Mathematic Slovaca

Ladislav Matejíčka

On approximate solutions of degenerate integrodifferential parabolic problems

Mathematica Slovaca, Vol. 45 (1995), No. 1, 91--103
Persistent URL: http://dml.cz/dmlcz/136638

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON APPROXIMATE SOLUTIONS OF DEGENERATE INTEGRODIFFERENTIAL PARABOLIC PROBLEMS

LADISLAV MATEJÍČKA
(Communicated by Jozef Kačúr)

Abstract

A solution of a nonlinear diffusion problem with Volterra operators by Rothe's method is obtained. The convergence of Rothe's functions to the solution, constructed by means of weak approximate solutions of approximation elliptic equations, is proved.

1. Introduction

In this paper, we shall deal with the following diffusion problem:

$$
\begin{align*}
\partial_{t} u(t)-\Delta \beta(u(t)) & =f\left(t, \int_{0}^{t} K(t, s) \beta(u(s)) \mathrm{d} s\right) & \text { for } \quad(t, x) \in(0, T) \times \Omega \\
\beta(u(0, x)) & =\beta\left(u_{0}(x)\right) & \text { on } \Omega \tag{1}\\
\partial_{\nu} \beta(u(t)) & =g\left(t, \int_{0}^{t} M(t, s) \beta(u(s)) \mathrm{d} s\right) & \text { on } \quad(0, T) \times \Gamma
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with Lipschitz continuous boundary Γ, $0<T<\infty$.

The solution of this problem will be obtained via solutions of linear approximation schemes. This way of solving nonlinear evolution equations has been introduced by Berger, Brezis, Rogers in [2]. They have dealt with the convergence of linear approximation schemes constructed for the problem $\left(2^{\prime}\right)$:

$$
\partial_{t} u(t)-\Delta f(u(t))=0
$$

Their results have been developed by W. J äger and J. K a č úr ([6], [7], [10]). They have presented new approximation schemes for (2) and proved the convergence of these schemes:

Key words: Integrodifferential parabolic equation, Rothe's method.

$$
\begin{align*}
\partial_{t} u(t)-\Delta \beta(u(t)) & =f(t, \beta(u(t))) & & \text { in } \quad(t, x) \in(0, T) \times \Omega \\
\beta(u(0, x)) & =\beta\left(u_{0}(x)\right) & & \text { on } \quad \Omega \tag{2}\\
\partial_{\nu} \beta(u(t)) & =g(t, \beta(u(t))) & & \text { on } \quad(0, T) \times \Gamma
\end{align*}
$$

where $\beta: \mathbb{R} \rightarrow \mathbb{R}$ is a nondecreasing Lipschitz continuous function.
The aim of this paper is to prove the convergence of the approximation schemes (introduced by W. J äger and J. K ač ú r) for (1). Problem (1) differs from (2) in the right-hand side. The equation and the boundary condition in (1) depend on Volterra operators. In this paper, we use the technique and methods which have been presented by W. J äger and J. K a č ú r ([6], [7], [10]). For a more complete survey of solutions of nonlinear degenerate parabolic problems, we refer the reader for example to [1], [5], [8], [13], [14], [17].

We also use the technique of memory terms for evolution integrodifferential equations, which has been presented by J. K a č ú r in [9]. For another approach to the analysis of evolution integrodifferential equations, we refer the reader for example to [4], [12], [15], [16], [18].

Problem (1) shall be solved in the following way. We will divide the interval $I=(0, T)$ into n subintervals $\left\langle t_{i-1}, t_{i}\right\rangle, i=1, \ldots, n$, where $t_{i}=i\left(\frac{T}{n}\right)$. Then we shall find weak approximate solutions of the elliptic problem (3) on each subinterval $\left\langle t_{i-1}, t_{i}\right\rangle$ via weak solutions of the elliptic problem (4). From these solutions of (3) we shall construct Rothe's function $u_{n}(t, x)$. Finally, we shall prove that the weak limit u of u_{n}, in the functional space $L_{2}(I \times \Omega)$, is a weak solution of (1).

2. Notation and assumptions

We denote

$$
\begin{gathered}
(f, g)=\int_{\Omega} f g=\int_{\Omega} f(x) \cdot g(x) \mathrm{d} x, \quad(f, g)_{\Gamma}=\int_{\Gamma} f g=\int_{\Gamma} f(x) \cdot g(x) \mathrm{d} x \\
((f, g))=(\nabla f, \nabla g), \quad H=W_{2}^{1}(\Omega) \text { (Sobolev space), } \\
C^{0, \alpha}(\bar{\Omega}), C(\bar{\Omega}), L_{2}(I \times \Omega)=L_{2}\left(I, L_{2}(\Omega)\right)=L_{2}\left(I, L_{2}\right), L_{2}(\Omega), L_{2}(\Gamma) \text { and }
\end{gathered}
$$ $L_{\infty}(I, H)$ are the standard functional spaces. $\langle f, g\rangle$ is the duality between $f \in V^{*}$ and $g \in V .|\cdot|,|\cdot|_{\Gamma}$ and $|\cdot|_{H}$ are the norms in the functional spaces $L_{2}(\Omega), L_{2}(\Gamma), H$ respectively. By C_{i}, we denote a generic positive constant.

We shall assume:
(P1) $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with Lipschitz continuous boundary Γ, $0<T<\infty$.
(P2) $\beta: \mathbb{R} \rightarrow \mathbb{R}$ is a nondecreasing Lipschitz continuous function with $|\beta(s)| \geq C_{1}|s|-C_{2}$ for all $s \in \mathbb{R}, \beta(0)=0$.
(P3) $g: I \times \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz continuous in x and

$$
\left|g(t, x, s)-g\left(t_{1}, x, s_{1}\right)\right| \leq C\left(\left|t-t_{1}\right|+\left|t-t_{1}\right|\left(|s|+\left|s_{1}\right|\right)+\left|s-s_{1}\right|\right)
$$ for all $t, t_{1} \in I, x \in \Gamma, s, s_{1} \in \mathbb{R}$.

