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ON MATRIX TRANSFORMATIONS OF 
SOME GENERALIZED SEQUENCE SPACE 
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(Communicated by Ladislav Misik) 

ABSTRACT. P. S c h a e f e r [9] defined the concepts of ©--conservative, cr-regu-
lar, and a-coercive matrices and characterized these classes of matrices, i.e. 
(c, Va), (c, Va )reg, and (too, Va). Recently M u r s a l e e n [5] determined the 
classes (^(p), VG) and (Mn(p), Va) • The object of this paper is to obtain necessary 
and sufficient conditions to characterize the matrices of the classes (co(p), Voa(q)) 
and (c 0 (p),Vr(q)). 

1. P re l imina r i es 

Let a be a mapping of the set of positive integers into itself. A continuous 
linear functional (p on i^, the space of bounded sequences, is said to be an 
invariant mean, or a cr-raean, if and only if 

(i) (p(x) > 0 when the sequence x = (xn) has xn > 0 for all n , 

(ii) ip(e) = 1, where e = (1 ,1 , . . . ) , 

(hi) (p(xa(n)) = (p(x) for all x G ^co

in case, a is the translation mapping n H-» n + 1, a cr-mean is often called a 

Banach limit ([2]), and V^, the set of bounded sequences all of whose invariant 

means are equal, is the set / of almost convergent sequences ([3]). 

Let /o denote the space of almost convergent null sequences. 

If x — (xn), set Tx = (Txn) = (^o-(n)) • It is known that 

Va = \ x G loo •' hm d m n ( x ) = Le , uniformly in n , and L = cr-limx > , 
I m—•co J 

( l . i ) 
where 

.. m 
" m n \ ^ J = ; 7 / . -*- xn • 

m + 1 -f—' + " i=o 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 40H05. 
Key w o r d s : Matrix transformation, Sequence space, Invariant mean. 
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The special case of (1.1) in which a(n) = n + 1 was given by L o r e n t z 
[3; Theorem 1]; the general result can be proved in a similar way. 

It is familiar that a Banach limit extends the limit functional on c, the 
space of convergent sequences. It is known ([5]) that a cr-mean extends the limit 
functional on c in the sense that <p(x) = l imx for all x G c if and only if a has 
no finite orbits, that is to say, if and only if for all n > 0, j > 1, crJ(n) ^ n . 

P. S c h a e f e r [9] defined the concepts of a-concervative, a-regular, and 
a-coercive matrices and obtained conditions to characterize these classes of ma
trices. 

Let Voa denote the set of all bounded sequences which are cr-convergent to 
zero. 

Recently, in [5] and [7] the spaces Va, Voa, / , and /o were extended to 
Va(p), V0a(p)i / ( p ) , and /o(p) in the following manner. 

If p = (pm) is a sequence of real numbers such that pm > 0 and s u p p m < oo, 
m 

we define 

^oo-(p) = \ x : hm | dmn(x)\Prn — 0 , uniformly in n \ , 
I m—>>oo J 

Va(p) = \ x : lim | dmn(x — Le) | P m = 0 , uniformly in n , a- l imx = L > , 
L m—+oo J 

Pm "| 

= 0 , uniformly in n > , 

= 0 for some L , 

uniformly in n } . 

In particular, if pm = p > 0 for all m , we have ^TJCT(P) — ^oo- and Va(p) 
= Va.\i a(n) = n + 1, we get Voo-(p) = /o(p) and Va(p) = f(p). 

S. M. Z a i d i [10] has determined necessary and sufficient conditions for 
some matrix A = (ank), n, fc = 1, 2 , . . . , such that the A-transform of x = (xk) 
belongs to the set Va(q), where in particular x G ^oo(p)-

Just as boundedness is related to convergence, it was quite natural to expect 
that the sequence space £^ of cr-boundedness is related to cr-convergence. 

We write 

£Z, = lx: s u p | d m n ( x ) | < o o | . 
^ m.n ' "oo 

m.n 

But in [8], S a v a § has observed that this concept coincides with £00 , viz., 
Pa — P 
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2. N o t a t i o n 

If p = (pk) is a sequence of real numbers such that pk > 0 and suppk < oo, 
k 

we write 

4o(p) = {* : sup \xk\
Ph < oo j , 

c(p) = I x : lim \xk — L\Ph = 0 , for some L \ , 
I k—>-co J 

c0(p) = { x : lim | s f c | p * = 0 } . 
I k—•OO J 

As special cases of the above, with pk = 1 for all fc, we get P,^, c, and c0 . By 
the Kothe-Toeplitz dual of a set E C s, the set of complex sequences, E ^ 0, 
we mean the linear space 

£ , + = < a : ^ ^ ak£k convergent for all x G £ . 
k 

F?* denotes the dual space of the continuous linear functionals of E. 
We want to add that p = (pk) and q — (qk) in the sequel will denote 

sequences with pk > 0 and qk > 0. 
We use the fact that co(p) is a compete paranormed space with paranorm 

g(x) = (sup \xk\
Pkj , M = m a x ( l , suppk) . 

