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RESULTS FOR AN OPTIMAL CONTROL PROBLEM 
WITH A SEMILINEAR STATE EQUATION 

WITH CONSTRAINED CONTROL 

NATASA B i n e 

(Communicated by Michal Feckan ) 

ABSTRACT. This paper deals with a control problem governed by a semilinear 
state equation dependent on a small parameter e G M, e > 0, with a constrained 
control variable u(t) G C, where C C U is a closed, convex and bounded set 
containing the origin. It is proved tha t for a small e the associated Hamilton-
Jacobi equation has a unique strict solution; consequently, the control problem 
can be solved by employing a dynamic programming method. 

Introduction and statement of results 

This paper is concerned with the following problem (P): 

(P) Minimize the functional 

T 

J(u,x) = I[^\\u(t)\\l + g(y(t))] &t + </>0{y(T)) 
0 

over the controls u £ L2(0,T;c7), where y is subject to the state equa­
tion 

y' = Ay + f(e,y)+Bu on [0,T], 

2/(0)= a;, xeH, u(t) G C . 

Here U i H are real Hilbert spaces with inner product (•,•),/, (*,•)// 
respectively. 

Functions g and <p0 are smooth and convex. / is a smooth function 
from H to H which goes uniformly to zero when e —» 0. The operator 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 93C99, 49L20. 
K e y w o r d s : control problem, semilinear s tate equation, constrained control, Hamilton-Jacobi 
equation . 
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A: D(A) C H -> H is the infinitenzimal generator of a C0-semigroup, 
B G L(£/, H) and the set C C C/ is a closed, convex and bounded set 
containing the origin. 

We treat this problem by the dynamic programming method studying the 
corresponding Hamilton-Jacobi equation 

<t>'t(t,x) + F(<l>x(t,x)) - (Ax + f(e,x), (j)'x(t,x))=g(x) 

for all (t,x)e[0,T]xD(A), (HJ)_ 

<p(0,x) = <l>0(x), 

where 
F(z) = \ \\B*zf - \\B*z + Pc(-B*z)f] , (1) 

and Pc denotes the projection from U to C. 
In the case where e = 0 and H = Wl, equation (HJ)0 has been studied by 

many authors under various assumptions on F, see [8], [9] et al. When H is 
the infinite dimensional, in [5], the existence and uniqueness of equation (HJ)0 

is proved in the case where F is a continuous Frechet differentiate and F' 
is bounded. These assumptions are suggested by problem (P) (e = 0) with 
constrained controls u(t) G C. 

If € 7-- 0, then J is generally not convex and the method used in [10], without 
the constrained control, gives only the existence of the local solution of the 
Hamilton-Jacobi equation 

#(*>*) + \\<t>'x&*)\2 - (Ax + f(e,x),(t>'x(t,x))=g(x) 

for all (t,x)e[0,8\xD(A), ( H J )* 

0(0, x) = (j)0(x). 

For smooth and convex functions g, (f>0 and / the existence and uniqueness 
of a global regular solution of equation (HJ)+ was proved in [2]. 

The aim of this paper is to find a global strict solution of the Hamilton-Jacobi 
equation (HJ)£ for \e\ sufficiently small, and then to show that this solution is 
equal to the value function. Subsequently, the dynamic programming method is 
used to prove the existence and uniqueness of the optimal control in the feedback 
form. 

First we used a successive approximative method to construct the sequence 
{(j)n} G Z?([0,T]; C2(TiR) n KR) and to show that this sequence converges to 
{<j>\m} G H([0, T]; C 2 (S / ? ) n KR) which satisfies the approximate Hamilton-
Jacobi equation (HJ ) A m . Then, when m -> co and A -> 0, we get the function 
4>c which is a strict solution of Hamilton-Jacobi equation (HJ) e . Section 1 con 
tains the list of necessary notations and assumptions; in Section 2, it is described 
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how to get the strict solution of Hamilton-Jacobi equation (HJ)_. Section 3 is 
devoted to the study how to get the solution of the optimal control problem, the 
feedback formula and finally one example is presented. 

1. Notation 

We begin with specifying the notation which will be used through this paper. 
Let Â  and Y be two Hilbert spaces. If / : X -> F , by /(A;) we shall denote the 
Frechet derivative of order k > 1. The following spaces of mappings / from A" 
to Y will be used. 