(P4) $f(t, x, s)$ is Lipschitz continuos in x and $\left|f\left(t_{1}, x, s_{1}\right)-f\left(t_{2}, x, s_{2}\right)\right| \leq C\left(\left|t_{1}-t_{2}\right|+\left|t_{1}-t_{2}\right|\left(\left|s_{1}\right|+\left|s_{2}\right|\right)+\left|s_{1}-s_{2}\right|\right)$ for all $t_{1}, t_{2} \in I, x \in \Omega, s_{1}, s_{2} \in \mathbb{R}$.
(P5) $K(t, x, s), K_{t}(t, x, s) \in L_{\infty}(I \times \Omega \times I)$.
(P6) $M(t, x, s), M_{t}(t, x, s) \in L_{\infty}(I \times \Gamma \times I)$.
(P7) $u_{0}(x) \in L_{\infty}(\Omega)$ and $\beta\left(u_{0}(x)\right) \in W_{2}^{1}(\Omega)$.

3. Solution of the problem (1)

DEFINITION 1. The function $u \in L_{2}\left(I, L_{2}\right)$ with $\partial_{t} u \in L_{2}\left(I, H^{*}\right)$ is called a weak solution of (1) if and only if

$$
\begin{aligned}
\int_{I}\left\langle\partial_{t} u(t), \varphi(t)\right\rangle+\int_{I} & ((\beta(u(t)), \varphi(t)))-\int_{I}\left(g\left(t, \int_{0}^{t} M(t, s) \cdot \beta(u(s)) \mathrm{d} s\right), \varphi(t)\right)_{\Gamma} \\
& =\int_{I}\left(f\left(t, \int_{0}^{t} K(t, s) \cdot \beta(u(s)) \mathrm{d} s\right), \varphi(t)\right)
\end{aligned}
$$

for all $\varphi(t) \in L_{2}(I, H), \beta(u(t)) \rightarrow \beta\left(u_{0}\right)$ in H^{*} for $t \rightarrow 0$, and $\beta(u) \in L_{2}(I, H)$.
Let n be a positive integer, $\tau=\frac{T}{n}, t_{i}=\tau \cdot i$, for $i=1, \ldots, n$. The linear approximation scheme corresponding to (1) can be written in the following way:

$$
\begin{align*}
\mu_{i}(x) \cdot\left(\theta_{i}(x)-\beta\left(u_{i-1}(x)\right)\right)-\tau \Delta \theta_{i}(x) & =\tau f\left(t_{i}, x, \tau \sum_{j=0}^{i-1} K_{i j}(x) \theta_{j}(x)\right), \quad x \in \Omega \tag{3}\\
\partial_{\nu} \theta_{i}(x) & =g\left(t_{i}, x, \tau \sum_{j=0}^{i-1} M_{i j}(x) \theta_{j}(x)\right), \quad x \in \Gamma
\end{align*}
$$

with the condition

$$
\begin{equation*}
\left|\beta\left(u_{i-1}+\mu_{i}\left(\theta_{i}-\beta\left(u_{i-1}\right)\right)\right)-\beta\left(u_{i-1}\right)\right| \leq \alpha\left|\theta_{i}-\beta\left(u_{i-1}\right)\right|+o\left(\frac{1}{n}\right) \tag{3.1}
\end{equation*}
$$

where $u_{i}=u_{i-1}+\mu_{i}\left(\theta_{i}-\beta\left(u_{i-1}\right)\right), K_{i j}(x)=\frac{1}{\tau} \cdot \int_{t_{j}}^{t_{j+1}} K\left(t_{i}, x, s\right) \mathrm{d} s$, $M_{i j}(x)=\frac{1}{\tau} \cdot \int_{t_{j}}^{t_{j+1}} M\left(t_{i}, x, s\right) \mathrm{d} s, \mu_{i}(x) \in L_{\infty}(\Omega), \theta_{0}=\beta\left(u_{0}\right), \lim _{n \rightarrow \infty} n \cdot o\left(\frac{1}{n}\right)=0$, $i=1, \ldots, n, j=0, \ldots, i-1$.

LADISLAV MATEJÍČKA

There are many ways how to solve (3) with the condition (3.1). For example, we can put $\mu_{i}(x)=C, 0<C<\frac{\alpha}{L_{\beta}}$ and solve (3) by a numerical method. However, from the numerical point of view, these solutions are not satisfactory [11]. We shall show a way for finding better solutions. We use the idea of W. J äg er and J . K ačúr .

Definition 2. We say that μ_{i}, θ_{i} are weak approximate solutions of (3) on ($\left.t_{i-1}, t_{i}\right\rangle$ if there exist $q_{i} \in H^{*}$ and positive constants δ, K such that
(i) $\delta<\mu_{i}(x)<K$ for a.e. $x \in \Omega, \theta_{i}(x) \in H,\left|q_{i}(x)\right|_{H^{*}}<o\left(\frac{1}{n^{2}}\right)$,
(ii) $\int_{\Omega} \mu_{i}(x) \cdot\left(\theta_{i}(x)-\beta\left(u_{i-1}(x)\right)\right) \varphi(x)+\tau \int_{\Omega} \nabla \theta_{i}(x) \nabla \varphi(x)-\left\langle q_{i}(x), \varphi(x)\right\rangle$ $-\tau \int_{\Gamma} g\left(t_{i}, x, \tau \sum_{j=0}^{i-1} M_{i j}(x) \theta_{j}(x)\right) \varphi(x)$ $=\tau \int_{\Omega} f\left(t_{i}, x, \tau \sum_{j=0}^{i-1} K_{i j}(x) \theta_{j}(x)\right) \varphi(x)$ for all $\varphi(x) \in H$.

