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AFFINE COMPLETENESS OF 
DE MORGAN ALGEBRAS 

V L A D I M I R K U C H M E I 

(Communicated by Tibor Katriňák) 

ABSTRACT. An algebra is called affine complete if all its congruence compatible 
functions are polynomial functions. Boolean algebras are affine complete by a 
well-known result of G. Gratzer. Various generalizations of this result have been 
obtained. Among them, a characterization of affine complete and locally affine 
complete Kleene algebras and a description of local polynomial functions of Kleene 
algebras was given by M. Haviar, K. Kaarli and M. Ploscica. In this paper we 
present a generalization of these results to de Morgan algebras. 

1. Introduction 

Let A be a universal algebra. A function / : An —r A is called compatible if, 
for any congruence p of A , (a^ b{) e p, i = 1, . . . , n, implies 

(/(a1,...,an),/(61,...,6J) ep. 

LEMMA 1.1. Let A be an algebra and e be a unary idempotent compatible 
function on A such that C = e(A) is a subuniverse of some reduct of A . Then, 
if f is an n-ary compatible function of that subreduct, then the function 

a ( x 1 5 . . . , x n ) = / ( e ( x 1 ) , . . . , e ( x n ) ) 

is a compatible function on A and extends f. 

P r o o f . The proof can be found in [8]. • 

An algebra A is called affine complete if every compatible function on A is 
a polynomial. Further, an algebra A is said to be locally affine complete, if for 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 06D15, 08A40. 
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affine complete algebra. 
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VLADIMIR KUCHMEI 

every n > 1, every n-ary compatible function on A can be interpolated on any 
finite subset F C An by a polynomial of A . 

Originally, the problem of characterization of affine complete algebras was 
formulated in [2]. For various varieties of algebras affine completeness has already 
been investigated. In [3] affine completeness of a class of algebras containing 
Kleene algebras was studied. In particular, it was shown there that a finite 
Kleene algebra is affine complete if and only if it is a Boolean algebra. In [4] a 
characterization of affine completeness and local affine completeness for Kleene 
algebras in general was given. In [6] an alternative approach to Kleene algebra 
together with illustrating examples was presented. These papers are partly ba ed 
on ideas developed in [5] and [9] where affine completeness of Stone algebra 
and distributive lattices was studied. The aim of this paper is to generalize the 
results to de Morgan algebras. 

A distributive Ockham algebra is an algebra (L; V, A, *, 0, 1), whor 
(L; V, A,0,1) is a bounded distributive lattice and * is a unary operation such 
that 0* = 1, 1* = 0 and for all x,y G L, 

(xAy)* =x*Vy* , (1 

(x\l y)* =x* Ay*. (2 

The variety of de Morgan algebras is the subvariety of the variety of Ockham 
algebras defined by the following additional identity: 

x**-x. 3 

Every Kleene algebra is a de Morgan algebra. In fact the variety of Kleene 
algebras can be defined in the variety of de Morgan algebras by the follow ng 
identity: 

(x Ax*) V (y V y*) = y V y* . 4 

A simplest de Morgan algebra which is not Kleene is 

M 4 = {0, a1? a 2 ,1 : 0 < a} < 1, 0 < a2 < 1 , ax V a2 = 1, a1 A a2 = 0} 

with a* = a{, ? = 1,2 (see Figure 1). 

0 

F I G U R ] 1. 4-element d Morgan al cbia 
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AFFINE COMPLETENESS OF DE MORGAN ALGEBRAS 

It is known that the variety of de Morgan algebras is generated by M 4 . 
Moreover, M 4 and its subalgebras (two copies of the three-element Kleene al
gebra K 3 and the two-element Boolean algebra B 2 ) are the only subdirectly 
irreducible de Morgan algebras. In fact all of them are simple. Every de Morgan 
algebra is isomorphic to a subdirect product of subdirectly irreducible de Morgan 
algebras. Thus, given a de Morgan algebra M , we may write M < s d [ J A ^ , 

' iei 
where Az G { B 2 , K 3 , M 4 } . We denote by 7rz-: M -> Ai the projection map to 
the zth subdirect factor of M . 

