [8] we get d(A) = 0. This yields d(W±) = 1, and the assertion follows from 
(2). D 
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As it is remarked in [7], the equality d(W\) = 1 can be deduced also from 
(1), and in this way one can obtain another proof of Theorem 1.1. 

It is proved in [7] that 

ta _ _ _ _ _ _ 1 + f.( ,(ł))є(li2). (3) 
n—юo n --—' 

k=2 

This result is improved in [13]. The equality (3) eliminates a possibility of ap­
plying the method from [1] for determining the density of the set MH . Therefore 
we shall proceed in another way. 

T H E O R E M 1.2. We have 

_ ^ / „ . . ^ a - o r d p a + 1 _ i 

d(M„) = r1(2) + x;(r1(tt + -)IIp ^-n-! 
ru — O \ „ U F a=2 x p\a 

-r1(a)]lE 
p a - l 

where p runs over all primes. 

The proof will be based on the following lemmas. 

LEMMA 1.1. The density d\(a) of numbers n such that a\n, H(n) _ a is 

a—ordp a-fl 

p\a 

P r o o f . We have 

_ ] м(™) = | 
1 i f H ( n ) g a , 

0 otherwise. 
m^т"1 n 
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Hence the number of numbers in question, not exceeding x, equals 

Y _C ^(m) 
l<k<--- m Q + 1 Ika 

— — a ' 

Y Ќrn) Y 1 = Y џ(m) 
l_im__ a+ÿx" 15_k5_f, m^ + Ч k a l g m ^ a+ÿæ" 

x(a ,m a + 1 ) 

am 
a + l 

= 1 £ ^ У ^ + o c ^ ) 
l__m_^ ^+ÿæ" 

- | ( Ž " ( m У > +o(-Ч^-)) + o(чyS) 
\ m = l / 

= £ ў ^ Mm)(a m«+-) 
a -—' m a + i v v / 

It follows that the density d\(a) exists, and 

1 -̂-A //(m)(a,m a + 1 ) 

m = l 
a *—* m 

a + l 

The series on the right-hand side is absolutely convergent and the function 
/i(m)(a,m a + 1 ) . 

m 
a + l is multiplicative. Hence 

-.w-èпO-ЭД-пO-^)-
](—± -_-Л . Pa+1 =Г1(a+l) ]pa'OTdpa+1-1 

*-*-\(a,pa+1) pa+1J pa+1-l Ç ^ a + 1 Ш p ° + i _ i • 

D 

LEMMA 1.2. For a __! 2 ; t/ie density ^2(0.) of numbers n such that a | n . 
H(n) < a is 

p\a 

_ „ a — o r d p a -i r»rr „._r'-
P r o o f . Arguing as in the proof of Lemma 1.1, we obtain 

(a,pa) 

- V 1 " 
P 

<*.(«)=- ž M m ) ( Q
Q ' m t t ) = ^ - n í 1 - ^ 

v y a -£-' m a a A1V wa 

m = l P x 
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which gives the lemma. D 

P r o o f of T h e o r e m 1.2. By Lemmas 1.1 and 1.2, the density of num­
bers n such that a \ n and H(n) = a is di(l) = £_1(2) for a = 1, 

^a—ovdp a + 1 i 

dx(a) - d2(a) = £(a + l)"1 J ] P - + 1 _ t ~ £(<*)_1 I I 
p|a: ~'~ 

,a—ordD a _ x p a - o r a p a _ j 

p | a 
p a - l 

for a _ 2. Hence all terms of the series occurring in the theorem are nonnegative 
and its partial sums are bounded by 1. It follows that the series is convergent. 

Take e > 0 and an integer a > 2e - 1 such that 

J2(di(<*)-d2(a))<£-. 
a>a 

Then the number M#(x) is 

(d1(l) + f^(d1(a)-d2(a)))-x + o(x) + o(^ ~Z l ) . 

However 

ř*=2 1 n _ x , H(n)>a 

n _ x , H(n)>a P prime LP' ,<*+! ^ *(£(<*+ l Г 1 - l ) < - | < - | . т . 

It follows that 

M 

p\a 

( _ . / ___ ^a—ordp a + 1 i 

wrx + £(rx(a+1)np J-i 
<*=2 ^ p | a 

-r'(«)II^)) 
_̂  ex + o(x), 

which gives the desired formula for d(Mn). 

2. Functions /i and H, statistical convergence and normal order 

At first we shall deal with sequences 

(*_r fi_r ( 4) 

D 
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THEOREM 2 . 1 . Each of the sequences (4) is dense in the interval (0, r^-o) . 

P r o o f . We prove the density of ( i ) . Let t G (0, ^ ) . Then 

t — - j — , where 0 < u < +oo . 
log 2 + u 

Take n = 2a • q&, /3 _̂  a , g being an odd prime. Then 

logn 
= ( l o g 2 + | - l o g g ) \ (5) 

According to (5), it suffices to prove that for each u £ (0, +oo) there exist 
positive integers a*., /?& with fik ^ c*k (k = 1,2, . . . ) and a sequence (g&)£?_.-_ 
of odd prime numbers such that 

lim - " - log g f c = ix. (6) 
k—• CO G ^ 

This can be seen as follows. Choose an odd prime q such that 

u / 
0 < ^ 1. 

log q 

Owing to density of rational numbers in (0, +oo) , there are positive integers 
Oik, Pk, Pk _ OLk (k = 1, 2 , . . . ) such that 

_ k ^ 

otk log r/ ' 

Thus (6) is satisfied choosing qk — q ( f c - = l , 2 , . . . ) . 