The weak approximate solutions of (3) for given n will be obtained via solutions of (4). Similarly to M. S lodičk a [17], we shall consider the function $\beta_{\varepsilon}(s)$ instead of $\beta(s)$.

The scheme (4) reads as follows:

$$
\begin{gather*}
\beta_{\varepsilon}^{-1}\left(\beta_{\varepsilon}\left(u_{i-1}\right)+\frac{\alpha}{2}\left(\theta_{i}-\beta\left(u_{i-1}\right)\right)\right)-u_{i-1}-\tau \Delta \theta_{i}=\tau f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i j} \theta_{j}\right) \tag{4}\\
x \in \Omega \\
\partial_{\nu} \theta_{i}=g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}\right), \quad x \in \Gamma
\end{gather*}
$$

where $\beta_{\varepsilon}(s)=\beta(s)+\varepsilon \cdot s$, and ε is a suitable constant.
Define $T_{\varepsilon}: H \rightarrow H^{*}$,

$$
\left\langle T_{\varepsilon}(\theta), \varphi\right\rangle=\left(\beta_{\varepsilon}^{-1}\left(\beta_{\varepsilon}\left(u_{i-1}\right)+\frac{\alpha}{2}\left(\theta-\beta\left(u_{i-1}\right)\right)\right)-u_{i-1}, \varphi\right)+\tau(\nabla \theta, \nabla \varphi)
$$

Then

$$
\begin{aligned}
& \left|T_{\varepsilon}(x)-T_{\varepsilon}(y)\right|_{H^{*}}<C_{1}(\varepsilon)|x-y|_{H} \quad \text { and } \\
& \left\langle T_{\varepsilon}(x)-T_{\varepsilon}(y), x-y\right\rangle>C_{2}(\varepsilon)|x-y|_{H}^{2}, . \quad C_{2}(\varepsilon)>0, \quad \text { for all } \quad x, y \in H .
\end{aligned}
$$

Now we make use of $\left[3 ;\right.$ p. 104, Theorem 3.4]. There exists $\left\{v_{k}\right\}_{k=1}^{\infty}$ such that $v_{k} \in H$ and $v_{k} \rightarrow \theta_{i}$ in H (θ_{i} is a weak solution of (4)).

Choose v_{k} so that $\left|v_{k}-\theta_{i}\right|_{H}<\varepsilon \frac{1}{n^{2}}$ and define

$$
\mu_{i}(x)=\left(\frac{\beta_{\varepsilon}^{-1}\left(\beta_{\varepsilon}\left(u_{i-1}(x)\right)+\frac{\alpha}{2}\left(v_{k}(x)-\beta\left(u_{i-1}(x)\right)\right)\right)-u_{i-1}(x)}{v_{k}(x)-\beta\left(u_{i-1}(x)\right)}\right)
$$

Then μ_{i}, v_{k} satisfy

$$
\begin{align*}
& \left(\mu_{i}\left(v_{k}-\beta\left(u_{i-1}\right)\right), \varphi\right)+\tau\left(\nabla v_{k}, \nabla \varphi\right) \\
= & \tau\left(g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}\right), \varphi\right)_{\Gamma}+\tau\left(f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i j} \theta_{j}\right), \varphi\right)+\left\langle q_{i}, \varphi\right\rangle \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
\left\langle q_{i}, \varphi\right\rangle=\left(\mu_{i}\left(v_{k}-\beta\left(u_{i-1}\right)\right)\right. & , \varphi)+\tau\left(\nabla\left(v_{k}-\theta_{i}\right), \nabla \varphi\right) \\
& -\left(\beta_{\varepsilon}^{-1}\left(\beta_{\varepsilon}\left(u_{i-1}\right)+\frac{\alpha}{2}\left(\theta_{i}-\beta\left(u_{i-1}\right)\right)\right)-u_{i-1}, \varphi\right)
\end{aligned}
$$

Since $\left|q_{i}\right|_{H^{*}}<o\left(\frac{1}{n^{2}}\right)$, we have that v_{k}, μ_{i} are weak approximate solutions of (3). In addition, v_{k}, μ_{i} satisfy (3.1) and there exist $\delta(\varepsilon), K(\varepsilon)$ such that

$$
0<\delta(\varepsilon)<\mu_{i}<K(\varepsilon) \quad \text { for a.e. } x \text { and for all } i .
$$

So we can formulate the following theorem.
THEOREM 1. Let (P1)-(P7) be satisfied. Let $n \in \mathbb{N}$. Then there exist $\left\{\mu_{i}\right\}_{i=1}^{n},\left\{\theta_{i}\right\}_{i=1}^{n}$ such that $\theta_{i}(x) \in W_{2}^{1}(\Omega), \mu_{i}(x) \in L_{\infty}(\Omega)$, and the functions θ_{i}, μ_{i} are weak approximate solutions of (3) and satisfy (3.1).

Now we prove the following lemma.
Lemma 1. There exists $n_{0} \in \mathbb{N}$ such that

$$
\max _{1 \leq i \leq n}\left|\beta\left(u_{i-1}\right)\right|_{L_{2}}+\sum_{i=1}^{n}\left|\theta_{i}\right|_{H}^{2} \tau+\sum_{i=1}^{n}\left|u_{i}-u_{i-1}\right|_{L_{2}}^{2} \leq C
$$

for all $n \geq n_{0}$, where u_{i}, θ_{i} are weak approximate solutions of (3) in $\left\langle t_{i-1}, t_{i}\right\rangle$.
Proof. To prove this assertion, we put $\varphi=\tau \theta_{i}$ in the equation (5).

$$
\begin{align*}
\left(\frac{u_{i}-u_{i-1}}{\tau}, \varphi\right)+\left(\left(\theta_{i}, \varphi\right)\right) & -\left(g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}\right), \varphi\right)_{\Gamma} \\
& =\left(f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i j} \theta_{j}\right), \varphi\right)+\left\langle q_{i}, \varphi\right\rangle\left(\tau^{-1}\right)
\end{align*}
$$

which holds for all $\varphi \in H, i=1, \ldots, n$. Sum up them for $i=1, \ldots, l$. We will estimate only the terms

$$
\left(g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i, j} \theta_{j}\right), \varphi\right)_{\Gamma}, \quad\left\langle q_{i}, \varphi\right\rangle\left(\tau^{-1}\right), \quad\left(f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i, j} \theta_{j}\right), \varphi\right)
$$

