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ABSTRACT. In this paper, it is proved tha t for every stable isometry in a dis
tributive mu l t i lattice group G there exists a direct decomposition G = A x B of 
G with B abelian such tha t f(x) = x(A) — x(B) for each x G G. Further, the 
actions of stable isometries on convex subsets are studied. 

S w a m y [15] in t roduced the concept of an isometry in an abel ian lat t ice 

ordered group C as a bijection / : C —>• C such t h a t 

\x~y\ = \f(x) - f(y)\ for each x,yeC. (I) 

J a k u b i k [4], [5] has applied this definition also for non-abel ian lattice or
dered groups and proved the following assert ion: 

(A) Let f be a stable isometry in a lattice ordered group C. Then there exists 

a direct decomposition C = A x B of C such that f(x) = x(A) — x(B) 

for each x E C. 

In [2], H o l l a n d gave a different proof of t he assert ion (A) and moreover, 
he showed t h a t B is an abel ian group. 

J a k u b f k and K o 1 i b i a r [7] pu t |x | = {2t — x , t (E x V m 0 } for any element 
x of a mult i la t t ice group C and defined an isometry in a mult i la t t ice group C 
to be a bijection / : C —> C which satisfies the condit ion (1). They obta ined an 
analogous result to assert ion (A) for abel ian dis t r ibut ive mul t i la t t ice groups . 

In [14], R a c h u n e k generalized the not ion of the isometry for any par t ia l ly 
ordered group and s tudied the isometries in a cer ta in class of Riesz groups . He 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06F15. 
K e y w o r d s : isometry, multilattice group, distributive multilattice group, direct decomposition. 
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defined an isometry in a part ial ly ordered group C as a bijection / : C —* C 

satisfying (1) making use of the relation \z\ = U(z, —z) for any z E C. 

Weak isometries in lat t ice ordered groups were in t roduced by .1 a k u b 1 k [0 . 
He defined a weak isometry / in an latt ice ordered group C to be a mapp ing 
/ which satisfies the condit ion (1). 

Isometries and weak isometries in some types of part ial ly ordered groups have 
been investigated by the au thor in [8] [13]. In [11], it was proved that every weak 
isometry in a directed group is a bijection. Hence the notions of weak isometry 
and isometry are equivalent in mult i la t t ice groups. 

In this paper , R a c h u n e k ' s definition of the isometry is used in the inves
t igat ion of isometries in mult i la t t ice groups. 

First wre recall some notions and nota t ions used in the paper . 

Let C be a part ial ly ordered group (po-group) . The group opera t ion will be 
wr i t ten additively. We denote (7+ = {x c£ C ; x > 0 } . If A C C . then we 
denote by U(A) and L(A) the set of all upper bounds and the set of all lower 
bounds of the set A in C , respectively . For A = {a, b} we shall write U(a.h) 

(L(a,b)) instead of U({a,6}) (L({a:b})). For each a E C , |a| = U(a.-a). If 
a and b are elements of C , t hen we denote by a V 6 the set of all minimal 
elements of t he set U(a, b), and analogously, a/\mb is defined to be the set of all 
maximal elements of the set U(a,6). If for a, b E C there exists the least upper 
bound (greatest lower bound) of the set {a, b} in C , then it will be denoted by 
a V b (a A b). If C = P x Q is a direct decomposi t ion of C , then for x E C we 
denote by x(P) and x(Q) the components of x in the direct factors P and Q. 

respectively. An isometry / in C is called a s table isometry if /(()) = 0. 

T h e part ial ly ordered set P is said to be a mult i la t t ice ( B e n a d o [1]) if it 

fulfils the following condit ions for each pair a, b £ P: 

(m 1 ) If x E U(a, 6), then there is xi E a \/m b such tha t x{ < x. 

(m 2 ) If y E U(a, b), then there is y{ E a A.m b such t h a t yx > y. 

A mult i la t t ice P is called dis tr ibut ive if, whenever a , b, c are elements of 
P such t h a t (a A m b) n (a A m c) / 0 and (a V.m 6) D (a V„, c) f- 0. then 6 = r . 

Let C be a part ial ly ordered group such t h a t 

(i) C is directed, 
(ii) the part ial ly ordered set (G, < ) is a mult i la t t ice . 

Then C is called a mult i la t t ice group. (See [1].) 

A quadruple (a,b,u,v) of elements of a mul t i la t t ice group C is said to be 
regular if u E a A 6, v E a V b and i; — a = b — u. 

Throughou t the paper , we assume t h a t H is a mul t i la t t ice group. 
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1. L E M M A . Let a, b e H. 

(i) If v G aV b, u = a — v + b, then (a, b, u,v) is a regular quadruple in H . 

(ii) // u G aAmb, v = b — u + a, then (a,b,H,D) is a regular quadruple in II. 

P r o o f . 