C^(Ar, Y) is the space of all k-time Frechet differentiable mappings / : X -> Y 
such that fJ', j = 0 , 1 , 2 , . . . , k, are continuous and bounded on X. The space 
COQ(X,Y) is endowed with the norm 

k 

\f\c^(XyY) =Y\f\j> 

where 1/^. = sup{|/^")(x)| : x G A } . 

^oo.LipP^ y) is the space of all / G C£_(A., Y) such that 

< oo. k~ P l — ~ ~ ~ ~ ~ — : x # 2 / ' x ' y € / 

Coo,L[p(^>y) ls t n e Banach space with the norm 

\f\c!0,Up(xtY)=Y<\f\j + \ \ J \ \ k ' 
J=0 

For every r G R, r > 0, we denote by E r the closed ball {x G X : |x| < r} 
and by CA :(E r ,F) the space of all mappings / : E r -> F which are Frechet 
differentiable up to the order k on E r such that p^, j = 0,1,2, . . . , k , are 
continuous and bounded on E r . 

We shall denote by C £ i p ( E r , F ) the space of all / G Ck(Zr,Y) such that 

/ ( / c ) is Lipshitz on E r , i.e. 

i \x y\x ) 
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The spaces Ck(S>ri
Y) a n d CuP&nY) a r e endowed with the norm 

A; 

l/ICfc(Er,y) = ZJ/lj,r> 

l/IC£ip(-:.,y) = El / l ,> + ll/llk^ 
j=o 

where 
l/l,> = sup{|/W(x)|: i 6 E f } . 

Ck(X, Y) is the space of all mappings f:X -> Y which are fc-time Frechet 
differentiable and their restrictions to every E r belong to Cfe(Er, Y). The space 
C£ip(^Y, Y) is defined as the set of all / G Ck(X,Y) such that the restrictions 
of / at every E r , r > 0, belong to C£ i p(E r ,F) . If Y = R, we shall often write 
C^X) and C^Up(X) instead of C^(X, R) and C^>Lip(X,R) respectively. 

Now, let (j>: [0,T] x H -> R and k > 1 . We say that 0 G B([0,T},Ck(H)) if 
</> satisfies the following conditions 

(i) sup \<t>(t,')\jr < +oo for j = 0 ,1,2, . . . ,k and for all r > 0, 
o<t<T J ' 

(ii) 0: [0,T] x H -> R is continuous, 

(iii) (j)x: [0, T] x H -> H is continuous, 

(iv) ^ is strongly continuous, that is the map (£, x) »-> § f̂ y: [0, X1] x H -> H 
is continuous for all y G H. 

Further, we denote by AT the subset of C1 (H) 

If = {(j) e Cl(H) : (j) is convex and <£'(0) = 0} , 

and by Kr the subset of C^E^) 

Kr = {(peC1 (Er) : (j) is convex and <£'(0) = 0} . 

It is easy to verify that function F: H —> R defined by (1) has the following 
properties: 

a) F is Frechet differentiable and F'(z) = -B(Pc(-B*z)), 
b) F(0) = 0 , F is convex, 
c) F G C^ j L i p (#) , \F'\ < M fore some M. 

We will make the regularization of the function 0 G if, defined by 

^(x)-- mf J M ) + A F * ( - ^ - ) | , A>0, (2) 
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where F* is the conjugate function of F i.e. 
F*(s) = sup{ ( s ,y ) -F (y )} . 

y 

The property of F* which will be needed later is 
F*(x) + F(y)>(x,y)H (3) 

(it follows from the definition of F*) with equality holding if and only if x = 
F'(y). If the F(x) = | | |x | |2 (C = U = H), the function <f>x is reduced to the 
well-known regularization of the convex function. 

Let <p e K and A' = HE'^'H-1, for all the X e (0, A') set 
Jx(x) = (l + XF'<f>')-1(x). 

It is a well defined operator and it has the following properties: 
a) \\Jx(x)\\H<\\x\\H + XMt 

b) M o < (1 - A|I*VII)~\ 
c) lim || Jx(x) - x\\H = 0 uniformly. 

Now, we collect the properties of (j>x: 

A) ct>x(x) = 4>(Jx(x))+XF*(^^), 
B) <l>x(x) = t(Jx(x)) + XF*F'<t>'(Jx(x)) , 
C) lim <t>x(x) = <(>(x) uniformly on bounded set, 

D ) i i m »('>-»*(«) = F(<l>'(x)) uniformly, 

E) 4?x(x) = cf>'{Jx(x)). 
These properties were proved in [5]. 