In what follows we often make use of the following ideas. Given a de Morgan 
algebra M , we assume that it is embedded in M 4 for some index set I. We 
write the elements of M in the form x = {x^)ieI. It is easy to see that if 
/ : Mn -> M is a compatible function of M and x , y G M n , then xi = yi 

implies /(x)?. = f(y)i. This means that every compatible function / of M 
determines the coordinate functions f{ of 7rt(M) such that /2(x2) = / ( x ) . for 
all x G Mn. Obviously, the family ( / z ) i G / completely determines / , so we may 
identify / with this family. 

Let S be a join semilattice. A filter of a semilattice S is a nonempty subset 
F C S such that for all x G F and y G S, y > x implies y G F. A filter F of a 
semilattice S is said to be principal if it is of the form fa = {x G S : x > a} for 
some a G S. We say that a filter F is an almost principal filter if its intersection 
with every principal filter of S is a principal filter of S. Any almost principal 
filter F of a semilattice S defines a function fF:S->S such that t / p ( a ) = 
t a fl F for every a G S. 

For every de Morgan algebra M we denote M v = {x V x* : x G M } . It 
is easy to prove that M v is a filter of the join semilattice M . Obviously, if 
M < M£, then s G M v if and only if s- G M4

V for every i G I. Note, that if 
M is a Kleene algebra, then M v is a filter of the distributive lattice M . 

The following results on affine completeness of Kleene algebras were proved 
by M. H a v i a r , K. K a a r l i and M. P l o s c i c a in [4]: 

T H E O R E M 1.2. 

1. A function on a Kleene algebra K is a local polynomial function if and 
only if it preserves the congruences of K and the so called uncertainty 
order Q of K, defined by 

x Q V <=> xAs<y<x\/s* for some s G Kw . 

2. A Kleene algebra K is locally affine complete if and only if the lattice 
K v does not contain nontrivial Boolean intervals. 
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3. A Kleene algebra K is affine complete if and only if it satisfies the fol
lowing two conditions: 

(a) the lattice K v does not contain nontrivial Boolean intervals; 

(b) for every almost principal filter F in the lattice K v , there exists 
beK such that F = f& n Ky . 

Considering affine completeness problems for de Morgan algebras we start 
with a characterization of local polynomial functions. Similarly to the case of 
Kleene algebras, local polynomial functions of a de Morgan algebra are compat
ible functions preserving a certain binary relation. The difference is that in the 
case of de Morgan algebras there are several relations which have equal right to 
play the role of the relation C of Kleene algebras. This is because M 4 has a 
nontrivial automorphism. Next we characterize locally affine complete de Mor
gan algebras. The proof is based on the same ideas which were used in the case 
of Kleene algebras, i.e. it is based on the following results for lattices due to 
D o r n i n g e r and E i g e n t h a l e r [1]: 

THEOREM 1.3. A distributive lattice is locally affine complete if and only if it 
does not contain nontrivial Boolean intervals. 

THEOREM 1.4. A function on a distributive lattice is a local polynomial if and 
only if it is compatible and order preserving. 

Finally, we will characterize affine complete de Morgan algebras. Since in 
the case of a de Morgan algebra M the set M v is not closed under meets, in 
general, the techniques of Kleene algebras do not work here. We noticed that 
instead it is possible to use the following result due to K a a r l i , M a r k i and 
S c h m i d t [7]: 

LEMMA 1.5. Let f be a unary function on a join semilattice S such that 
f{x)>x. Then f is compatible if and only if it is of the form f = fF for some 
almost principal filter F of S . 

We will also use the following description of compatible unary functions on 
semilattices (see [8]): 

LEMMA 1.6. Let S be a join semilattice. Then 

1. A unary function f on S is compatible with Con/? if and only if it is 
compatible with all principal congruences Cg(a, b) of S such that a < b. 