( , / \ \ oo 

-; j can be proved similarly. • 

In [4], the concept of statistical convergence is introduced (see also [12]). A 
sequence (xn)n

<L1 of real numbers is said to converge statistically to x G R 
(shortly: l imstat .r n = x) provided that for each e > 0 we have d(Ae) = 0, 
where A£ = {n : \xn — x\ = e} . 

In connection with Theorem 2.1, the question arises whether the sequences 
(4) converge statistically. The answer is positive. 

T H E O R E M 2.2. We have 

h(n) 1B H(n) ^ 
lim stat = lim stat = 0 . 

log n log n 
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We shall not give any proof of this theorem since it is a simple consequences 
of stronger Theorem 2.3. The latter theorem implies that 

H(n) „ hm s t a t — ^ = 0 

9(n) 

for every positive function g: N —> R with lim g(n) — + 0 0 . 
n—»oo 

THEOREM 2.3. For any function g(n) —» 00 we have 

Vt(n) — coin) 
lim stat v }

 t . v } = 0 . 
9W 

COROLLARY 2.1. For every g(n) —» 00 

H(n) 
hm stat —++• = 0 

, ana so hm stát —7—- = 0 

9{n) 

h(n) 

9(n) 

(Hint: Observe that H(n) ^ ft(n) - cO(n) + 1.) 

P r o o f of T h e o r e m 2.3. By a theorem of R e n y i [11] (see also 
D e 1 a n g e [3]) for every integer q _" 0 the set of numbers n with fi(rc) — u(n) 
— q has a density d0 and 

oo 

£<-, = -• (7) 
g=0 

, : ад-цn) >g 

Put 

oo 

and take an arbitrary 77 > 0. By (7) there exists an r such that Yl dq < r/. 
q=r 

Therefore the number of integers n ^ x such that ft(n) — tu(n) > r is less than 
r)x + o(x). Now take no such that for n > no we have g(n)e ^ r . It follows that 
A£(x) < no + rjx + o(x). Hence d(A£) ^ 77, and since rj is arbitrary, d(A£) — 0. 

• 

Now, recall the concept of normal order of an arithmetical function. A func­
tion F defined on N is said to be a normal order of an arithmetical function / 
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provided that for each e > 0 there is a set Be of positive integers with d(B£) — 1 
such that for each n G Be we have 

(1 - e)E(n) < f(n) < (1 + e)F(n) (8) 

(i.e. inequalities (8) hold for almost all n € N) - cf. [5; p . 356]. 

Remark that if 0 < e < 1 in (8), then for n G B£ we obtain F(n) > 0, 
/ ( n ) > 0 . 

The definitions of statistical convergence and of normal order suggest that 
there is a strong connection between these two concepts. The following simple 
theorem confirms that, 

THEOREM 2.4. Let f, F, be two functions defined on N. Then F is a normal 
order of f if and only if 

hm stát 4 r r 4 = 1 
F(n) 

(9) 

P r o o f . Suppose that F is a normal order of / . If 0 < e < 1, then there 
is a set B e C N such that d(B£) = 1, F(n) > 0 for n G B£, and 

( l - є ) E ( n ) < / ( n ) < ( l + є)E (n) (10) 

From this we obtain 

/(*) 
F(n) 

for n G B£. Therefore the inequality 

E(n) 
1 

< Є 

> 

holds at most for all n G N \ B£ = A£, where d(A£) = 0. Thus (9) holds. 

Conversely, if (9) holds, then it can be easily checked that (10) holds for 
almost all n G N. • 

It is well known that each of the functions UJ , 0 has a normal order F, where 
F(l) = F(2) = 1, F(n) = loglogn (n > 2) - cf. [5; p. 356-358]. Hence we get 

C O R O L L A R Y 2.2. We have 

lim stat 
üú(n) 

log log n 
= lim stát 

U(n) 

log log n 
= 1 (11) 

In connection with (11), the question about normal order of functions /i, 
H arises. Evidently, the constant function F(n) = 1 for all n G N is a normal 
order of h (see the proof of Theorem 1.1). We shall show that H cannot have 
any non-decreasing normal order. 
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THEOREM 2.5. If F is any non-decreasing function on N, then F is not a 
normal order of H. 

P r o o f . Owing to the monotonicity of F , there exists lim F(n). If 
n—•CO 

lim F(n) = +00 , then Corollary 2.1 and Theorem 2.4 show that F is not 
n—>oo 

a normal order of H. Suppose that lim F(n) = d < +00 . Suppose that F is 
n—>-oo 

a normal order of H. Then for each e > 0 the inequalities 

(l-e)d<H(n) <(l + s)d (12) 

are satisfied for almost all n G N. 
Let d > 1. Then for e = 1 - -i- we get from (12) 

ft(n)-u;(n) ^ # ( n ) - 1 > 0 . 

Therefore the density of all numbers n satisfying (12) in this case is not greater 

than Yl dq < 1. 
q=l 

Let d = 1. If n > 1 satisfies (12) and e < 1, then ii~(n) < 1 + £ < 2. Hence 
/ / (n ) = 1 and n is a square-free number. Therefore the density of all numbers 

n satisfying (12) is —-5- < 1 in this case (cf. [10; p. 21]). 
7T 

Let d < 1. If e is a small number such that (1 + e)d < 1, then no positive 
integer satisfies (12). • 

In the end we remark that the method of the paper [2] for determining den­
sities of sets Mf ( / : N —» N) concerns the functions / : N —> N having non-
decreasing normal orders. Theorem 2.5 shows that the density of the set MH 
cannot be obtained using this method. 
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