2. Global existence and uniqueness of the solution 
for (HJ)^ equation 

We want to get the strict solution of the Hamilton-Jacobi equation (HJ)e for 
a sufficiently small e > 0. 

We say that the function (j) G J5([0,T];CLip(^r)
 n Kr)

 ls a s^ci solution 
of (HJ)£ if (/>(-, x) € ^([OjT]) for all x G D(A) and satisfies the equation 
(HJ)£. Consequently, we consider the approximate Hamilton-Jacobi equation. 
Namely, the property (D) allows us to replace the bad term F((/)x) in (HJ)e by 
((f>(x) - 0A(x))/A, and now the approximation (HJ)A equation is 

m x)+*(«.*)-**(«.*) _ {Ax+/(e> x)i ̂ (f f x))=g{x) 
X 

for all (t,x)€[0,T]xD(A), 

^(0,x) = ^o(x), 

(Ш); 
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where (j)x(t,x) is defined by (2). 
Further, in order to get a strict solution of equation (HJ) e we shall consider 

such mappings F which satisfy the following assumptions: there exists a set 
{FJCCI(H) such that 

I. Fm is convex, F m ( 0 ) = 0, |F? '?J0 < M' for some A/', 
II. Fm -» F uniformly on the bounded set, 

III. F'm -» F' uniformly on the bounded set. 

Then for the F and 0 G C2(H)nK the function </>A has the following propertv: 

(G) 
^ ( - ) = fVxmW) • ( l + ^^'(•IAn.UO) • 4>"{JXm(x) 

for all i - e i f , A e (0, A") 

where A" = min{A', \\F'J\^U'\\-' } , and J A m ( z ) = (1 + XF^T1 W -
Now we consider the following approximate equation (HJ)A ? 7 ? 

m*) + *{t'x)~*T{tiX)-(^ (HJ) 

(j)(0,x) = 0O (a;), 

where 
r / T — 7/\ i 

A > 0 . 
^(ť,x) = supj^í.y) + AF^- -1-) } 

Also, we need the following estimates: 

L E M M A l . Let </>,̂  e Oiip(Sfi) n./Yfi, tten 

I C U < I ^ , H . *' = o,i, 

IICIIi,f i<Wi,«. 
ic-^ru<i^-^u. i=o,i. 

It was proved in [1], [5], [11]. 
If 0 is from C2(T,R)nKR, then Ĥ Hx /-. = l^k,/* and it follows that | 0 ^ | 2 , H -̂  

|</>|2 fi. First, we prove, by using the method of a successive approximation, the 
existence of a solution (pXm of the integral form of the approximation equation 
( H J ) A m . Then we show that {4>Xm} converges to a strict solution c/)c of the 
(HJ) e when m --> oo and A -> 0. 

Our hypotheses are the following: 

(i) A: D(A) C H —» H is the infinitesimal generator of a strongly contii u-
ous semigroup in H and there exists u e K. such that (Ax,x) < LJ\X 2 

for all xeD(A). 
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(ii) /(e,-) G C2(H,H) for all e G R; /(e,0) = 0, ^ 7 ^ = ° f o r a11 e e R'» 
/(£,.r) -> 0 when £ -> 0 uniformly on C2(H,H). 

(---) g>0o G C2(H) n K and {g"(x)z,z) > fi\z\2 for all a;, 2 G II, and for 
//< > 0 fixed; that is, g is strictly convex on II. 

(iv) C C U is a closed, convex and bounded set containing the origin. 

We assume that in (i), u < 0, that is, A is strictly dissipative operator. The 
proof for the general case is the same; we have only to arrange the constants. 

Using the characteristic method if <\> satisfies (HJ)Am, then it satisfies the 
integral equation 

t 

0(i, x) = e-'!A4>0 (£e(0, t, x))+fe-^-^x [g(te(s, t, x))+±W(s, £e(s, t, x))} ds. 

(HJ-)A-. 

Conversely, if (f) satisfies (HJI)Am and x G D(A), then </> satisfies (HJ)Am-
In (HJI)Ar?7, the function ££(s,t,x) is the solution of the Cauchy problem 

Ze(s) = -ASe(s)-f{e,Ze(s)) for all se[0,t), 

te(t) = x, xeH, te[0,T], 

i.e. £ff is the family of characteristic curves for (HJ)Am. Some fundamental 
estimates for them are put together. 

