Mathematic Slovaca

Hilda Draškovičová

Modular median algebras generated by some partial modular median algebras

Mathematica Slovaca, Vol. 46 (1996), No. 4, 405--412

Persistent URL: http://dml.cz/dmlcz/136679

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

MODULAR MEDIAN ALGEBRAS GENERATED BY SOME PARTIAL MODULAR MEDIAN ALGEBRAS

Hilda Draškovičová
(Communicated by Tibor Katriñák)

Abstract

Let \mathcal{M} denote the variety of algebras with one ternary operation $(a b c)$ satisfying the identities $(a b b)=b$ and $((a b c) d c)=(a c(d c b))$. The subvariety \mathcal{T} of the variety \mathcal{M} is given by the identity $((a b c) d e)=((a d e)(b d e)(c d e))$. It is known that the lattice of subvarieties of the variety \mathcal{T} forms a strictly increasirg sequence (a chain) of varieties $\mathcal{T}_{n}, n=1,2, \ldots, \omega$, and $\mathcal{T}=\mathcal{T}_{\omega}$. For each $\mathcal{T}_{n}, 1<n<\omega$, it is given a finite base of identities. The free algebra $F_{\mathcal{M}}(3)$ on three generators over the variety \mathcal{M} belongs to the variety \mathcal{T}. Since we do not know anything about the free algebra $F_{\mathcal{M}}(4)$ on four generators over \mathcal{M}, we give results about the algebras in \mathcal{M} or in \mathcal{T}, respectively, which are generated by some partial algebras.

Introduction

Denote by \mathcal{M} the variety of algebras A with a single ternary operation (xyz) (notation $A=(A ;()))$ satisfying the identities
(1) $(a b b)=b$,
(2) $((a b c) d c)=(a c(d c b))$.

The algebras from \mathcal{M} are called modular median algebras (shortly m.m. algebras) as in the papers [6] and [8]. Denote by \mathcal{D} the subvariety of \mathcal{M} given by the identity
(D) $(a b c)=(b a c)$.

[^0]
HILDA DRAŠKOVIČOVÁ

The variety \mathcal{M} was studied by M. Kolibiar and T. Marcisova in [15]. They have shown that the varieties \mathcal{M} and \mathcal{D} are related to the varieties of modular and distributive lattices, respectively: In a modular lattice L. the ternary operation
(0) $(x y z)=(x \wedge(y \vee z)) \vee(y \wedge z)=(x \vee(y \wedge z)) \wedge(y \vee z)$
satisfies the identities (1) and (2). Noreover, if L is distributive. then also (I)) is satisfied. Also a partial converse is true (see [15]): Consider an algehra $1 \in . \mathrm{M}$ which contains two specific elements 0,1 and satisfies the identity $(0, r l)=r$. Then the algebra $(A ; \wedge, \vee)$, where $x \wedge y=(x 0 y), x \vee y=(. x \mid y)$. is a modulat lattice in which 0 and 1 are the least and the greatest element. respectively. and the identity (o) holds. This lattice is distributive if $A \in \mathcal{D}$.

The study of ternary algebras related to distributive latticess was initiated bey (i. Birkhoff and S. A. Kiss [5] and followed by M. Sholander (in [19). [20], [21]) and many other authors (e.g., [1], [15], [13]; a survey can be foumd in $[3]$.

The study of ternary algebras related to modular lattices was initiated b. J. Hashimoto [10] and followed by other authors (e.g., [15]. [11]. [12]. [133. $[6],[8])$. More general ternary algebras were investigated by J. R. I sbell [1:3] and J. Hedlíková [12].