2. Let a,b e S, a<b. Then 

Cg(a, b) = {{c,d) e S2 : c = d or c,d>a and b V c = b V d] . 
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2. Local polynomials of de Morgan algebras 

First we consider a canonical form for n-ary polynomials of de Morgan al
gebras. Let n = {1 , . . . , n} and consider a pair of subsets a l 7 a2 C n . To every 
such pair a = ( a 1 ? a2) we assign the n-ary term 

ca(x1>...,xB)=( v ^ ) v ( v * 0 -
^ i C r t , ' >• iCr*n ' iGai ѓЄa 2 

It follows easily from the axioms of de Morgan algebras that every n-ary 
polynomial function on a de Morgan algebra M can be represented as a meet 
of polynomials Ka V Ca(xl,..., xn) where Ka G M are constants. 

Now we introduce a binary relation 

* = {(0,0), (0, a 2 ) , (av 0), (a 1 ? a j , (a19a2), (a 1 5 1), (a 2, a 2 ) , (1, a 2 ) , (1,1)} 

on M 4 which has an important role in our work. It is easy to check that ^ is a 
subuniverse in M 4 x M 4 . 

Our first goal is to describe polynomial functions of the algebra M 4 . Let 
/ be an n-ary function on M 4 and let u , v G M j 1 , u = (u^^,... ,un) and 
v = (vx,..., vn). For every pair of subsets a = ( a 1 ? a2) we put 

-r« = ( / ( u ) V / ( b ) ) A ( / ( v ) V / ( c ) ) , 

where 

0 if i Є aг \ a2 , ' 0 if i Є aг\a2ì 

1 

ui 

if i Є a2 \ aг , 

if i Є aľ П a2 , 
c i = < 

1 

VІ 

if ѓ Є a 2 \ a-_ , 

if г Є aг П a 2 , 

V; otherwise, ь uĄ 
otherwise. 

LEMMA 2.1 . Le^ / be an n-ary function on M 4 which preserves the rela
tion ^ . Then for every two-element subset {u, v} C M£ the function f coin
cides on {u,v} with the polynomial function 

p{x) = /\{Ca{x)VKa). 

P r o o f . Suppose that / is an n-ary function of M 4 which preserves the 
relation ^ and let u , v G M 4

n . Since the constants Ka are symmetric with 
respect to u and v , we only need to show that / (u) = p(u). Now we have to 
consider the following four cases: 

1. / ( u ) = 0. 
We will show that in this case there exist a and /? such that 

Ca (u) V Ka < cj and ^ ( u ) V K0 < a2 . 
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Then obviously P(u) = 0. 
Let a = (a1,a2) where 

a 1 = {i : ui < ax} and a2 = {i : it- > a x } . 

Then C a ( u ) ^ ax and 

K a = (/(u) V /(b)) A (/(v) V /(c)) < / (u) V / ( b ) , 

where 
( 0 if t/ • = 0, 

1 if u- = 1, 
ax if u - = ax , 

I *>t if u{ = a 2 . 

Now (b,u) G ^ implies (/ (b) ,/(u)) G # and hence /(b) < ax. 
Let (3 = (/?i,/32) where 

/j^ = {z : i^ < a 2 } and /32 = {z : t^ > a 2 } . 

Then Cp(u) < a 2 and 

Kp = (/(u) V /(b)) A (/(v) V /(c)) < /(u) V / ( b ) , 

where 

*>, = < 

6, = 

0 if u ť = 0, 

1 if гiť =- 1, 
a 2 if ÎÍ^ = a 2 , 
vi i f u i = ai • 

Now (u,b) G * implies (/ (u) ,/(b)) G * and hence /(b) < a 2 . 
2. / (u) = a 1 . 

First we will show that Ca(u) V Ka > ax. Assume that C Q (u) ^ a x . If ui = 0, 
then 2 G n \ a 2 and hence ĉ  = 0. If u{ — a1, then i G n \ (cŶ  U a 2 ) and 
hence c- = ax. If ^ = a2, then ĉ  can be arbitrary, and if u{ — 1, then 
i £ n\a1 and ci = 1. Thus (c,u) G Vl/. Since / preserves the relation ^ we 
have ( / ( c ) , / ( u ) ) G * and / ( c ) = ax. Hence 

^ a = ( / ( u ) V / ( b ) ) A ( / ( v ) V / ( c ) ) > f l l 

and Ca(u)Viv~Q > a x . 

Now we are going to show that there exists ft such that 

C/3(u)V/v-/3 = aL . 