PROPOSITION 1. Let (i) and (ii) be true. We fix R > 0 and let t G [0,T], 
x G II and \x\ < R. There exists ex(R) > 0 such that if \e\ < ex(R), then the 
Cauchy problem (4) has a unique mild solution £>e(-,t,x) on [0,T], ££(s,t,-) € 
C2(H,H) for all s,t G [0, T], s <t, and the following estimates hold 

l«e(M,.)l<l-KM/2
1 

IUM,-)l,,*<e"(,-*>/2, 
t 

MeJs,t,x)(z,z)\\H < \ne,-)\2,Rf\\tem(<T,t,x)\\2
He"l<'-'V* da. 

S 

This proposition was proved in [2]. 
Fixed I?, > 0, m G N and A G (0, A'), where 

A^minj^JIF^ir1}, 
the mapping 

vXmm,x) 

= *-t/xфn 
ofe(0,ť,.т)) + / e - ^ Ң g ( ^ ( s , t , x ) ) + \ф?(s,ţ£(s,t,x)) às 
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is well defined from £([0,T]; C2(ER)nKR) to B([0,T\\ C2(XR)). Furthermore, 
for functions (j> G £([0, T]; C2(Y>R) n KR) with 

sup |<K*>*)li/* < c (ceR, c>0) 
0<t<T 

there exist e(R,c) G (O,^./?)) such that for |£| < e(R,c) we have 

l/(e,0la'll-|M,ii+V« + c' 
Then the mapping TAm is a convexity-preserving map, i.e. 

rAm^eB([o,r];c2(sR)n^). 
To prove this we need only to prove that ((TXm<f>)xx(t,x)z, z) > 0. It was done 
in [2]. 

LEMMA 2. Let (i) -(iii) hold true. Fix R>0 and set L = L(R) = |0O|C2^ + 

T\g\C2 . T/ien for each A G (0, A"), where 
'(--fl) 

A ' ^ m i n l ^ ^ s u p l l ^ l l ) - 1 ^ ) - 1 } , 

and for each m € N and |e| < £2(B), w/iere e2(R) € (0,e(i?,X)) (e(R,X) = 
e(R,c), c = L), there exists a function <f>Xm € B([0,T];C2(T,R)r\KR) such that 

(1) cl>Xm(t,x) = (TXm<f>Xm)(t,x) on [0,T] x ER, 
(2) (j)Xm is strict solution of (HJ)Am, 
(3) sup \4>Xm{t>-)\c2{JlR)<L{R). 

P r o o f . These statements are the consequences of [2; Lemma 4.3]. Namely, 
in that lemma, for |e| < e(R, L)|, the sequence 

{<(>"} CB([0,T];C2(XR)nKR) 
was constructed by successive approximation method: 0° = TAm(0); </>n = 
r A m ( 0 n - 1 ) . Then for |e| < e2(R) the following was proved: 

I. sup \(j)n(t, - )U f E ) < L(R) for all n G N. 
0<*<T v R) 

ii. |<̂ -(̂ .) -^-H^OIc^^^) < i z d i i ^ ^ i ^ -
III. TAm is continuous on £([0,T]; C1^)). 

Now it follows from II that there exists <j)Xm G B([0JT]]C2(1ER)nKR) such that 
^ -> <j>Xm in B([0,T];C2(E i,)), and by III, 

^m('^) = ( r A r o O on M x S « - (5) 
Thereby for any x G Z3(A) the function 4>Xm(-,x) G ^([O-T]) and <f>Xm satisfy 
equation (HJ)Am. So it is a strict solution. Then using Ascoli-Arzela theorem like 
[1; pp. 40-41], and replacing 4>x with 4>xx, we may conclude that (j)Xm G C~(H). 
Further, because the left hand side in I is independent of m and A, we have (3). 