Denote by \mathcal{T} and \mathcal{U} the subvariety of the variety \mathcal{M} satisfying the identity
(T) $((a b c) d e)=((a d e)(b d e)(c d e))$
and
(U) $((a b c) a d)=(a b(c a d))$,
respectively.
E. Fried and A. F. Pixley [9] introduced the notion of a dual discriminator variety. It was shown in [6] that \mathcal{T} is a dual discriminator variety: \mathcal{T} has equationally definable principal congruences, \mathcal{T} has congruence extension property, and any algebra from \mathcal{T} can be embedded in a modular lattice. Independently, the variety \mathcal{T} appeared as a special subvariety of media int roduced by J. R. Isbell [13] (he called them isotropic media). The identity (U) appeared in an algebraic description of block graphs (alias Husimi trees) performed ber L. Nebeský [18]. Both identities (T) and (U) are used (see [4; Theorem 3]) in a characterization (solely by algebraic identities) of quasi-median algebras. i.e.. algebras associated with quasi-median graphs introduced by H. M. Mulder in [17].

It was shown in [8; Theorem 1] that the varieties \mathcal{T} and \mathcal{U} coincide. It holds $\mathcal{D} \subset \mathcal{T}, \mathcal{D} \neq \mathcal{T}$ (see, e.g., $[8]$). Denote by $\mathcal{L}(\mathcal{M})$ the lattice of all subvarieties of the variety of \mathcal{M}. It was shown in $[8$; Theorem 2, Theorem 3] that each of the identities (D$)$ and (T$)$ splits the lattice $\mathcal{L}(\mathcal{M})$ into two parts. The free algebra $F_{\mathcal{M}}(3)$ on three generators over the varicty \mathcal{M} has six clements and can
be embedded in the free modular lattice on three generators (cf. [13; Corollary to 2.2$]$). Mcreover, $F_{\mathcal{M}}(3)$ belongs to the variety \mathcal{T} (cf. [13; below 5.14]). We do not know anything about the free algebra $F_{\mathcal{M}}(4)$ on four generators from the variety \mathcal{M}. We know from $[13 ; 5.14]$ that the variety \mathcal{T} is locally finite.

In the present paper, some results are given about an algebra $A \in \mathcal{T}$ generated by a partial algebra of order four (Theorem 2 and Theorem 3 below) and $A \in \mathcal{M}$ generated by a partial algebra of order five (Theorem 1), respectively. It is given a finite base of identities for each subvariety of the variety \mathcal{T}^{-}(Theorem 4 below).

Preliminary results

Lemma A. ([15; Lemma]) The following identities and implications hold in cach $A \in \mathcal{M}$.
(3) $(a b a)=a$,
(1) $(a b c)=(a c b)$,
(5) $(a a b)=a$,
(6) $((a b c) b c)=(a b c)$,
(7) $((a b c) a c)=(a c(a b c))=(a b c)$,
(8) $(a b(c a b))=(a b c)$,
(9) $(a b c)=c$ implies $(b a c)=c=(c a b)$,
(10) $(b a c)=(c a b)$ implies $(a b c)=(b a c)$,
(11) $(a(d b c)(a b c))=(a b c)$.

Recall from [6; Remark 1.1] that \mathcal{M} is a congruence distributive variety since (1), (3) and (5) give the majority term.

Let $A \in \mathcal{M}, x, y, z \in A$. We say that y is between x and z, and write $x y z$, if $(x y z)=y$. By (9) and (4), xyz implies $z y x$.

Lemma B. ([6; Lemma 1.2, Lemma 1.3, Lemma 2.1]) The following identities and implications hold in each $A \in \mathcal{M}$.
(12) $((a b c)(b a c)(c a b))=(a b c)$.
(1:3) $((a c d) c b)=(a c(d c b))=(a c(b c d))=((a c b) c d)$.
(1.4) $(a b(c d a))=(a(b d a)(c d a))=(a c(b d a))$.
(1.5) arb and ayb imply $(x a y)=(a x y)=(y a x)$.
(16) An algebra $A \in \mathcal{T}$ is subdirectly irreducible if and only if for every $x, y, z \in A(x y z)=x$ if $y \neq z$ and $(x y z)=y$ if $y=z$.
(17) Let $\theta \in \operatorname{Con} A, A \in \mathcal{M}, x, y, z, u \in A$. If $x y z, y z u$ and $x \theta u$, then $y \theta z$. In particular, $x y z, y z u$ and $x=u$ imply $y=z$.