The others can be estimated in the same way as in [6], [7].
$\sum_{i=1}^{l}\left(g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}\right), \tau \theta_{i}\right)_{\Gamma} \leq C_{1} \tau \sum_{i=1}^{l}\left|\theta_{i}\right|_{\Gamma}^{2}+C_{2} \tau^{2} \sum_{i=1}^{l} \sum_{j=0}^{i-1} \int_{\Gamma}\left|\theta_{j}\right| \cdot\left|\theta_{i}\right|+C_{3}$ because $|g(t, s)| \leq C_{1}+C_{2}(|t|+|t| \cdot|s|+|s|)$. Now the estimate

$$
\begin{equation*}
|\varphi|_{\Gamma} \leq C_{1}\left(\varepsilon|\nabla \varphi|_{L_{2}}^{2}+\frac{1}{\varepsilon}|\varphi|_{L_{2}}^{2}\right) \tag{1.1}
\end{equation*}
$$

can be used, and we conclude

$$
\begin{aligned}
& \left|\sum_{i=1}^{l}\left(g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}\right), \tau \theta_{i}\right)_{\Gamma}\right| \\
\leq & C_{1}+C_{2} \varepsilon \sum_{i=1}^{l}\left|\nabla \theta_{i}\right|_{L_{2}}^{2} \tau+C_{3}(\varepsilon) \tau \sum_{i=1}^{l}\left|\beta\left(u_{i}\right)\right|_{L_{2}}^{2}+\tau C_{4}(\varepsilon) \sum_{i=1}^{l}\left|u_{i}-u_{i-1}\right|_{L_{2}}^{2}
\end{aligned}
$$

The second term will be estimated as follows:

$$
\left|\left\langle q_{i}, \varphi\right\rangle\right| \leq C_{1} \varepsilon \tau\left|\theta_{i}\right|_{H}^{2}+C_{2}(\varepsilon) \tau
$$

The last term will be estimated similarly:

$$
\left|\sum_{i=1}^{l}\left(f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i j} \theta_{j}\right), \tau \theta_{i}\right)\right| \leq C_{1} \tau^{2} \sum_{i=1}^{l} \sum_{j=0}^{i-1}\left|\left(\theta_{j}, \theta_{i}\right)\right|
$$

because $\left|K_{i j}\right|_{L_{\infty(\Omega \times \Omega)}} \leq C$.
Hence, we obtain

$$
\sum_{i=1}^{l}\left(f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i j} \theta_{j}\right), \tau \theta_{i}\right) \leq C_{1} \tau \sum_{i=1}^{l}\left|u_{i}-u_{i-1}\right|_{L_{2}}^{2}+C_{2} \tau \sum_{i=1}^{l}\left|\beta\left(u_{i-1}\right)\right|_{L_{2}}^{2}
$$

From Gronwall's Lemma we obtain the assertion of Lemma 1.
Now we construct Rothe's functions $\theta^{(n)}, \bar{\theta}^{(n)}$:

$$
\begin{array}{ll}
\theta^{(n)}(t)=\theta_{i-1}+\left(t-t_{i-1}\right)\left(\frac{\theta_{i}-\theta_{i-1}}{\tau}\right) & \text { for } t \in\left\langle t_{i-1}, t_{i}\right\rangle \\
\bar{\theta}^{(n)}(t)=\theta_{i} & \text { for } t \in\left(t_{i-1}, t_{i}\right\rangle, i=1, \ldots, n
\end{array}
$$

and similarly, we define $u^{(n)}, \bar{u}^{(n)}, \mu^{(n)}, \bar{\mu}^{(n)}$.
The following lemma guarantees the compactness of $\left\{\theta^{(n)}\right\}_{n=1}^{\infty}$ in $L_{2}(I \times \Omega)$.

LEMMA 2. Suppose that $\bar{\theta}^{(n)}$ are the functions constructed above. Then we have the estimate

$$
\int_{0}^{T-z}\left|\bar{\theta}^{(n)}(t+z)-\bar{\theta}^{(n)}(t)\right|_{L_{2}}^{2} \mathrm{~d} t \leq C\left(z+n^{-\frac{1}{2}}\right)
$$

for $n \geq n_{0}$ and $0<z<z_{0}$.
Proof. Since $W_{2}^{1}(\Omega) \hookrightarrow L_{2}(\Omega)$ (continuous imbedding) and $W_{2}^{1}(\Omega) \hookrightarrow$ $L_{2}(\Omega)$ is dense, then $L_{2}^{*} \hookrightarrow H$ is dense (H is reflexive). So we can identify $\forall \alpha \in L_{2}$ with $f_{\alpha} \in H^{*}$ for which $(\alpha, \varphi)_{L_{2}}=\left\langle f_{\alpha}, \varphi\right\rangle$ for all $\varphi \in H$. Hence, we obtain the estimate:

$$
\begin{aligned}
\left|\partial_{t} u^{(n)}\right|_{H^{*}}= & \sup _{|\varphi|_{H} \leq 1}\left(\frac{u_{i}-u_{i-1}}{\tau}, \varphi\right) \\
\leq & \sup _{|\varphi|_{H} \leq 1}\left\{\int_{\Gamma} g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}\right) \varphi-\int_{\Omega} \nabla \theta_{i} \nabla \varphi\right. \\
& \left.\quad+\int_{\Omega} f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i j} \theta_{j}\right) \varphi+\left\langle q_{i}, \varphi\right\rangle \frac{1}{\tau}\right\} \\
\leq & C_{1}+C_{2}\left|\theta_{i}\right|_{H}
\end{aligned}
$$

for all $n \geq n_{0}$ and for all $t \in\left(t_{i-1}, t_{i}\right\rangle$.
Due to Lemma 1, we have $\left|\partial_{t} u^{(n)}\right|_{L_{2}\left(I, H^{*}\right)} \leq C$.
We estimate

$$
\int_{0}^{T-z}\left|\bar{\theta}^{(n)}(t+z)-\bar{\theta}^{(n)}(t)\right|_{L_{2}}^{2} \mathrm{~d} t \leq \frac{C_{1}}{n}+\int_{\tau}^{T-z}\left|\bar{\theta}^{(n)}(t+z)-\bar{\theta}^{(n)}(t)\right|_{L_{2}}^{2}
$$