• 
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LEMMA 3 . (Convergence of <f>Xm -> (j>x, m -> oo) Let (i) -(Hi) hold true. For a 
fixed R > 0 let e2(R) > 0 be as in Lemma 2. Let <pXm G B([0, T]; C (Y,R)nKR) 
be a strict solution of (HJ)Am for A € (0,A") and m G N. Then there exists 
(j>x G B([0,T};ClipCER)nKR) such that 4>Xm -> <S>x in -5([0,r];CH-t-^)) ™/ien 
m -> oo. Further, <j>x is the solution of the integral equation 

$x(t,x) t 
= e - ' / ^ 0 (^ (0 , i ,x ) )+ | e - ( ' - ^ A [ 5 (^ ( 5 , i , x ) ) + i ( ^ ) A ( 5 , ^ , < , x ) ) ] d S , 

0 

where ((j>x)x if given by (2), and <t>x has the following properties: 
V) (j)x is a strict solution of (HJ)A, 
2') 0A(«,.) G C2(XR) HKR for all t € [0,T], 
3') sup | 0 A ( V W « ) < £ ( * ) • 

o<*<T 

P r o o f . Let (/>Am be the solution of (5) and let c/)Xn be the solution of (5) 
with m replaced by n. Then we have 

= 1 I e-(«--)/A [(^m)Am (S; Us> 4| x)) _ ( ^ J A n (,f ̂  (s> t> x)) j ds . 
0 

For A G (0, A") we have 

(txJxm&ZMt,*)) 
= <Pxm(s'Jxm(Se(s,t,x))-\FmFm(<l>xJ

l
x(s,t£(S,t,x))) 

and analogously for (j)Xn. So 

K*Am)Am(«> &(«>*>*)) ~ (̂ An)An(s, C M , *)) | 

<kAm(^-IAm(^(5>f>^))-^An(5,An(^(«,*>^))l (6) 
+ AKKUxJ*(5>«.(«, *, x)) - FmF'm(<t>xJ'x(s, i£(S, t, X)) | . 

From the relation ?-J?lt) = Fm(<j>xJx{t, JXm(x)), analogously for Fn, and 
the fact that {Fn} converges to F' uniformly on the bounded set, we get 

l|.IAn» - «IA»IIW < e(n, m) + c\d>Xm(S, •) - <j>Xn(s, -)\0R, (7) 
where e(n,m) -> 0 when m,n -> oo and c denote different constants inde­
pendent of m and n. Then for the first term on the right-hand side in (6) we 
have 

\<l>Xm(S>Jxm(Ze(S>t,x))) - <j>Xn(s,JXn(Z£(Sjt,x)))\ 

<II^Aml|-|kAm(^(5,<>^))--^nfe(S,«,a;))| | f f + | ^ r o ( 5 , - ) - ^ n ( 5 , - ) l o , R 

< L(R)e(n, m) + c\<l>Xm(s, •) - ^ ( ^ . ^ ^ . 
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From equality (3), with x = F'(y), for the second term on the right-hand side 
in (6) we get 

\KKMXJ*M*M) - nn>(*xJA*>z.(s,t,x))\ 
<\Fn-F;n\.L(R) + \Fn\\<kXm(s,.)-<t>Xn(s,.)\hR.L(R) 

+ 2 | -^ | |^ m («, 0 " <f>Xn(
S> -)\l,R + \K ~ K\0 • 

So we have that 

I^AmUm (*.£-(*>*,*)) " W>AJA„ (S> 4 M , *)) I 
< e(n, m) + c\<pXm(s, •) - (j>Xn(s, -)\iR + e(n, m)\ • L(R) 

+ (2XM' + l)\cj>Xm(s,.)-<j>Xn(s,.)\l<R 

< ce(n, m) + c\c[>Xm(s, •) - <j>Xn(s, Olc^s*) • 

Further 

^xJA^-^xJ^x) 

8) 

Z 

= l / 6 ^ ! ^ ^ ^ ^ ^ ' 1 ' ) -WAnL(*.í£(M,-))] d.s. 

From the property (E) and Lemma 1 we have 

\(KJxmÁsM^,x)) - (4>A„)wM £ M,: r ) ) | 

< \(<t>xJA*>Jx,ÁZA*^X))) -(*xJÁ*iJxn(£Á*M))\ (9) 

< L(R)e(n, m) + (#A m (s , •) - <t>Xn(s, -)lc»(sR) • 

Now we get 

I^Am(s>-)-^An(s»-)lcl(Sjl) 

t 

0 

ť 

- / e - ^ e " " ^ [e(n,rn) + cx\<f>Xm(s, •) - 0A n(s, -)| + CMSfí) d.s. 