HIL.DA DRAŠKOVIČOVÁ

Denote by T_{2} the two element algebra from \mathcal{M}. If $A \in \mathcal{M}, a, b, c$ are pairwise different elements of A, and $a=(a b c), b=(b a c)$ and $c=(c a b)$ hold. then we say that the elements a, b, c form a triangle, and we use the notation T_{3} for it. For each cardinal $n \geq 3$ denote by T_{n} the algebra of order n in which any three elements form a subalgebra isomorphic to the triangle T_{3}. The algebras T_{n} are the only subdirectly irreducible algebras in the variety \mathcal{T} (see. e.g., (16)). Let $A \in \mathcal{M}, a, b, c, d \in A$. A quadruple (a, b, c, d) is said to be cyclic whenever $a b c, b c d, c d a$ and $d a b$ hold.

Results

The following Theorem is due to J. Hedlíková (oral communication).
Theorem 1. Let $A \in \mathcal{M}, x, y, z, u, s \in A, y \neq u, \quad(\{x, y, z\} ;()) \cong T_{3}$ and (y, z, s, u) be a cyclic quadruple. Then the elements x, y, z, s, u generate a subalgebra B of A, where $B=(\{x, y, z, t=(x s u), s, u\} ;())$, which is isomorphic to the direct product $T_{3} \times T_{2}$. Moreover, $B \in \mathcal{T}$.

Proof. Note that $y \neq s$ because of (3) in Lemma A. Using (17) of Lemma B , from $y \neq u$, we get $s \neq z$. Similarly, $y \neq z$ implies $u \neq s$. Hence. $y \neq u \neq s \neq z$ hold. We shall prove that the following relations follow from our assumptions:

$$
\begin{aligned}
& \text { (1.1) } x=(x y s) \text { and } x=(x z u) \text {, } \\
& \text { (1.2) } y=(x y u) \text { and } z=(x z s) \text {, } \\
& \text { (1.3) } y=(y x s) \text { and } z=(z x u) \text {, } \\
& \text { (1.4) } z=(s x y) \text { and } y=(u x z) \text {, } \\
& \text { (1.5) } u=(u s x) \text { and } s=(s u x) \text {. }
\end{aligned}
$$

From the cyclic quadruple (y, z, s, u), we get $y z s$, hence, by (9),
(1.6) $(z y s)=z$.

Then $(x y s)=((x y z) y s) \stackrel{(13)}{=}(x y(z y s)) \stackrel{(1.6)}{=}(x y z)=x$. Symmetrically, $(x \sim u)=r$ can be proved and (1.1) holds. $(x y u)=((x y z) y u) \stackrel{(13)}{=}(x y(z y u))=(x y y) \stackrel{(1)}{=} y$ ($z y u$ holds since (y, z, s, u) is a cyclic quadruple). Symmetrically: $z=(x z s)$ and (1.2) holds. $(y x s)=((y x z) x s) \stackrel{(13)}{=}(y x(z x s)) \stackrel{(1.2)(9)}{=}(y x z)=y$. Symmetricalḷ: $(z x u)=z$ and (1.3) holds. $(s x y)=(s x(y x z)) \stackrel{(13)}{=}((s x z) x y) \stackrel{(1.2)(9)}{=}(z . r y)=z$. Symmetrically, $(u x z)=y$ and (1.4) holds. $(u s x)=((y s u) s x) \stackrel{(13)}{=}((y . s, s) s u) \stackrel{(1,3)}{=}$ $(y . s u)=u$. Symmetrically, $(s u x)=s$ and (1.5) holds.

Take $t=(x s u)$. According to (1.5), $(u s x)=u \neq s=($ sux $)$, we get $u \neq t \neq s$ by (10) of Lemma A. In view of (12),
(1.7) $(\{t, u, s\} ;()) \cong T_{3}$.