Then obviously p(u) — aY. Lot (3 = (/i15/32) where 

^ — {t : 7/- < ax} and /32 {t : u} a{} . 
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T h e n Cn(u) < a x a n d 

' 0 if щ = 0, 

ъt = < 
1 

al 

if «ť = 1, 
if u{ = ax, 

. V; if гt • = a0 . 

Since (b, u) G ̂  implies ( / (b) ,/ (u)) G # , we have /(b) = ax. Thus Kp < ax 

and Cg(u) V if^ < a x . Above we have showed that Cg(u) V Ka > ax, thus we 
are done. 

3. / (u) = a2. 
The proof of this case is similar to the proof of the preceding one. 

4. / ( u ) = l . 
It is obviously enough to show that for every pair of subsets a = ( a 1 ? a 2 ) we 
have C a ( u ) V Ka = 1. Assume that C a ( u ) < 1. If u{ = 0, then i G n \ a 2 and 
hence c i = 0. If u{ = 1, then i e n\al and hence c- = 1. If ui = a1 for some 
i G a x U a 2 , then C a ( u ) > ax and there is no j G ax U a 2 such that n • = a 2 . 
Thus (u,c) G * and /(c) G { a 2 , l } . Hence K a > a 2 and C a ( u ) V J^a "= 1. If 
u{ = a2 for some i G ax U a 2 , then C a ( u ) > a 2 and there is no j G a-_ U a 2 

such that u- = ax. Thus (c, u) G ^ and /(c) G { a 1 5 l } . Hence Ka > ax and 
C a ( u ) V Ka = 1. If there is no i G ax U a 2 such that n^ G {a2, a 2 } , then c = u 
and C a ( u ) V / C a = l . D 

Using Lemma 2.1 it is easy to describe local polynomial functions of a de 
Morgan algebra in general. 

THEOREM 2.2. An n-ary function on a de Morgan algebra M < M 4 is a 
local polynomial function if and only if it preserves the congruences and for 
every i G / the function f{: 7r-(Af)n —> ^ ( M ) preserves the relation ^ . 

P r o o f . The congruences of a de Morgan algebra M are the subuniverses 
of M 2 containing the diagonal, so they are preserved by all local polynomial 
functions of M . Also the relation ^ is a diagonal subuniverse of M 4 , hence 
it is preserved by all local polynomial functions of M 4 . (Obviously, if p is 
a local polynomial function of M < M 4 , then for every i G / the function 
pz: n{(M)n -> 7r^(M) is a polynomial function of M 4 . ) 

Suppose that / is an n-ary compatible function of a de Morgan algebra M < 
M 4 such that for every i £ I the function f{\ i\{(M)n —> 7rf(M) preserves the 
relation ^ . We have to prove that, given any finite subset X C M n , there exists 
an r?-ary polynomial p of M such that f\x = p\x. Since M has the ternary 
lattice median term, it suffices to find interpolating polynomials separately for 
every two-element subset {u, v} C Mn. Let 

p(x) = A ( c » v / 0 > 
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IfQ = (/(u)V/(b))л(/(v)V/(c)) 

Іf І Є û^ \ CY2 , ' 0 if i Є a x \ a 2 , 

if i Є a2 \ aľ , 
, = < 

1 if ż Є a 2 \ a x , 

if i Є ax П a2 , , = < «. if ż Є a x П a2 , 

otherwise, u. otherwise. 

We have to show that / | / U j v } — p\ {u, v} • Since / is compatible, it suffices 
to give the proof just for the case M = M 4 . Thus the result follows from 
Lemma 2.1. • 

The next lemma will prove useful in characterization of locally affine complete 
de Morgan algebras. 

LEMMA 2.3. For every de Morgan algebra M , if f is a compatible function on 
M and f preserves 'fs for some s G M v . then f\^s is a compatible function 
on the lattice ^s. 

P r o o f . Let s G M v and $ be a congruence of the lattice t«s • We are going 
to show that there exists a congruence <f> of the algebra M such that (j)\^s = $ . 

Define an equivalence relation 0 on M by 

(x, y) G <f> <=> ( i V s , j / V s ) € $ & (x* V s, y* V s) G $ . 