Then 
t 

1 ^ А п . ( а » - ) - ^ А п ( в » - ) 1 с ' ( Е Я ) <£(n,m) + CJ I ^ A m ( S ' - ) - ^ A n ( - S S'-)lc"(Sn) ds> 
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and from the Gronwall's inequality we get 

l*Am(«. 0 - *A»(*> ')lc*<=*> < e(n, m) - erf , c > 0 , 0 < * < T , 
where e(n,m) -» 0 when n,m -i> oo. Therefore, {<l>Xm}m=o is the Cauchy 
sequence in B([0,T];C1(EH)) and then there exists the function 

<t>xeB([0,T];Cl(XR)) 
such that 0Am —> <j>x in B([0,T];C71(SH)) when m —> oo. From (7) it follows 
that JAm = (1 + XF^')-1 "> (1 + AFV)"» , and from (8), (4>xJXm -> (<AA)A, 
so that 0A satisfies 

4>x(t,x) 
t l 

= e"A ^ 0 f e ( 0 , ^ ) ) + - | e" 1 1 ? 1 [^(e£(5,M)) + ^ ( ^ ) A ( ^ £ ( ^ M ) ) ] AS. 

o 
For x e D(A) the function ^A(-, x) e C1 ([0, T]) and it satisfies equation (HJ)A. 
Then <j>x is a strict solution of (HJ)A. Since the function <j>Xm satisfies (3) and 
the Ascolli-Arzela theorem, it follows that <j>Xnt e C2(EH) and 3') holds. • 

THEOREM 1. Let (i) -(iii) hold true. Let R > 0 be fixed, and let A G (0, A") 
and e2(R) be as in Lemma 2. Let (j>x e £([0,T];C2(£r) n KR) be a strict 
solution of equation (HJ)A. Then there exists <j)€ e J5([0,T]; CLip(£r) fl KR) 
such that (j)x -> cj>e in J5([0,T];C1(Sr) fl KR) when A -> 0. Function (j)e has 
the following properties: 

1") (j>e is a strict solution of (HJ)£, 
2") 0£(V) e C2(XR)nKR for all t e [0,T], 
3") sup mt,-)\cvR)<LW-

P r o o f . First for A, \x e (0, A") we define 

**.,<«.•)(*) = J W * . * ) - <*,),(*•*)) - -''W-(*»*))' 
RXMt,.)(*) = \K(t,x) - (4p)x(t,x)) - F(^(t,x)). 

It is easy to prove that the following estimates hold 

I I W , ) l o , « <- ̂ L(R)(L(R) + 1) , | ^ M ( t , ) | l i f l < *M2L(R), 

I IW,) lo ,K < XM2L(R)(L(R) + 1), | i ? A ^ ( t , ) | l i R < 2M2L(i?). 
Further, the function </> satisfies the equation 

*„(*>*) + 5 (*„(*'*) - (<^)A(*,*)) - (Ar + /(e,*),<. ,( ' .*)> 

= </(*) - ^ ( t , ) ^ ) + .8AMM(.r) -

^(O,a;) = 0o(x)-

119 

(10) 



0 
t 

+ 
0 

NATASA BILIC 

Now, using integral form we get 

I M * ' " ) " ^ A ( ' » - ) I C I ( E R ) 
t 

< \ f e " ^ K ^ ) A ( * . •) - OA)A(*> -)IO,H ** 

t 

I e - ^ [|i?A0/xUr) |o^ + | ^ ( / r ) l o , ^ ] ds 
b 

0 

t 

+ ye" A [l^(tloli,ii + l ^ ( M l i , H ] l ^ ( 5 ' ^ O I i l i . d 5 . 
0 

Therefore, from estimates (10) it follows 

t 

l ^ l , •) - W, OICMEH) < Cl f l^( 'S ' •) - ^(S> OlcM-n) (IS + <-(A + !') • 

b 

By applying the Gronwall inequality we get 

l<!V^ •) - 0A(*> -)lci(Efl) < C
2(A + M) eCl ' , 

i.e. {(/>A} is a Cauchy sequence in _3([0,T]; C !(E r)) . Then there exists the func­
tion <j>£ G i?([0,T];C1(Er)) such that 0A -> <f in Z?([0,T]; C 1 ^ ) ) when 
A __> o. To show 1") we note that if x G D(A), then c/5A G C1 ([0, T]) and 

4>'Xt(*,*) = #(*) - ^ ( . , . ) ( * ) " F K ( ' , * ) ) + ( ^ + /(*>^), # ._a , JO), 

so 0A (•,#) -> <t>\'{'ix) in C([0,T]), then <j>e is a strict solution of (HJ)_. Since 
functions </>A

 sa tiSIy 2') a n ( l 3'), then from the Ascoli-Arzela theorem it follows 
that (j)e G C2(S r) and it satisfies 3"). To prove the uniqueness, see [1]. • 
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3. Solution of the control problem 

In this section we apply the results of Theorem 1 to solve the control prob­
lem (P). First we prove the fundamental identity. 