Since (u, s, z, y) is a cyclic quadruple, too, and $u \neq y \neq z \neq s$ hold, we get that the analogous relations to (1.1) - (1.5) hold:
(1.8) $t=(t u z)$ and $t=(t s y)$,
(1.9) $u=(t u y)$ and $s=(t s z)$,
(1.10) $u=(u t z)$ and $s=(s t y)$,
(1.11) $s=(z u t)$ and $u=(y t s)$,
(1.12) $y=(y z t)$ and $z=(z y t)$.

Now we shall show that (1.13) (y, x, t, u) is a cyclic quadruple.

According to (4) and (9), we get
(1.14) $x t u$, hence, $u t x$.

With respect to (1.2), (4), and (9), we get (1.15) $x y u$, hence, $u y x$.

In view of (15), (1.14), and (1.15), we get
(1.16) $(x t y)=(t x y)=(y x t)$.

Then $(x t y) \stackrel{(4)}{=}(x y t)=((x y z) y t) \stackrel{(13)}{=}(x y(z y t)) \stackrel{(1.12)}{=}(x y z)=x$. It implies $(y x t)=x$ by (1.16), hence, (1.17) yxt.

Now (1.13) follows from (1.14), (1.17), (1.15) and (1.9). Analogously, it can be proved that
(1.18) (z, x, t, s) is a cyclic quadruple, in particular, $t x z$, hence,
(1.19) $(t z x)=x$.
$(1.20)(t y z)=x:$

$$
(t y z) \stackrel{(4)}{=}(t z y) \stackrel{(1.4)(4)}{=}(t z(u z x)) \stackrel{(13)}{=}((t z u) z x) \stackrel{(1.7)(4)}{=}(t z x) \stackrel{(1.19)}{=} x
$$

(1.21) $t \neq x$:

In view of (1.13), tuy and $u y x$. If $t=x$, then according to (17), $y=u$, a contradiction.
(1.22) $\quad t \neq y$:

Let $t=y$. Then $t \stackrel{(1.18)}{=}(x t s)=(x y s) \stackrel{(1.1)}{=} x$, hence, $y=x$, a contradiction. Analogously, it can be proved
$(1.23) \quad t \neq z$.
We have proved that all elements from B are pairwise different. Denote $\alpha=$ $\theta(x, y) . j=\theta(x, t)$. According to (1.13), (1.18), (1.7), and (17), we get $B / \alpha \cong T_{2}$ and $B / i \cong T_{3}$. It is casy to see that $B \cong B / \alpha \times B / \beta$. Hence, $B \cong T_{2} \times T_{3}$. Finally: $B \in \mathcal{T}$ by (16).

HILDA DRAŠKKOVIČOVÁ

Theorem 2. Let $A \in \mathcal{T}, a, b, c, d \in A,(\{a, b, c\} ;()) \cong T_{3}, r \neq d \neq a \cdot$. 1 nd cda hold. Then the subalgebra B of A generated by the elements a.b.c.d is isomorphic to the direct product $T_{3} \times T_{3}$.