(i) It suffices to verify t h a t u G a A,m b. F r o m t h e relat ion 0 < v — a = b — H 

we obta in b > u. Since 0 < —6 + v = —u + a , we get u < a. T h u s H G L ( a , b). 

Then there exists u{ G a A 6 such t h a t ux > u. Let U1 = b — ?i1 4- a . Clearly, 

r, G f/(a, b). Since ux > H, we have v — a = b — u > b — ux. From this we get 

r > r, . Because of u G a V m 6, we o b t a i n D = U. . Therefore u1 = u. 

Assertion (ii) can be verified analogously . • 

2. L E M M A . Let (a,b , H,D) be a regular quadruple in H. 

(i) / / a 4 G H , a x G [H, a ] , bx = b — H + a x , lben ( a p 6 , H, bx), ( a , b p a p D ) 

are. regular quadruples in H. 

(ii) / / b . E H , o 1 G [6, U], ax =u — b + bx, then ( a p b , u,bx), ( a , 6 p a p ? ; ) 

are regular quadruples in H. 

(iii) // b.? G H , b2 G [H, b], a 2 = b2 — u + a, then (a, b2, H, a 2 ) , ( a 2 , b, b2, D) 

ct/'e regular quadruples in H . 

(iv) // a.y G H , a 2 G [a, D], b2 = a 2 — a + u, then (a, b2,7i, a 2 ) , ( a 2 , b, b.?, v) 

are regular quadruples in H . 

V o o f. 

(i) C'learly, u G a{ Am b. T h e n from 1 (ii) we o b t a i n t h a t ( a p b , u. b.) is a 

regular quadruple . Obviously v G a V m bx. Since a x = a — D -f bx = u — b + b{, 

from 1 (i) we get t h a t (a, b1,a1,?;) is a regular quadruple . 

(ii) This is a consequence of (i). 

T h e proof of (iii) is analogous to t h e proof of (i). 

(iv) This is a consequence of (iii). • 

T h e following const ruct ion concerning non-abel ian mult i la t t ice groups is es-

sent iallv a modification of a const ruct ion given by J a k u b i k and K o 1 i b i a r 

[7] for abelian mult i la t t ice groups. 

Let (a,b, u,v) be a regular q u a d r u p l e in H. Let x G [H, v], a 1 G a A т , 
a, > u. Let b2 = b — u + ax. By 2 (i), ( a p b , H,b2) a n d ( a , b 2 , a p D ) are regular 

(pia.druples in II. Further , t h e r e exists uY G b2 A m T , H2 > ax. Let a 2 = 

//, - a j + a , b1 = a { — a t + H. F r o m 2 (iii) and (iv) it follows t h a t (a p bp H, H^ ), 

( a , , b , bpb2), ( a , , a p a 1 , a 2 ) , ( a 2 , b 2 , H p D ) are regular quadruples . 

Now, we shall prove t h a t HL G a 2 A m T . Since ux G L ( a 2 , x ) , t h e n there 

exists c G a 2 A m x such t h a t 2: > ux. Let z = ax — Hx + z . By 2 (ii), (a, z, z, a2), 

( : . u p a, , c) are regular quadruples . T h u s z G L(a, T ) , z > a x . Since a x G a A m T , 

then z = a, . T h u s z = Hj . Therefore Hx G a 2 A m x. 
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Fur ther there exists a2 G a2 V m x , a2 < v. Let o = a 2 — a 2 -f- u . . Then from 

2 (iv), we infer that ( a 2 , b 2 , o , U) and (a 2 , o, ii15 a 2 ) are regular quadrup les . Let 

Oj = 6 — Hx -hb 1 . B y 2 (iv), (H 1 , o 1 ,b 1 ,b ) and (6, 6, 61? 62) are regular quadruples . 

Clearly, H1 G 6 A m x . Fur ther , there exists U1 G b V m x , U: < a 2 . Le t b., = 

b2 — b + Ux, a = Hx — b + vx, ax = ax — H1 -f a . Then a 1 = a j — o -f- r x . From 2 (i) 

and (ii), we ob ta in that (a 2 , 62, v1, v), (D1? b2, b, b2), (a 2 , U1, a, a 2 ) , ( a ^ i i p r , ) , 

(a, a ^ a p O ^ ) , (0^ ,1^ ,0 -^0 ) are regular quadruples in H. Clearly, ux G a A m .r. 

T h e proof that vx G a V m x is analogous to the above proof that ux G a., Am .r. 

Under these deno ta t ions , we have the following two lemmas. 

3 . L E M M A . If ax = d1 (i.e., b2 = b2) or a2 = a2 (i.e., b] = b}). then 

(a, x,a1,a2). (x ,b , b1,b2), ( a , b 1 , H , x ) . ( a 2 , b 2 , x , D ) are regular quadruples in H . 

P r o o f . This is obvious. • 

4 . L E M M A . If a2 < a2 , lben H fails to be distributive. 