First we verify that 0 is a subalgebra of M2. Let (x,y) G </3, then since 

(x** V 5, 7/** V 5) = (x V 5, 21 V s), 

we have (x*,H*) G 0. 

Now we assume that (x, y), (w, v) e (ft and check that then also (x\/ u,yV v) 
G </>. By the definition of </> we have (xVs,yVs) G $ and (uWs,v\/s) G $ . Now, 
since $ is a congruence of t<s, we have ((x V w ) V s , ( t / V v ) V s ) G $ . Similarly 
(a:*Vs,|/*Vs) G $ and (u*Vs,v*Vs) G $ imply ((x Viz)* Vs, (y Vv)* Vs) G $ . 
This proves that <j> is closed with respect to joins. Analogously we can prove 
that (j) is closed with respect to meets. Hence (p is a congruence of M . 

Now obviously 4>\-fs C $ . Assume that x,H G t 5 a n d (^,y) G <&. Since 
(x V 5, y V 5) = (x, H), we have (x V 5, y V 5) G $ . Note that if x G t^ , then 
x* V 5 = 3. Thus (x* V 5, H* V 3) = (5,5) G $ . Hence (x,H) G <fi and we have 

Next we describe locally affine complete de Morgan algebras. 
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THEOREM 2.4. A de Morgan algebra M is locally affine complete if and only 
if the semilattice M v does not contain nontrivial Boolean intervals. 

P r o o f . Suppose that M v contains a nontrivial Boolean interval [s, t] and 
consider the lattice t 5 - By Theorem 1.3, the lattice t 5 lS n ° t locally affine 
complete, and thus, by Theorem 1.4, has a compatible function g(x) which 
does not preserve the order relation. Let f(x) = g(x V s). It easily follows from 
Lemma 1.1 that / is a compatible function on M which extends g. We assume 
that M is embedded in M ^ . Then there exists i 6 I such that gi does not 
preserve the order relation. This easily implies that f{ does not preserve the 
relation \I>. Thus, by Theorem 2.2, / is not a local polynomial function. 

For the converse, suppose that M has a compatible function / which is not 
a local polynomial and also assume that M < M{ for some index set I. By 
Theorem 2.2, there exists i G / such that f{ does not preserve the relation \[>. 
Thus there exist u-,L>. e M, u^v^ such that (u^v^) G * but (/^(wj, / ; K ) ) 
^ \I>. This is possible only if 

(unvi) € { (0>a 2 ) , ( l , a 2 ) , ( a 1 , 0 ) , ( a 1 , l ) , ( a 1 , a 2 )} 

and 

( /> ; )> / > ; ) ) G {(0, fll), (0,1), (a2 ,0), (a2, a j , (o2 ,1), (1, 0), (1, a,)} . 

In fact we may assume that 

(u-tV-) G { ( l , a 2 ) , ( a l 5 l ) } 

because if (u^v^ G {(0, a2), ( a^O)} , we could replace f(x) by f(x*), and if 
(u-,i>.) = ( 0 , ^ 2 ) , we could replace f(x) by f(x Vu). Also we may assume that 

{fMJifri)) € { ( 0 , a 1 ) , ( 0 , l ) , ( a 2 , a 1 ) , ( a 2 , l ) } 

because otherwise we could replace f(x) by f(x)*. 

Thus we have to consider the following two cases: 

1.1^ = 1 and vt = a2. 
Let s = v V v* and a(x) = f(x) V 5 . Note that by Lemma 2.3 the restriction 
of g to -\s is compatible for the lattice | s . We will show that g\^s d o e s n o t 

preserve the order relation on ^s • Indeed 

5 i ( l ) - = / i ( l ) V « i = a2 

and 

gz(^)=^(a2) = /i(ft2)V5i = 1 -

Consequently g(s) £ g(l). 
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2. Ui = ax and v. = 1. 
This case can be handled similarly to the preceding one. Let s = uV u* and 
g(x) = f(x)*Vs.Then 

gi(l) = fi(iyvsi = a1 

and 
9i(si)=9i(a1) = fi{aiywsi = l. 

