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ABSTRACT. In [J. Math. Anal. Appl. 132 (1988), 226-233], Choudhary
has extended the well-known Knopp’s core theorem. The purpose of this pa-
per is to generalize the results due to Choudhary by using the concept of
F g -convergence [Math. Japon. 18 (1973), 53-70].

1. Introduction

We list the following functionals defined on m, the space of bounded real
sequences z = (z;,)

Lz) = limkinf T, L(z) = limsupz, ,
k
q(.'t) = hmklnf 1.’1}k| , Q(:};) —= limsup |‘Lk| ,
k
llz]| = sup |z, w(z) =inf{L(z+2): z € bs},
where bs denotes the space of all bounded sequences z = (z,) such that
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n
> zk! < +00. Further

sup
n

i+n

() = hm inf sup + 1 z,,
r=t
i+n

L*(z) =lim supsup + 72T
r=t

w*(z) =inf{L*(z +2): z € bs}.

In (3], [4] and [6], we have the following inequalities

L<w<L<|]; w1
L<Q; L<q<Q;
(< <L*<L; w* < L*.

Before giving some other functionals, we recall the following definition of
F g-convergence ([7]).

Let # = (B,) be a sequence of infinite matrices with B, = (b,,(1)). A
sequence = = (z,) € m is said to be Fg-convergent to the value Lim Pz if

lim(B,z),, = lim Y b,,(i)z; = Lim Bz,
k

uniformly for ¢ = 0,1,2,.... By F, we mean the space of all F,-convergent
sequences, and Lim Bz denotes the generalized limit. The space Fgg depends
on the fixed chosen sequence % = (B,) of matrices. In case B = %, = (1),

the unit matrix, Fgp = c. For & = %, (B(l)) Fg = [, the space of almost

convergent sequences ([5]); where B(l) (b(l)(z)) and

(1) ni—l’ ZSkSZ+n)
bnk (Z) - .
0, otherwise.

We further give some new functionals defined in [6] for & = (B,) with
11| = sup Y Ib,,,.(9)]
nyi g

Q 4(z) = limsup supz b, (i),
n % k

and

z) = liminfsu b . (i)x, ,
95() = ipg k() T
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obviously,
15 <Rz <|2|. (L.1)
If Qg(z) = qgu(z), we say that lim ) b, (7)z, exists uniformly in i. For an
n g

infinite matrix A = (a,,, ), we write
Q z(Az) = lim sup sup Z b,,(7) Z ATy s
n (2 ¢ k

qg(Az) = liminfsup » b,,(1) Y apz,.
"oty k

The object of this paper is to generalize Theorem 1 and 2 dueto Choudhary
[1].
Let X and Y be any two sequence spaces, and A = (a,,) be an infinite
matrix. We write Az = (A, (z)), where A, (z) = a,,z,, provided the series
k

converges for each n. If z = (z,) € X implies Az € Y, we say that A defines
a matrix transformation from X into Y, and we denote it by A € (X,Y);
and (X,Y) denotes the class of all such matrices. A € (X,Y) ., we mean
A€ (X,Y) and limz = lim Az.

In order to prove our results, we need the following lemmas.

2. Lemmas
LEMMA 2.1. ([7]) Let # = (B,) be a sequence of infinite matrices with

supz b, (1)] < o0 for each 1.
"ok

Then A € (C’F@)reg if and only if

(i) Al < oo,
(ii) for >0

0<i<oo
r<n<oo

sup Z \ane(i)aekl < 00,
k I4

(iii) Hm Y b,e(i)ag =0 uniformly in i for each k,
no ¢

(IV) llmzbne(z) Zaek =1 ’lmiformly m 1.

For A € (¢, Fg)reg
Lim #(Az) =limz, T EC.
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LEMMA 2.2. ([7]) Let # = (B;) with ||#|| < oco. Then A € (f,Fp)
only if

(i) Conditions (i), (iii) and (iv) of Lemma 2.1 hold, and

(ii) 111131; |zlj be(i)(ag — agyiy)| =0 uniformly in i.

For A€ (f,Fg)q

if and

reg

Lim #(Az) = f —limz, z€f.

3. Main results

THEOREM 3.1. Let # = (B,) be a sequence of infinite matrices with || 2| < cc.
Let A =(a,;) be a normal regular matriz with A=' = (a;}) its reciprocal. Let

oo

J+1
Y buli)ag!| =0  as J— oo, (3.1.1)
k=0 '{¢=J+1
uniformly in i, for any fized n.
Then
Qgu(z) < L(Az) (3.1.2)
if and only if
A—l € (cv F%’)reg ’ (3.1.3)
ﬁ;}lsng bneu)Zaz;) =1. (3.1.4)
e k

Proof.
Necessity. Let = € c. Then

{(z) = L(z) = limz. (3.1.5)

It is obvious that
(z) < qg(z),
since A is regular. Therefore () = ¢(Az). Hence
{(Az) < qg(2),
since A is normal. Therefore

U(z) < qu(A 'z).
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Now, by (1.1), (3.1.2), and (3.1.5), we have
limz = £(z) < gg(A™"'z) < Qg(A™'z) < L(z) =limz,
that is,
4z(A7'z) = Qz(A™'z) =limz.