LEMMA 4. Let (i) -(ii) hold true. Let r G R, r > 0, be fixed. Let 

\x\ < J , \Bu\L2{0tT;H) < Mx , R = r+y/TM1 , e < e2(R) < £l(R). 

Let y be a mild solution of the state equation; the following fundamental identity 
holds 

T 

4>e(T-t,x) + f[F(tf(T-s,y(s))) 
t 

+ (4,ex(T - s,y(s)),Bu(s)) + \\\u(s)\\l\ ds 

T 

= f[9{v(s)) + | l N * ] d« + Mv(?)) for all (t,x) € [0,T] x ER , 
0 

(11) 
where (j>e is a strict solution of equation (HJ)£ . 

P r o o f . For n > u set xn = n(n - A)~lx, un(s) = n(n - A)~x Bri(s) and 
let yn be the solution of the following problem 

y'n(S) = AVn(S) + f(^n(S)) + Un(S) . S € [*, T\ , 

Vn(t)=Xn-

Since xn € D(A) and un € L2(0,T : D(A)), then yn e Cl([Q,T\;H) and 
yn -> y in C([t, T]; H). Further, for all x e Hr the function 4>e(-, x) e C1 ([0, T]), 
so the function s -> i>€ (T - s, yn(s)) € C1 ([t, T]) and 

±<T(T-s,yn(8)) 
= -4>r(T-s,yn(s)) + (4>e

x'(T-s,yn(s)),yn(s)) 
= F(cf>l'(T - s,y„(s))) + ((<Pl'(T - s,yn(s)),un(s) - g(yn(s))) . 
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Now, if we integrate this, we get 
T 

^(T-t,yn(t))+f[F(4>l'(T-S,yn(S))) 
t 

+ ((^(T-S,yn(S)),un(S)) + \\\un(S)\\l]dS 

T 

= f[9(vn(*)) + l\K(s)\\2u] dS + <t>0(yn(T)) • 
t 

Hence, letting n -> co we get (11). 
From the fundamental identity (11) it follows that 

T 

^(T-t,x)<f[g(y(s)) + \\\u(s)\\l] ds + cf>0(y(T)) (12) 
t 

for all (y,u) which satisfy the state equation. Namely, from the identity (11) it 
follows 

T 

^(T-t,x) + f[F((j>l'(T-s,y(s)))+F*(-Bu(s)) 
t 

+ ((<&'(T-s,y(s)),Bun(s))j]ds 

T 

+ J[-F*(-Bu(s)) + \\\u(s)\\l]ds 
t 

T 

= f[9{y(s)) + \\\u(s)\\l]ds. 
t 

On the left-hand side, the first integral is greater then or equal to zero. It follows 
from (3). It remains to prove that the second integral on the left-hand side is 
also greater then or equal to zero. For u 6 C there holds 

\\PC(-B*v) + B*v\\2

H < \\u -f- B*v\\2

H for all v G U . 
Then we have 
(«, -B*u) - F(v) = (u, -B*u) - \ \\B*vfu - \\B*v + Pc(-B*v)fH} < \\\u\\l. 

Hence F*(Bu) = sup{(u, — B*v) — F(v)} < | | |w| |^, so we prove the inequal­

ity (12). v D 
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THEOREM 2. Let r0 > 0 be fixed, \x\ < -J- and e3(rQ) be such that £3(r0) < 
e2(R) (R = r0 +A/1v /T). Let </>£, for \e\ < e3(r0), be a strict solution of (HJ)£ 

and let w be the value function 
T 

w(t,x) = inf J[±\\u(s)\\l + g(y(s))] ds + <j>0(y(T)) , 

t 

where the infimum is taken over all (?/, u) which satisfy the state equation in the 
mild sense. Then 

(i) (j)£(T-t,x) =w(t,x). 
Moreover, if (y£)u£) is the optimal pair 0/(P), then we have 

(ii) us(s) = Pc(-B*4>i(T-s,y£(s))). 