Thus g{s)£g{l). 
Hence, given a compatible function / of M which is not a local polynomial, 

we can construct a compatible function g of some lattice t-s C M v which is not 
a local polynomial function of this lattice. By Theorem 1.3 this means that the 
lattice t«5 contains a nontrivial Boolean interval. Thus also the semilattice M v 

contains a nontrivial Boolean interval. • 

3. Affine completeness 

In this section we describe affine complete members in the variety of de 
Morgan algebras. 

Our first goal is to find for the given compatible function / of a de Morgan 
algebra M a polynomial of M which coincides with / on the set M v . 

LEMMA 3 .1 . Let f be an n-ary local polynomial function on a de Morgan 
algebra M and let 

g(x1,...,Xn)= ( / (1 , . . . ,1 )A A (/(*!>• • • ^ J V * ; ) ) 
^ l < i < n ' 

V \ / ( / ( . T 1 , . . . , x * , . . . , x n ) A a ; * ) . 
l < i < n 

Then the functions f and g coincide on M v . 

P r o o f . We have to show that / ( b ) = g(b) for every b G ( M v ) n . Keeping 
in mind the embedding M < M ^ , it suffices to consider only the case M = M 4 

and b G {a1? a2, l } n • We also note that since / is a local polynomial function, by 
Theorem 2.2, it preserves the relation $. Now we have to consider the following 
four cases: 

i. b = ( i , . . . , i ) . 
In this case the equality / ( b ) = g(b) is obvious. 

2. {bi: 1 < i < n} C {ax, 1} and there exists j such that b- = a1. 
Then . 

5 ( b ) = ( / ( l , . . . . 1) A ( / (b) V a j ) V ( / (b) A a j . 
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Since / preserves the relation * , we have / (b) * / ( l , • . . , 1). Thus, if / (b) = 0, 
then / ( l , . . . , 1) G {0, a2} and 

g(b)=(f(l)...,l)Aa1)V0 = 0. 

If / (b) = al9 then g(b) = ( / ( l , . . . , 1) A a j V a2 = a1. If / (b) = a2, then 
/ ( l , . . . , 1) = a2 and g(b) = (a2 Al) V0 = a2, and if / (b) = 1, then / ( l , . . . , 1) G 
{a2,1}, thus g(b) = ( / ( l , . . . , 1) A l) V ax = 1. 

3. {bi: 1 < i < n} C {a2,1} and there exists j such that b- = a2. 
This case can be handled similarly to the preceding one. 

4. {b{ : 1 < i < n} C {ajjajj, 1} and there exist j and A; such that ft. = ax 

and bk = a2. 
Then 

fl(b) = ( / ( l , . . . , 1) A (/(b) V a j A (/(b) V a2)) 

V ( / ( b ) A a J V ( / ( b ) A a 2 ) . 

Now, if / (b) = 0, then ^(b) = ( / ( l , . . . , 1) A ax A a2) V 0 = 0. If / (b) = ax, 
then g(b) = ( /( l , . . . ,1) Ao- Al ) Vo- V0 = a-. K / (b) = a2, then g(b) = 
( / ( l , . . . , l)AlAa2) V0Va2 = a2, and if / (b) = 1, then g(b) = ( / ( l , . . . , l)AlAl) 
V ax V a2 = 1. • 

LEMMA 3.2. Let M be a locally affine complete de Morgan algebra such that 
for every almost principal filter F of the semilattice M v , there exists b G M 
such that F = t b n M v , and let f be an n-ary compatible function on the algebra 
M. Then the function 

g3(xx,..., xn) = f(x19..., xn) V xj , 1 < j < n, 

can be interpolated on the set M v by a polynomial function of M . 

P r o o f . First assume that / is a unary function. We are going to prove 
that the function f(x)\f x can be interpolated on the set M v by a polynomial 
function. First we show that the function 

g(x)= (f(x)Vx)\Mv 

is a compatible function on the semilattice M v . Furthermore, g has the form 
g = gF for some almost principal filter F of M v . 