Furthermore, using $\bar{\theta}^{(n)}(t+\tau)=\beta\left(\bar{u}^{(n)}(t)\right)+\frac{1}{\bar{\mu}^{(n)}(t+\tau)}\left(\bar{u}^{(n)}(t+\tau)-\bar{u}^{(n)}(t)\right)$, we obtain

$$
\begin{aligned}
& \int_{0}^{T-z}\left|\bar{\theta}^{(n)}(t+z)-\bar{\theta}^{(n)}(t)\right|_{L_{2}}^{2} \mathrm{~d} t \\
\leq & C \int_{0}^{T-z-\tau}\left(\left|\bar{\theta}^{(n)}(t+\tau+z)\right|_{H}+\left|\bar{\theta}^{(n)}(t+\tau)\right|_{H}\right) \int_{t}^{t+z}\left|\partial_{t} u^{(n)}(s)\right|_{H^{*}} \mathrm{~d} s \mathrm{~d} t+\frac{C_{1}}{\sqrt{n}} \\
\leq & C_{2}\left(z+\frac{1}{\sqrt{n}}\right) .
\end{aligned}
$$

The estimates (2.1) and $\left|\bar{\theta}^{(n)}\right|_{L_{2}(I, H)} \leq C$ imply the compactness of $\left\{\bar{\theta}^{(n)}\right\}_{n=1}^{\infty}$ in $L_{2}(I \times \Omega)$.

Next, subsequences of $\{n\}$ will be denoted again by $\{n\}$.
LEMMA 3. There exists $u \in L_{2}\left(I, L_{2}\right)$ with $\beta(u) \in L_{2}(I, H)$ and subsequences $\left\{u^{(n)}\right\}_{n=1}^{\infty},\left\{\theta^{(n)}\right\}_{n=1}^{\infty}$ such that $u^{(n)} \rightharpoonup u$ in $L_{2}\left(I, L_{2}\right), \partial_{t} u^{(n)} \rightharpoonup \partial_{t} u$ in $L_{2}\left(I, H^{*}\right), \theta^{(n)} \rightharpoonup \theta$ in $L_{2}(I, H), \beta\left(\bar{u}^{(n)}\right) \rightarrow \beta(u)$, and $\theta^{(n)} \rightarrow \beta(u)$ in $L_{2}\left(I, L_{2}\right)$.

Proof. There exists a function $b \in L_{2}(I \times \Omega)$ such that $\theta^{(n)} \rightarrow b$. Since $\left|\bar{\theta}^{(n)}-\theta^{(n)}\right|_{L_{2}\left(I, L_{2}\right)}<\frac{C}{\sqrt{n}}$, we obtain $\bar{\theta}^{(n)} \rightarrow b$ in $L_{2}\left(I, L_{2}\right)$, and $\mid \bar{\theta}^{(n)}-$ $\left.\beta\left(\bar{u}^{(n)}\right)\right|_{L_{2}\left(I, L_{2}\right)} \leq \frac{C}{\sqrt{n}}$ implies $\beta\left(\bar{u}^{(n)}\right) \rightarrow b$ in $L_{2}(I \times \Omega)$.

Since $\left|\bar{u}^{(n)}\right|_{L_{2}\left(I, L_{2}\right)}^{2} \leq C$, we have $\bar{u}^{(n)} \rightharpoonup u$ in $L_{2}\left(I, L_{2}\right)$, and since $\left|\partial_{t} u^{(n)}\right|_{L_{2}\left(I, H^{*}\right)} \leq C$, we deduce $\partial_{t} u^{(n)} \rightharpoonup \partial_{t} u$.

The monotonicity of β implies

$$
\int_{I}\left(\beta\left(\bar{u}^{(n)}\right)-\beta(\varphi), u^{(n)}-\varphi\right) \mathrm{d} t \geq 0 \quad \text { for all } \quad \varphi \in L_{2}\left(I, L_{2}\right)
$$

Now we use the Minty-Browder trick. If we put $\varphi=u \pm \varepsilon r$ and $\varepsilon \rightarrow 0, n \rightarrow \infty$, then

$$
\int_{I}(b-\beta(u), r) \geq 0 \quad \text { for all } \quad r \in L_{2}\left(I, L_{2}\right)
$$

Hence, $b=\beta(u)$ and $\theta^{(n)} \rightarrow \beta(u)$ in $L_{2}\left(I, L_{2}\right)$. Since $\left|\bar{\theta}^{(n)}\right|_{L_{2}(I, H)}^{2} \leq C$, we have $\theta^{(n)} \rightharpoonup \theta$ in $L_{2}(I, H)$ and, from $L_{2}\left(I, L_{2}\right) \supset L_{2}(I, H)$, we obtain $\theta=\beta(u)$ and $\beta(u) \in L_{2}(I, H)$.
LEMMA 4. Let u be the same as in Lemma 3. Then there exists a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of $\{n\}_{n=1}^{\infty}$ such that

$$
\begin{align*}
\lim _{n_{k} \rightarrow \infty} \int_{0}^{t}\left\langle\partial_{t} u^{\left(n_{k}\right)}, \bar{\theta}^{\left(n_{k}\right)}\right\rangle & \geq \int_{\Omega} \Phi_{\beta}(u(t)) \mathrm{d} x-\int_{\Omega} \Phi_{\beta}\left(u_{0}\right) \mathrm{d} x \tag{4}\\
\int_{0}^{t}\left\langle\partial_{t} u, \beta(u)\right\rangle & =\int_{\Omega} \Phi_{\beta}(u(t)) \mathrm{d} x-\int_{\Omega} \Phi_{\beta}\left(u_{0}\right) \mathrm{d} x \tag{4}
\end{align*}
$$

where $\Phi_{\beta}(x)=\int_{0}^{x} \beta(s) \mathrm{d} s$.
The proof is similar as in [6], [7].