Therefore
Lim B(A™'z) = limz forall zec.

Hence (3.1.3) holds.
Now, by [2; Lemma 2], there exists y € m such that ||y|| <1 and

Qp(A™'y) = limsupsup 3_ [b,,,(3) Za;,cll . (3.1.6)
n 1 e k

Hence

1=gg4(A'e) <lim infsupz b, (%) Za&ll
" P

b)Y o |
k

=Qg(A™ly) (by (3.1.6))
<L(y) <yl £1,

< lim sup sup

which proves the necessity of (3.1.4).
Sufficiency. We define for any real A

AT =max()\,0) and A~ = max(-),0),
then
A=At +X" and A=2t-A".

Therefore, for any positive integer k,
Z bnl (z) Z al—kl Yk
—ZM@Z%M&ZMQZ@mw 2 bue) 3 ()

k<ko k>ko k>ko

<MZM@ZMW(WMZM@ZM
k<ko k>ko

4WWH§:@J( ) D (lag'| =)
h>ko
<yl Z] -+ (ﬂ;p yk) ZZ +lyll ZB
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By virtue of condition (3.1.1),

Z anz(’) Z lagt| — 0 uniformly in ¢, for fixed n;
k<ko
and condition (3.1.4) gives that
Zzzsngbné(i) Z lagt| — 1 as n — 00.
£

k>ko

Also, condition (3.1.4) alongwith condition (iv) of Lemma 2.1 gives

=su b a,. | —a, —>0 as mn — 00.
> p23n3>§:|£1 )

k>ko

Finally, we have

lim sup sup Z b,0(%) Z ae_klyl,c < limsupy,,
n % ) & k

that is,
Qgu(A™ly) < L(y).
Since A is normal, we have
Q.@(I) < L(A.’L‘),
where z = A™1ly = (Za;klxk) .
k
This completes the proof of the theorem. O

THEOREM 3.2. Let A and % be matrices as in Theorem 3.1. Let (3.1.1) hold.
Then

Q(x) < L*(42) (3.2.1)
if and only if

e (f, Fg)reg (3.2.2)
and (3.1.4) hold.

Proof.
Necessity. Let z € f. Then

0(z)=L"(z)=f —limz.
By (3.2.1), we have
0*(z) < qp(A™'2) < Qu(A™'z) < L*(z).
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Therefore, for all z € f

Lim (A 'z) = f — limz,

and hence (3.2.2) holds.

Since (f, Fg)req C (€, Fg),eq» condition (3.1.4) follows from Theorem 3.1.

Sufficiency. Given € > 0, we can find a positive integer p such that for y € m
and for all £ >0

k+p
m Zyr < L*(y) +e, (323)
r=k

holds for fixed p whose choice depends on y € m.

We can proceed as in the proof of Theorem 3 due to Orhan [6]. It is easy
to write that

NS, (T an
-1 —1 k— ~1
Saitu = Yy S - (B ),
k k r=k k=p
p—1 p—1 -1 -1
ap +---+a
1 ek 0,k—p+1
IS B CE S
k=0 k=0
Therefore
1 2 3 4
PLVODILTETEDDIEDDED DD D (3.24)
¢ k
where

k+p

Y= %:bng(i)zk:az}ﬁ ;y

3 = bt 3o (B ),
‘ k=p

ZS = zg:bne(i)gazﬁyk,

Z4 _ Z bnl(i)’é(ae‘; bt aZi_”“)yk |
; k=0

p+1
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Since A~! € (£, F, @)reg» @0d, by condition (iii) of Lemma 2.1, 3% and Y* tend
to zero as n — co. Now

2
IZ Isp-lkl ant ’)E(“tk ot agp, = (Pt Day! I'ykl
=P

ll=ll o=
—<—p+1 anl(z)zzalk—p atk l

r=0 k=p

oo

< p”_“;‘_”l ane(’)r_zo ,;)(alk — Q¢ k+1 I

< g”-"’”E ,anz(i) (ag — at,k+1)| :
ke

By virtue of condition (ii) of Lemma 2.2, IEZI — 0 as n — oo. Therefore, we
have by (3.2.4)

Qz(A7'y) =1lim  Sup sup Z b,,(%) Z ag vy
<lim  sup supZ b,,(%) Za'l (%c—-lbp#k—tg)
< lim  Sup sup Z b,.(?) Z( e M (M#)
- limnsup sgpzl: b,,(?) zk:(al_kl)— (yk_-i-p—_*j%i’_’) .

Using condition (3.2.3), we have
Qa(A™ly) < (L*(y) + e) lim sup squ lbne(i) E a;kll
n 1 ? k

+ Iyl limsupsup 3 [b,e () S aze|
n 1 e k

— llyll imsupsup > b,,(5) > ap! .
n L k

Using conditions (3.1.1), (3.1.4) and condition (iv) of Lemma 2.1, we finally have
Qz(A™'y) < L*(y).

Hence
QRe(z) < L*(Az).
This completes the proof of the theorem. O
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