Proof. Let $B \subseteq \Pi\left(A_{i}: i \in I\right)$ be a subdirect decomposition of subdirectly irreducible algebras $A_{i}, A_{i} \in \mathcal{T} . i \in I$. Without loss of generality. we can suppose that for each $i \in I$ the algebra A_{i} has more than one element. and that all projections p_{i} from B onto A_{i}, have pairwise different kernels Ker p_{i}. For arbitrary element $x \in B$ cenote by x_{i} the i th component of the element x, hence, $x=\left(x_{i}: i \in I\right)$. The elements a, b, form a triangle, hence. for each $i \in I$ either $a_{i}=b_{i}=c_{i}$ or $a_{i} \neq b_{i} \neq c_{i} \neq a_{i}$ holds. The element d_{i} has to be between the elements; a_{i} and c_{i} in $A_{i} \cong T_{n}$. which is possible onl! if $d_{i} \in\left\{a_{i}, c_{i}\right\}$ by (16) of Lemma B. In the case $a_{i}=b_{i}=r_{i}$. the algehra $A_{i}=p_{i}(B)$ has only one element. Hence, for each $i \in I . a_{i} \neq b_{i} \neq c_{i} \neq a_{i}$ holds and $A_{i} \cong\left(\left\{a_{i}, b_{i}, c_{i}\right\} ;()\right) \cong T_{3}$. According to $a \neq d \neq c$. the clements $i . j \in I$ must exist such that $d_{i}=a_{i}$ and $d_{j}=c_{j}$. We shall show that $I=\{i, j\}$. Let $k \in I$. Without loss of generality, suppose $d_{k}=a_{k}$. Then the mapping $f: A_{k} \rightarrow A_{i}$ given by $f\left(a_{k_{i}}\right)=a_{i}, f\left(b_{k}\right)=b_{i}, f\left(c_{k}\right)=c_{i}\left(f\left(d_{k_{i}}\right)=d_{i}\right.$ holds. too $)$ is an isomorphism, and $p_{i}=f \circ p_{k}$ holds (since these homomorphisms coincidern the set $\{a, b, c, d\}$ of generators of the algebra $B)$. It implies Ker $p_{i}=$ Ker p_{k}. hence, $i=k$ (for we have supposed that different projections have different kernels). It was shown that $B \subseteq A_{i} \times A_{j} \cong T_{3} \times T_{3}$. It is easy to verify that the elements $a=\left(a_{i}, a_{j}\right), b=\left(b_{i}, b_{j}\right), c=\left(c_{i}, c_{j}\right), d=\left(a_{i}, c_{j}\right)$ generate the whole algebra $A_{i} \times A_{j}$. Really, for the elements $e=(b a d), f=(c b c) . g=(a c f)$. $h=(b a g), l=(c b h)$ the following equalities hold: $e=\left(a_{i}, b_{j}\right) . f=\left(c_{i}, b_{j}\right)$. $g=\left(c_{i}, a_{j}\right), h=\left(b_{i}, a_{j}\right), l=\left(b_{i}, c_{j}\right)$.

Theorem 3. Let $A \in \mathcal{T}, a, b, c, c^{\prime} \in A, c \neq c^{\prime}$, and $(\{a, b, c\}:()) \cong T_{3} \cong$ $\left(\left\{a, b, c^{\prime}\right\} ;()\right)$. Then the subalgebra B of A generated by the elements a.b.c. c^{\prime} is isomorphic either to T_{4} or to the direct product $T_{4} \times T_{3}$.

Proof. Similarly as in the proof of Theorem 2 , let $B \subseteq I I\left(A_{i}: i \in I\right)$ be a subdirect decomposition of subdirectly irreducible algebras $A_{i}, A_{i} \in \mathcal{T} . A_{i}>1$. $i \in I$, and all projections p_{i} of B onto A_{i} have pairwise different kernels Ker $\mu_{;}$ $(i \in I)$. For each $i \in I$ either $a_{i}=b_{i}=c_{i}$ or $a_{i} \neq b_{i} \neq c_{i} \neq a_{i}$ holds. In the case $a_{i}=b_{i}=c_{i}$, we get $a_{i}=c_{i}^{\prime}$ and $A_{i}=1$. Hence, $a_{i} \neq b_{i} \neq c_{i} \neq a_{i}$. and analogously, $b_{i} \neq c_{i}^{\prime} \neq a_{i}$. According to $c \neq c^{\prime}$, there exists $i \in I$ such that the elements $a_{i}, b_{i}, c_{i}, c_{i}^{\prime}$ are pairwise different, hence, $A_{i} \cong T_{4}$. Now we have two possibilities:
a) There does not exist $j \in I$ with the property $c_{j}=c_{j}^{\prime}$. Then for each $k \in I$ the elements $a_{k}, b_{k}, c_{k}, c_{k}^{\prime}$ are pairwise different. Similarly as in the proof of Theorem 2, the mapping $f: A_{k} \rightarrow A_{i}$ given by $f\left(a_{k}\right)=a_{i}, f\left(b_{k}\right)=b_{i}$.