LEMmA 5. Let u be as in Lemma 3; then there exists a subsequence of $\left\{\bar{\theta}^{(n)}\right\}_{n=1}^{\infty}$ such that $\bar{\theta}^{(n)} \rightarrow \beta(u)$ in $L_{2}(I, H)$.

Proof. We use the equation

$$
\begin{aligned}
& \left(\frac{u_{i}-u_{i-1}}{\tau}, \psi\right)+\left(\left(\theta_{i}, \psi\right)\right)-\left(g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}\right), \psi\right)_{\Gamma} \\
= & \left(f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i j} \theta_{j}\right), \psi\right)+\left\langle q_{i}, \psi\right\rangle \frac{1}{\tau} \quad \text { for all } \quad \psi \in H, \quad i=1, \ldots, n
\end{aligned}
$$

and we obtain

$$
\begin{aligned}
\int_{I}\left\langle\partial_{t} u^{(n)}, \psi\right\rangle & +\int_{I}\left(\left(\bar{\theta}^{(n)}, \psi\right)\right)-\int_{I}\left(g_{n}\left(t, \bar{\theta}_{\tau}^{(n)}\right), \psi\right)_{\Gamma} \\
& =\int_{I}\left(f_{n}\left(t, \bar{\theta}_{\tau}^{(n)}\right), \psi\right)+\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left\langle q_{i}, \psi\right\rangle \frac{1}{\tau}
\end{aligned}
$$

where

$$
f_{n}\left(t, \bar{\theta}_{\tau}^{(n)}\right)=f\left(t_{i}, \tau \sum_{j=0}^{i-1} K_{i j} \theta_{j}(x)\right), \quad g_{n}\left(t, \bar{\theta}_{\tau}^{(n)}\right)=g\left(t_{i}, \tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}\right)
$$

for $t \in\left(t_{i-1}, t_{i}\right\rangle, i=1, \ldots n$.
If we put $\psi=\bar{\theta}^{(n)}-\beta(u)$ and consider a suitable subsequence of $\{n\}_{n=1}^{\infty}$, we obtain

$$
\lim _{n \rightarrow \infty} \int_{I}\left\langle\partial_{t} u^{(n)}, \bar{\theta}^{(n)}-\beta(u)\right\rangle \geq 0
$$

We estimate the term

$$
A=\int_{I}\left(g_{n}\left(t, \bar{\theta}_{\tau}^{(n)}\right),\left(\bar{\theta}^{(n)}-\beta(u(t))\right)\right) \mathrm{d} t
$$

then

$$
\begin{aligned}
A \leq \mid A- & \left.\int_{I} \int_{\Gamma}\left(g\left(t, \int_{0}^{t} M(t, s) \beta(u(s)) \mathrm{d} s\right),\left(\bar{\theta}^{n}(t)-\beta(u(t))\right)\right) \mathrm{d} t\right) \mid \\
& +\left|\int_{I} \int_{\Gamma}\left(g\left(t, \int_{0}^{t} M(t, s) \beta(u(s)) \mathrm{d} s\right),\left(\bar{\theta}^{n}-\beta(u(t))\right)\right) \mathrm{d} t\right|
\end{aligned}
$$

LADISLAV MATEJÍČKA

Hence

$$
|A| \leq \tau C_{1} \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \int_{\Gamma}^{i-1} \sum_{j=0}^{i}\left|\theta_{j} \|\left(\theta_{i}-\beta(u)\right)\right|+o(1)
$$

because $\theta^{(n)}(t) \rightharpoonup \beta(u(t))$ in $L_{2}\left(I, L_{2}(\Gamma)\right)$, where

$$
\left|A-\int_{I} \int_{\Gamma}\left(g\left(t, \int_{0}^{t} M(t, s) \beta(u(s)) \mathrm{d} s\right),\left(\bar{\theta}^{n}(t)-\beta(u(t))\right)\right)\right|=o(1)
$$

Hence

$$
A \leq C_{1}\left|\bar{\theta}^{(n)}-\beta(u)\right|_{L_{2}\left(I, L_{2}\right)}^{2}+\varepsilon C_{2}\left|\nabla\left(\bar{\theta}^{(n)}-\beta(u)\right)\right|_{L_{2}\left(I, L_{2}\right)}^{2}+o(1)
$$

(we used (1.1)).
Thus we conclude $A \leq \varepsilon\left|\nabla\left(\bar{\theta}^{(n)}-\beta(u)\right)\right|_{L_{2}\left(I, L_{2}\right)}^{2}+o(1)$.
Finally, we estimate the term B of the equation (4).

$$
\begin{aligned}
B & =\int_{I}\left(f_{n}\left(t, \bar{\theta}^{(n)}(t-\tau)\right), \bar{\theta}^{(n)}(t)-\beta(u(t))\right) \\
& \leq \tau C_{1} \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \sum_{j=0}^{i-1} \int_{\Omega}\left|\theta_{j}\right|\left|\theta_{i}-\beta(u)\right|+C_{2} \\
B & \leq o(1)+C_{2}\left|\bar{\theta}^{(n)}-\beta(u)\right|_{L_{2}\left(I, L_{2}\right)}=o(1) .
\end{aligned}
$$

The other terms can be estimated similarly as in [6], [7]. Summarizing the estimates we deduce the required assertion.