P r o o f . If H is dis tr ibu t ive, then from the definition of dis t r ibut ivi ty it 

follows that a = b. Since ( a ,b ,H 1 ,U 1 ) , (a2,vi,a,a2) are regular quadruples in 

H, we ob ta in a2 = a2, a con t radic t ion . This ends the proof. • 

From 3 and 4, we ob tain: 

5 . T H E O R E M . Let H be distributive. Let (a, b, H, v) be a regular quadruple in 

H . and let x G [H, D], a 1 G a A x , ax > u. Then there are elements b G 
[H, b], a2 G [a, v ] , 62 G [b, v] such that (a, .r,al5 a 2 ) , (x ,b , bpb2), ( a p br u, x) . 
(a ? , b2, x, U) are regular quadruples in H . 

For the remainder of this paper , let G be a dis t r ibu t ive mul t i la t t ice group, 

and let / be a s table isome try in G. 

6. L E M M A . For each x G G^ there exists the least upper bound of [ 0 . / ( x ) | 

in G + . 

P r o o f . Le t x G G + . T h e n U(x) = |x| = | / ( x ) | = U (-f(x). f(x)) . 

Therefore -f(x) V f(x) = x. B y 1 (i), ( - / ( x ) , / ( x ) , - / ( x ) - x + / ( x ) , x) is a 

regular quadrup le . Clearly, —f(x) — x + f(x) < 0. Let a, G —/(•<') Am 0 . 

a , > —f(x) — x + f(x). According to Theorem 5, there exist e lements 

bl G [ - / ( x ) - x + / ( x ) , / ( . x ) ] , b2 G [ / (x) ,cc] , a 2 G [-f(x),x] such that 

( - / ( x ) , 0 , a 1 , a 2 ) , (0 , / ( a : ) ,6 1 ,& 2 j ' , (a1,b1,-f(x) - x + f(x).O). ( n , . 6 , . 0 . . r ) 

are regular quadruples . Let z G U(0,/(x)). Since a9 G U( — / ( x ) , 0 ) . we have 

2 + a 2 G U( — f(x), f(x)) = U(x). Then , from z -f a 2 > x = b., -h a.,. we obta in 

2 > b2 . Therefore o2 = 0 V / ( x ) . • 
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7. THEOREM. Let G be a distributive multilattice group, and let f be a stable 
isornetry in G. Let Ax = {x G G+ , f(x) = x) . Bx = [x G G+ , f(x) = -x) , 
A = A{ — Ax , B = B1 — Bx. Then G is the direct product of the po-group A 
and the abelian po-group B. and f(z) = z(A) — z(B) for each z G G. 

P r o o f . It follows from 6 and [12; Theorem 2]. • 

R e m a r k . In [13; Theorem 2.6], it was shown that if C = P x Q is a direct 
decomposition of a po-group C with Q abelian, and if we put g(x) — x(A)—x(B) 
for each x G C, then a is a stable isornetry in C. 

Theorem 7 generalizes Theorem 2.5 of J a k u b i k [4] and with Theorem 2.6 
([13]) generalize Theorem 4 of H o l l a n d [2]. 

Theorem 7 also shows that the result of J a k u b i k and K o 1 i b i a r concern
ing isometries and direct decompositions of distributive multilattice groups can 
be extended to non-abelian distributive multilattice groups using the usual defi
nition of the absolute of an element in a po-group. The notation from Theorem 7 
will be also adopted in the following three Theorems. 

8. T H E O R E M . 

(i) Ifx.yeG, y<x? then f([y,x]) = [y(A) - x(B), x(A) - y(B)] . 
(ii) Ifx,yeG, f(y) < f(x). then 

[f{y), f(x)] = f([y(A)+x(B):x(A)+y(B)\). 
(iii) A non-void subset M of G is a directed convex subset of G if and only 

if f(M) is a directed convex subset of G. 

The proof is the same as the proof of [13; Theorem 2.2]. 

9. THEOREM. Let g be an isornetry in G. Then g(U(L(x,y))nL(U(x,y))) = 
U(L(g(x),g(y))) n L{U(g(x),g(y))) for each x,yEG. 

The proof is analogous to the proof of [13; Theorem 2.3], only instead of 
Theorem 2.2 ([13]), it is needed to use Theorem 8 (i) above. 

10. THEOREM. Let C be a directed convex subgroup of G. Then f(C) = C. 

P r o o f . Let x £ C. Then there exist H,U G C such that u G F(x,0), 
v G f/(j;,0). In view of Theorem 7, we have v > x(A) > u1 v > x(B) > u. 
Then by the convexity of C, x(A),x(B) G C. Thus x(A) - x(B) G C. From 
Theorem 7, it follows that f (x(A) - x(B)) = x(A) + x(B) = x. Therefore 
CCf(C). 

If //' G f(C), then y' = f(y) for some y £ C. By using similar considerations 
as above for x, we get y(A),y(B) e C. Thus y(A) - y(B) = f(y) = y' G C. 
Hence f(C) C o . • 
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