The purpose of this paper is to obtain necessary and sufficient conditions to 
characterize the matrices of classes (co(p), Vocr(q)) and (co(p), Vcr(q)) . 

3. Main results 

If X and Y are two sequence spaces, let (X, Y) denote the set of all matrices 
A = (ank), n, k = 1, 2 , . . . , that transform x = (#*.) G X into y = (yn) = Ax = 
(^4n(x)) E Y", defined by yn = Xl a nk x k ( n = 1>2,. . . ). Let us write for all 

k 
integers n,m > 1, 

*mn = *mn(Ax) = ^ tt(n, fc, m)xk ,-

-j 771 

where a(n,k,m) = — — r J^ a(cTJ(n), k) . 

In the sequel, we can assume P/c < 1 for all fc without loss of generality 

because co(p) = co(p/M) for M = maxf 1, supp^J • 

Now, let us quote some known results as the following. 

We remark that ^(q) = ^oo(^) in the lemmas below. 
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LEMMA A. ([4]) Let X be a complete paranormed space with Schauder basis 
(bk), and (An) a sequence of elements of X* with An(x) = Ylank^k for all 

k 
x G l and n G N. Furthermore, let q = (qk) be a bounded sequence. Then 

A G (X, V0a(q)) <=> i) (tmn(bk)) G V0a(q) for all fc, 

ii) lim l imsup( | | t m n | |M) g m = 0. 
M - + 0 0 m 

LEMMA B . ([4]) Let X be a complete paranormed space with Schauder basis 
(bk), and (An) a sequence of elements of X* with An(x) = ^2,ankxk for all 

k 
x G X and n G N. Furthermore, let q = (qk) be a bounded sequence. Then 

A G (X, Va(q)) <==> i) there exists an L G X* with 

(tmn(h) ~ L(bk)) G Voa(q) for all fc, 

ii) lim limsup(| |1-m n | |M)9 m = 0. 
M->oo m 

LEMMA C. ([4]) Let p,q G loo- Then 

AG (c 0 (p) ,C(</ ) ) «=» sup J ] | a ( n , f c , m ) | M ^ < oo 
™>,n \ fc / 

for some M > 1. 

Additionally, we use the characterization of the Kothe-Toeplitz dual of c0(p): 

4(p) = U I a : Y, \a*\N^ < °°} 
7V>1 ^ k ' 

and the fact that c$(p) = c0(p) (isometrically isomorphic for bounded se
quences p ) . 

We now establish the following theorems. 

T H E O R E M 1. Let p , g G 4 o Then 

AG (co(p), V0a(q)) 4=> i) lim |a(n, k,m)\Qrn -= 0 , uniformly in n , 
771—•OO 

/ v ^ =±Vm 

ii) lim lim sup > \a(n,k,m)\Mpk = 0 . 

P r o o f . Let A e (c0(p),V0a(q)). Since V0a(q) C ^ ( q ) , we have A e 

(co(p), ^(q)) . Then t m n (Ax) = J2a(ni k,m)xk is defined for all x € c0(p), m 
k 
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and n. That is a(n,k,m) E c£(p) and t m n E c$(p) for all 771,n, and ||£mn||M = 
00 _ i 

^2 \a(n, k,m)\Mpk if | |£m n | | is defined. co(p) being complete, we obtain (ii) 
k=i 
by Lemma A and (i) by using e ^ E c0(p). 

Conversely, suppose that the conditions (i) and (ii) hold and x E c0(p). By 
(ii) it follows that for some M > 1, 

/ v - ^ __Л 9 m 

supl У, \a(n-> k,m)\Mpk 1 < o o . 
m,n\ ) 

__i 

Due to the convergence of ^ |a(n, k,m)\Mpk , we have a(n, fc,m) E C Q ( P ) , and 
k=i 

0 0 _ i 

therefore £m n E cj$(p) and | | im n | |M = ]C la(n> fc,m)|M"pfc if | | tm n | | is defined. 
k=i 

Trivially (e^) ) is a Schauder basis of c0(p). By Lemma A, A E (cn(p), V^^f) ) • 

D 

We have 

THEOREM 2. Let p, Q E 4o Then A E (c0(p), V^(q)) if and only if 
- 1 ' 

(i) sup]T |a(n,fc,m)|Mpfc < 00 for some M > 1, 
n,m k 

(ii) ttzere exis/. 0:1,0.2, • • • £ C ™*^ la(n> &,m) — a/^9™ —> 0, as m —+ 00, 
uniformly in n . /or eac/i k. 