Theorem 2. Suppose P1-P7. Then there exist a weak solution u of (1) and subsequences $\left\{\theta^{(n)}\right\}_{n=1}^{\infty},\left\{u^{(n)}\right\}_{n=1}^{\infty}$ of weak approximate solutions of (3) such that $\theta^{(n)} \rightarrow \beta(u), u^{(n)} \rightharpoonup u$ in $L_{2}(I \times \Omega)$, and $\theta^{(n)} \rightarrow \beta(u)$ in $L_{2}(I, H)$. If the weak solution u of (1) is unique, then the original sequences $\left\{\theta^{(n)}\right\}_{n=1}^{\infty}$, $\left\{u^{(n)}\right\}_{n=1}^{\infty}$ are convergent.

Proof. If we take a suitable subsequence of $\{n\}_{n=1}^{\infty}$, we obtain:

$$
\begin{array}{ll}
\int_{I}\left\langle\partial_{t} u^{(n)}, \psi\right\rangle \rightarrow \int_{I}\left\langle\partial_{t} u, \psi\right\rangle & \text { because } \partial_{t} u^{(n)} \rightarrow \partial_{t} u \text { in } L_{2}\left(I, H^{*}\right), \\
\int_{I}\left(\left(\bar{\theta}^{(n)}, \psi\right)\right) \rightarrow \int_{I}((\beta(u), \psi)) & \text { because } \bar{\theta}^{(n)} \rightarrow \beta(u) \text { in } L_{2}(I, H),
\end{array}
$$

where $\psi \in H, n \rightarrow \infty$.

Now we show that

$$
\int_{I} \int_{\Gamma} g_{n}\left(t, \bar{\theta}^{(n)}(t-\tau)\right) \psi(t) \rightarrow \int_{I} \int_{\Gamma} g\left(t, \int_{0}^{t} M(t, s) \beta(u(s)) \mathrm{d} s\right) \psi(t)
$$

for all $\psi(t) \in H$ if $n \rightarrow \infty$. We have

$$
\begin{aligned}
\int_{I} \int_{\Gamma} \mid g_{n}\left(t, \bar{\theta}_{\tau}^{(n)}\right) & -\left.g\left(t, \int_{0}^{t} M(t, s) \beta(u(s)) \mathrm{d} s\right)\right|^{2} \\
\leq & \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \int_{\Gamma}\left|\tau \sum_{j=0}^{i-1} M_{i j} \theta_{j}-\int_{0}^{t} M(t, s) \beta(u(s)) \mathrm{d} s\right|^{2}+o(1) \\
\leq & C\left|\bar{\theta}_{\tau}^{(n)}-\beta(u)\right|_{L_{2}\left(I, L_{2}(\Gamma)\right)}^{2}+o(1)
\end{aligned}
$$

Since

$$
\int_{I} \int_{\Omega}\left|f_{n}\left(t, \bar{\theta}_{\tau}^{(n)}\right)-\int_{0}^{t} K(t, s) \beta(u(s)) \mathrm{d} s\right|^{2} \mathrm{~d} x \mathrm{~d} t \rightarrow 0 \quad \text { for } \quad n \rightarrow \infty
$$

from the definition of Bochner's integral by step functions, we obtain that u fulfils (1) for all $\varphi(t) \in L_{2}(I, H)$. From $u^{(n)}(t) \rightarrow u(t)$ in $C\left(I, H^{*}\right)$, we conclude that $\beta\left(u^{(n)}\right) \rightarrow \beta\left(u_{0}\right)$ in H^{*}.

Remark. The results can be extended to the nonlinear degenerate equation (5) if we assume (P1), (P2), (P3), (P4), (P7). We have

$$
\begin{gather*}
\partial_{t} u(t)-\nabla(k(t, x, \beta(u(t))) \cdot \nabla \beta(u(t))) \\
=f\left(t, x, \beta(u(t)), \int_{0}^{t} K(t, s) \beta(u(s)) \mathrm{d} s, \int_{0}^{t} N(t, s) \cdot \nabla \beta(u(s)) \mathrm{d} s\right) \\
\beta(u(0, x))=\beta\left(u_{0}(x)\right) \tag{5}\\
\partial_{\nu} \beta(u(t))=g\left(t, x, \int_{0}^{t} M(t, s) \beta(u(s)) \mathrm{d} s\right)
\end{gather*}
$$

where the matrix k is supposed to satisfy $|k|<C_{1}$ and $C_{2}|\psi|^{2} \leq(k(t, x, \varphi) \psi, \psi)$ $\leq C_{3}|\psi|^{2}$ for all $t, x \in(0, T) \times \Omega, \psi \in \mathbb{R}^{N}, \varphi \in \mathbb{R}$, and where

$$
\begin{gathered}
K, K_{t} \in L_{\infty}\left(I \times I, \Phi\left(L_{2}(I \times \Omega), L_{2}(I \times \Omega)\right)\right) \\
N, N_{t} \in L_{\infty}^{N}\left(I \times I, \Phi\left(L_{2}(I \times \Omega), L_{2}(I \times \Omega)\right)\right) \\
M, M_{t} \in L_{\infty}\left(I \times I, \Phi\left(L_{2}(I \times \Gamma), L_{2}(I \times \Gamma)\right)\right)
\end{gathered}
$$