P r o o f . Let (j)£ be a strict solution of (HJ)£ and let ue be defined as in 
(ii), where y£ is a mild solution of 

y/
£(s) = Ay£(s) + f(e,y£(s))-Ff(^(T-s)y£(s)))y 

y£(t) = x 

(F'(</)^ (T - s, •)) is a locally Lipshitz monotone operator on FT), then (13) has 
a unique mild solution 

y£ £ C{[t,T],H) with \ye(s)\ < R for all s G [t,T]. 

Since -F'(0*'(T - s,y£(s))) = -Bu£(s), then from (3) it follows that 

F'{tf{T-s,ye(s)))+F'(-Bue(s)) + (rt^ 
and F*(-Bu£(s)) = ^\\u£(s)\\'fj. From the fundamental identity it follows that 

T 

4°(T-t,x) = j[l\\u£(s)\\l+g(ye(s))] ds + 4>0(y£(T)) 

(13) 

( т 

>ìnî< 
j[l\\u(s)\\l+g(y(s))] ds + cl>0(y(T)), se[t,T) 

[y't(s) = Ay(s) + f(s,y(s))+Bu(s), y(t) = x, ueC) 
(14) 

i.e. <j>~(T -t,x)> w(t, x). Now, from (12) we have 
T 

<f(T-t,x) = f[\\\u£(s)\\2
v+g(ye(s))] ds + <t>0(y£(T)) 

< i n f i j[\\\u(s)fu + g(y(s))] ds + d>0(y(T)) 
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where the infimum is taken over all (y, u) which satisfies the state equation (14). 
Then we get 

4>£(T-t,x) = w(t,x). 

Moreover (y£,u£) is a unique optimal pair of the problem (P). The optimal 
control u£ is given by the feedback formula 

uc(s) = Pc(-B*cl>i(T-s,y£(s))), 

where y£(s) is the solution of the closed-loop equation (13) for t = 0. • 

EXAMPLE. Let H = U = L2(Q, 1) and B = I. First, we get an example for the 
subset C C L2(0,1). It is the same as in [5], 

C={ueL2(0,l): | | « | | < R } , 

where R > 0 is a given constant and the projection Pc is given by 

if I M I < B , («) = { R^ 
l JtIMI 

Pc(U) . u u i f | | U | | > / J . 

Therefore, the function F defined in (1) is 

i |b | | 2 if 11*11 < R 

I Я F ( Z ) ^ R\\z\\-\R2 if | | * | | > . R . 

If we set 

i ( í )={« 
\t Q<t<M2, 

My/i- \M2 > M2 <t, 

we get 
F(z)=1(\\zf). 

We take the function j G C£°(R) such that j > 0, supp j C (-1,1), / j(t) dt = l. 

S e t JmW = mJ(m) a n d 7m W = / J m ( * - 5 b 0 0 ds; then we define 
R 

IU*) = 7 m ( N | 2 ) - 7 m ( 0 ) (7(*) = - 7 ( - * ) , i<0). 

The functions Fm satisfy the properties I-III on page 114. Now we consider the 
problem: 

(P2) Minimize the cost 

T 

-%o.«) = /[|l2/(5)|2 + |K5)I'2] d, + \\y(T)\2 

0 
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over the all controls wGL 2 (0 ,T: I>2(0,1)) = L2(Q) (Q = [0,T]x (0,1)), 
where y is the mild solution of 

y[(t,x) = Axy(t,x) + ef(y(t,x)) + u(t,x), *G[0,T], x G (0,1), 

2/(0, x) = y0(x) G L2(0,1), y(t, 0) = y(t, 1) = 0, 

u(t)eC. 

We denote by A the operator Ax = £? with D(A) = H2(0,1) n ^ ( 0 , 1 ) and 
let / G C2(R), then for z G L2(0,1) the function (/ o z)(x) = f(z(x)) is from 
C2(H). The assumptions (i)-(iv) are verified, particularly, (Ay,y) < —c0\y\2 

for all y G D(A), where c0 > 0. Then according to Theorem 1 and Theorem 2 
there exists a unique optimal pair (y£,u£) for the problem ( P J and the following 
feedback formula holds 

u£(s) = Pc(-<f>l(T-s,y£(s))), 

where (j)E is the strict solution of (HJ)£ equations. 
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