MODULAR MEDIAN ALGEBRAS

$f\left(c_{k}\right)=c_{i}, f\left(c_{k}^{\prime}\right)=c_{i}^{\prime}$ is an isomorphism such that $p_{i}=f \circ p_{k}$ holds. Then Ker $\mu_{i}=\operatorname{Ker} p_{k}$, and $k=i, I=\{i\}, B=A_{i}$.
b) There exists $j \in I$ such that $c_{j}=c_{j}^{\prime}$. Then $A_{j}=\left(\left\{a_{j}, b_{j}, c_{j}\right\} ;()\right) \cong T_{3}$. We shall show that $I=\{i, j\}$. If $k \in I$, then we have either $c_{k} \neq c_{k}^{\prime}$ and then we get Ker $p_{k}=\operatorname{Ker} p_{i}$ and $k=i$, or $c_{k}=c_{k}^{\prime}$ and then we get $\operatorname{Ker} p_{k}=\operatorname{Ker} p_{j}$ and $k=j$. It implies that $B \subseteq A_{i} \times A_{j} \cong T_{4} \times T_{3}$. It is easy to verify that the clements $a=\left(a_{i}, a_{j}\right), b=\left(b_{i}, b_{j}\right), c=\left(c_{i}, c_{j}\right), c^{\prime}=\left(c_{i}^{\prime}, c_{j}\right)$ generate the whole algehra $A_{i} \times A_{j}$. Recall that \mathcal{T} is locally finite variety by $[13 ; 5.14$. If k and m are infinite cardinals, then the algebras T_{k} and T_{m} generate the same variety \mathcal{T}_{w} since they all have the same finitely generated subalgebras. For n finite let $\mathcal{T}_{1 \prime}$ be the subvariety of \mathcal{T} generated by the subdirectly irreducible algebra T_{n} (or equivalcntly, by all subdirectly irreducible algebras $A \in \mathcal{T}$ with card $A \leq n$). The varicties $\mathcal{T}_{n}, n=1,2, \ldots, \omega$, form a strictly increasing sequence (a chain) and $\mathcal{T}=\mathcal{T}_{\omega}(c f .[13 ; 5.16])$.

In the paper [9], it was found a finite equational base for a finite algebra in a dual discriminator variety using results of [2] and [16]. Recall from [6] that \mathcal{M} (hence, \mathcal{T}, too) is a congruence distributive variety. The next Theorem will give a different finite base of such identities.

Theorem 4. The subvariety \mathcal{T}_{n} of the variety $\mathcal{T}, 1<n<\omega$, has the following finite base of identities: (1), (2), (T), and

$$
\left(T_{n}\right) \quad d_{n}:=d_{n}^{*}
$$

where

$$
d_{2}=\left(x_{0} x_{1} x_{2}\right), \quad d_{2}^{*}=\left(x_{1} x_{0} x_{2}\right)
$$

and for $i>2$ define inductively

$$
\begin{aligned}
d_{3} & =\left(\left(\left(d_{2} x_{3} x_{0}\right) x_{3} x_{1}\right) x_{3} x_{2}\right), \quad d_{3}^{*}=\left(\left(\left(d_{2}^{*} x_{3} x_{0}\right) x_{3} x_{1}\right) x_{3} x_{2}\right), \\
& \vdots \\
d_{n} & =\left(\ldots\left(\left(\left(d_{n-1} x_{n} x_{0}\right) x_{n} x_{1}\right) x_{n} x_{2}\right) \ldots x_{n} x_{n-1}\right), \\
d_{n}^{*} & =\left(\ldots\left(\left(\left(d_{n-1}^{*} x_{n} x_{0}\right) x_{n} x_{1}\right) x_{n} x_{2}\right) \ldots x_{n} x_{n-1}\right) .
\end{aligned}
$$

Proof. According to (16) of Lemma B , it is easy to see that in T_{n}, the identity $\left(T_{n}^{\prime}\right)$ is satisfied whenever at least two of the elements $x_{0}, x_{1}, \ldots, x_{n}$ are equal, but fails whenever all $n+1$ elements are pairwise different. Hence, it holds in \mathcal{T}, but fails in T_{n+1}.