LADISLAV MATEJÍČKA

$\Phi(X, Y)$ is a space of linear continuos mappings from X to Y.
If we consider the following degenerate parabolic system (6), we can obtain the same results providing again the same assumptions. One has

$$
\begin{aligned}
& \partial_{t} u_{i}(t)-\nabla\left(\mathbf{D}_{i}(t, x, \boldsymbol{b}(\boldsymbol{u}(t))) \nabla b_{i}\left(u_{i}(t)\right)\right) \\
= & f_{i}\left(t, x, \boldsymbol{b}(\boldsymbol{u}(t)), \int_{0}^{t} \boldsymbol{k}_{i}(t, s) \boldsymbol{b}(\boldsymbol{u}(s)) \mathrm{d} s, \int_{0}^{t} \boldsymbol{N}_{i}(t, s) \nabla \boldsymbol{b}(\boldsymbol{u}(s)) \mathrm{d} s\right) \quad \text { in } I \times \Omega \\
& \beta_{i}\left(u_{i}(x, 0)\right)=\beta_{i}\left(u_{i 0}(x)\right) \quad \text { on } \quad \Omega
\end{aligned}
$$

$$
\mathbf{D}_{i}(t, x, \boldsymbol{b}(\boldsymbol{u}(t))) \cdot \partial_{\nu} b_{i}\left(u^{i}(t)\right)=g_{i}\left(t, x, \int_{0}^{t} \boldsymbol{m}_{i}(t, s) \cdot \boldsymbol{b}(\boldsymbol{u}(s)) \mathrm{d} s\right) \quad \text { on } \quad I \times \Gamma
$$

for $i=1, \ldots, m$, where $\boldsymbol{u}=\left(u_{1}, \ldots, u_{m}\right), \boldsymbol{b}(\boldsymbol{u})=\left(b_{1}\left(u_{1}\right), \ldots, b_{m}\left(u_{m}\right)\right)$, $\boldsymbol{g}=\left(g_{1}, \ldots, g_{m}\right), \boldsymbol{x} \cdot \boldsymbol{y}=\sum_{j=1}^{n} x_{j} y_{j}$, and the matrices \mathbf{D}_{i} satisfy $\left|\mathbf{D}_{i}(t, x, s)\right|<C$ ($|\cdot|$ is the norm of \mathbf{D}_{i} in \mathbb{R}^{n}),

$$
C_{1}|\boldsymbol{v}|^{2} \leq\left(\mathbf{D}_{i}(t, x, \boldsymbol{s}) \boldsymbol{v}, \boldsymbol{v}\right) \leq C_{2}|\boldsymbol{v}|^{2} \quad \forall i=1, \ldots, m
$$

uniformly for $(t, x) \in I \times \Omega, \boldsymbol{s} \in \mathbb{R}^{m}, \boldsymbol{v} \in \mathbb{R}^{n}$. The members for the vectors $\boldsymbol{k}_{i}(t, s), \boldsymbol{m}_{i}(t, s) \in L_{\infty}(\Omega)$.

REFERENCES

[1] AMIEZ, G.-GREMAUD, P. A.: On a numerical approach to Stefan-like problems, Numer. Math. 59 (1991), 71-89.
[2] BERGER, A. E.-BREZIS, H.-ROGERS, J. C. W. : A numerical method for solving the problem $\partial_{t} u(t)-\Delta f(u(t))=0$, RAIRO Modél. Math. Anal. Numér. 13 (1979), 297312.
[3] GAJEWSKI, H.-GRÖGER, K.-ZACHARIAS, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademia-Verlag. Berlin, 1974.
[4] CHEN, C.-THOMÉE, V.-WAHLBIN, L. B. : Finite element approxımation of a parabolic integrodifferential equation with a weakly singular kernel, Math. Comp. 58 (1992), 587-602.
[5] JEROME, J. W.-ROSE, M. E.: Error estimates for the multidimensional two-phast Stefan Problem, Math. Comp. 39 (1982), 377-414.
[6] JÄGER, W.-KAC̆ÚR, J.: Approximation of porous medium type systems by non degenerate elliptic systems. Preprint, Universität Heilderberg, SFB 123 (1990).
[7] JÄGER, W.-KAČÚR, J.: Solution of porous medium type systems by linear approximation schemes, Numer. Math. 60 (1991), 407-427.
[8] KAČÚR, J. : Method of Rothe in Evolution Equations, BSB Teubner Verlag, Leipzig, 1985.
[9] KAČÚR, J.: Application of Rothe's method to evolution integrodifferential equations, J. Reine Angew. Math. 388 (1988), 73105.

ON APPROXIMATE SOLUTIONS OF ... PARABOLIC PROBLEMS

[10] KAČÚR, J.-HANDLOVIČOVÁ, A.-KAČÚROVÁ, M.: Solution of nonlinear diffusion problems by linear approximation schemes. Preprint, Comenius University, Bratislava (Accepted to SIAM J. Numer. Anal.).
[11] KAČÚROVÁ, M.: Solution of porous medium type problems with nonlinear boundary conditions by linear approximation schemes. (To appear).
[12] MacCAMY, R. C.-WONG, J. S. W.: Stability theorems for some functional equations, Trans. Amer. Math. Soc. 164 (1972), 1-37.
[13] MAGENES, E.-NOCHETTO, R. H.-VERDI, C.: Energy error estimates for a linear scheme to approximate nonlinear parabolic equations, RAIRO Modél. Math. Anal. Numér. 21 (1987), 655-678.
[14] MAGENES, E.-VERDI, C.-VISINTIN, A.: Theoretical and numerical results on the two-phase Stefan problem, SIAM J. Numer. Anal. 26 (1989), 1425-1438.
[15] McLEAN, W.-THOMÉE, V.: Numerical solution of an evolution equation with a positive type memory term, J. Austral. Math. Soc. Ser. B (Submitted).
[16] SLODIČKA, M.: Application of Rothe's method to evolution integrodifferential systems, Comment. Math. Univ. Carolin. 30 (1989), 57-70.
[17] SLODIČKA, M.: On a numerical approach to nonlinear degenerate parabolic problems. Preprint, Comenius University, M6 (1992).
[18] SLODIČKA, M.: Numerical solution of a parabolic equation with a weakly singular posi-tive-type memory term. Preprint, Comenius University, M7 (1992).

Received July 3, 1992
Nálepkova 248
Revised September 9, 1993
SK-019 01 Ilava
Slovakia