( - 1 \ gm 
^ |a(n, k,m) - afc|M

pfc ) = 0 . 
— - - <<« k ' 

P r o o f . Suppose that A E (c0(p), Va(q)). Because of Va(q) C ^ ( q ) , we 
have A E (co(p), ^_o(</))> a n d so that i m n E cj$(p). By Lemma B, there exists 
an L E c$(p) with 

(1) (tm n(e( f c)) - L(e^)) E Vb^q) for all k, 
(2) lim l imsup( | | tm n - L | | M ) m = 0. 

M^oo m 

This L E CQ(P) can be written as 

L(x) = y^afe^k 

for all x E c0(p) with (ak) E CQ"(P)- Then (1) reads as \a(n,k,m)-ak\
qrn -» 0, 

as m —> 00, uniformly in n, for each k, which is (ii). 
- 1 

By (2) and since \\tmn-L\\M = YJ \a(n,k,m)-ak\M
pk for all M , for which 

k 

\\tmn - L\\M is defined, (iii) follows. 
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Noting that Va(q) C -?£, = £QO and that therefore A G (cn(p), ^oo), we may 
apply Lemma C to obtain 

supí S2 |a(n, fc,ra)|M*>fc ) < oo 
m , n \ fc / 

For the converse, let (i) , (ii), and (hi) hold. From (i) , we have a(n^ fc, ra) G 
cn(p) for all n , r a , and therefore tmn G CQ(P) f° r a ^ n

5
m - It follows from (i) 

aiid (iii) that for n , ra and M large enough 

^\ak\M^ < ^ | a ( r e , fc,ra) - a f c | M ^ + ^ |a(n, fc,ra)|M^~ < oo . 
k k k 

Therefore 
(afc) G c ^ p ) , 

and with Lx = ^ akxk : 
k 

^ ^ c * ( p ) . 

So we have for tmn, L G CQ (p) 

||*mn - £||M = 2 ^ |a(n, fc, ra) - a.fc|M** . 
k 

By Lemma B, A G (co(p), Va(q)). This completes the proof. • 

4. Corol la r ies 

We deduce the following corollaries. 

COROLLARY 1. A G (co(p),V0a) if and only if 

(i) a(n^ fc,ra) —> 0 as ra —» oo, uniformly in n, for each k, 
- i 

(ii) lim l i m s u p ^ |a(n, fc,ra)|Mpfc = 0 . 
M—•CO m /c 

P r o o f . Take qk = 1 for all A: in Theorem 1. • 

COROLLARY 2. A G (c0(p),K-) if and only if 
- i 

(i) s u p ^ |a(n, fc,ra)|Mpfc < oo for some M > I, 
n,m k 

(ii) ifeere exzs£ a i ,a .2 , - - - G C with |a(n, fc,ra) — a^| —> 0, as ra —> oo, 
uniformly in n, for each k, 

- i 

(iii) lim l i m s u p ] ^ |a(n, fc,ra) — afc|Mpfc = 0 . M—ЮO 
m k 

P r o o f . Take q^ = 1 for all A; in Theorem 2. • 

160 



ON MATRIX TRANSFORMATIONS OF SOME GENERALIZED SEQUENCE SPACE 

COROLLARY 3. Let p, q G ôo • Then A G (cn(p), /o(fl)) «/ a™d onZy i/ 

(i) |b(n, fc,m)|9m —> 0 as m ^ oo. uniformly in n, for each k, 

(ii) 

lim limsup > |6(n, fc,m)|Mpfe = 0 , 

-i 771 

where b(n, fc, m) = —- V a(n + 7, fc). 
m + 1 j^o 

Taking cr(n) = n + 1 in Theorem 1, we close the proof. 

COROLLARY 4. Let p, q G 4o -T/ien A G (co(p), / ( ? ) ) */ and on/7/ i/ 
- 1 

(i) s u p ^ |b(n, fc,m)|Mpfc < 00 for some M > 1. 
n,ra k 

(ii) i/iere exist a i , a 2 , • • • G C wiife |6(n,fc,m) — a^|9m —» 0. as m —• 00. 
uniformly in n, for each k, 

(hi) 

lim limsup > |b(n, fc,m) — ^ | M p f e = 0 , 
M-+00 m \ ^ ) 

where a*. = L — lim an^ . 
n 

P r o o f . Choosing the mapping a(n) = n + 1 instead of mapping cr as the 
transformation mapping, the space Va(q) of Theorem 2 reduces to f(q). Hence 
it is proved. • 
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