HILDA DRAŠKKOVIČOVÁ

REFERENCES

[1] AVANN, S. P. : Metric ternary distributive semilattices, Proc. Amer. Math. Soc. 12 (1961). 407-414.
[2] BAKER, K. A.: Finite equational basis for finite algebras in a congruence distributive equational class, Adv. Math. 24 (1977), 207-243.
[3] BANDELT, H. J.-HEDLÍKOVÁ, J.: Median algebras, Discrete Math. 45 (1983), 1-30.
[4] BANDELT, H. J.-MULDER, H. M.--WILKEIT, E. : Quasi-median graphs and algebras, J. Graph Theory 18 (1994), 681-'703.
[5] BIRKHOFF, G-KISS, S. A.: A ternary operation in distributive lattices, Bull. Amer. Math. Soc. 53 (1947), 749-752.
[6] DRAŠKOVIČOVÁ, H. : Modular median algebra, Math. Slovaca 32 (1982), 269-281.
[7] DRAŠKOVIČOVÁ, H. : On some classes of perfect media. In: General Algebra 1988 (Proc. of the International Conference held in memory of W. Nöbauer, Krems, Austria, August 21-27, 1988), Elsevier Science Publisher B.V. (North-Holland), 1990, pp. 65-84.
[8] DRAŠKOVIČOVÁ, H. : Varieties of modular median algebras. In: Contribution to General Algebra 7 (Proc. of the Vienna Conference, June 14-17, 1990), Verlag Hölder-PichlerTempsky, Wien, 1991, pp. 119-125.
[9] FRIED, E.--PIXLEY, A. F.: The dual discriminator function in universal algebras, Acta Sci. Math. (Szeged) 41 (1979), 83-100.
[10] HASHIMOTO, J. : A ternary operation in lattices, Math. Japon. 2 (1951), $49-52$.
[11] HEDLÍKOVÁ, J. : Chains in modular ternary latticoids, Math. Slovaca 27 (1977). 249-256.
[12] HEDLÍKOVÁ, J.: Ternary spaces, media and Chebyshev sets, Czechoslovak Math. J. 33(108) (1983), 373-389.
[13] ISBELL, J. R.: Median algebra, Trans. Amer. Math. Soc. 260 (1980), 319362.
[14] JÓNSSON, B.: Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110-121.
[15] KOLIBIAR, M.- MARCISOVÁ, T.: On a question of J. Hashimoto. Mat. Časopis 24 (1974), 179-185.
[16] McKENZIE, R.: Para-primal varieties: a study of finite axiomatizability and definable principal congruences in locally finite varieties, Algebra Universalis 8 (1978). 3363.38 .
[17] MULDER, H. M.: The interval function of a graph. Math. Centre Tracts 1:32. Mathematisch Centrum, Amsterdam.
[18] NEBESKÝ, L.: Algebraic properties of Husimi trees, Časopis Pést. Mat. 107 (19九2). 116123.
[19] SHOLANDER, M.: Trees, lattices, order and betweenness, Proc. Amer. Math hoc. 3 (1952), 369-381.
[20] SHOLANDER, M.: Medians and betweenness, Proc. Amer. Math. Soc. 5 (1954), 801 807.
[21] SHOLANDER, M. : Medians, lattices and trees, Proc. Amer. Math. Soc. 5 (19:54). 808×12

Received December 27, 1991
Revised May 15, 1996

Department of Algrbra ama
Number Theory
Faculty of Mathematios and Physios Comenius University
Allyruská dolima
SK 84215 Bratislara
SLOVAKIA

[^0]: ANSSUbject Classification (1991): Primary 08B15; Secondary 06C05. Key words: modular median algebra.

 These results; were presented at the Conference on General Algebra, Vienna, June 1990. Research supported by VEGA MŠ SR No. 1/1486/94.