By Lemma 1.6 we only need to show that g(x) is compatible with all prin
cipal semilattice congruences CgMv(c, d) of M v such that c < d. Assume 
that c,d e M v , c < d, and (x,y) G CgMV(c,d). We have to show that also 
(f(x)J(y)) € CgMV(c,d). If x == y, then obviously g(x) = g(y). Now we sup
pose that x,y > c and dV x =- d V y. Then g(x) = f(x) V x > x > c and 
g(y) = f(y)vy>y> c. 
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To prove the equality d V g(x) = d V g(y), we consider the function f(x) V x 
as a compatible function of the de Morgan algebra M and assume that we have 
an embedding M < M { . Then we only need to show that 

fi(xi)VdiVxi = fi(yi)VdiVyi, 

where c-, d{)x{,y. G M v , c- < d{, x-, yi > c- and diVxi = diVyi. Now if d{ = 1, 
then the equality is obvious. Thus without loss of generality we may assume that 
d{ = ax. Since ci < diy ci G M ^ and x i? yi > c{, we have x i? ^ > ax and since 
d{W xi = diVyi, we have x{=y{. 

By Lemma 1.5, g(x) has the form g = gF for some almost principal filter F 
of the semilattice M v . 

Now, by our assumption, there exists b G M such that F = t& H M v . Then 
the polynomial b V x interpolates g on M v . 

We proceed by induction on n. Assume that the statement of the lemma 
holds for all (n — l)-ary functions and let / be an n-ary function. For every 
u G M n _ 1 we introduce the unary function 

9J
U(X) = 9J (u> x) = f(ux,..., Uj_x, x, uj+v . . . , ^ n - 1 ) V x . 

As we have proved above g3
u can be interpolated on M v by a polynomial func

tion of the form r Vx, where r G M . Thus there exists a function h: M n _ 1 -> M 
such that 

g3(Xl,..., x ^ ! , x j5 x j + 1 , . . . , x j | M v 

= ( / i (x 2 , . . . , Xj_v xj+v ..., x n ) V x .̂) | M v . (5) 

Let 

g(xx,..., x n ) = gj(xx V x * , . . . , x n V x n ) ; 

h(xl9 ...,xn) = h(xx V x * , . . . , x n - 1 V xn_x). 

Then g\ M v = g\ M v , /i| M v = h\ M v and by (5) 

9(xn --,xn) = Hxv • • • ?
 xn-i) v xj 

for all x 1 ? . . . , x £ M. Obviously ^ is a compatible function on M . Now we are 
going to show that the function h is compatible on M , too. Let u, v G M n _ 1 

and put c = h(u) A /i(v). Then 

^ , . . . , ^ , 0 , ^ , . . . , ^ ) = /i(u) V (/i(u) Ah(v)) = h(u) 

and 

gK, • • •, Vj_vc, vj+1 ,...,vn) = h(v) V (h(u) A /l(v)) = h(v). 

266 



AFFINE COMPLETENESS OF DE MORGAN ALGEBRAS 

Thus the compatibility of g implies that of h. Hence we have 

gJ(x1,...,xj_1,xj,xH1,...,xn)\M\/ 

= {h(x1,...,xj_1,xj+1,...,xn)Vxj)\Mv. 

The latter formula shows that whenever the function h can be interpoteited on 
M v by a polynomial function, then so can gi. Since M is locally affine complete, 
by Lemma 3.1, h can be represented as 

M*i, • • •,-*n_i) = ( M l , • • •, 1) A f\ {h(xv...,xn_x) V x •)) 
l<i<n-l 

V \J (h(x1 ,...,x*,..., xn_x) A X*) . 
l<i<n-l 

Now, since 

h(x1,...,x*,...,xn_1)Ax* = (h(x1,...,x*,...,xn_1)*Vxiy , 

the result follows from the induction hypothesis. • 

Ideas used in the proof of the following theorem are similar to those applied 
in [4]-[6]. In the proof of the sufficiency part we use the techniques developed 
in [8] for Kleene algebras. 

THEOREM 3.3. A de Morgan algebra M is affine complete if and only if it 
satisfies the following two conditions: 

1. the semilattice M v does not contain nontrivial Boolean intervals; 
2. for every almost principal filter F of the semilattice M v , there exists 

be M such that F = t& n M v . 

P r o o f . If M is affine complete, then it is locally affine complete and by 
Theorem 2.4 the semilattice M v does not contain nontrivial Boolean intervals. 
Let F be an almost principal filter in the semilattice M v . By Lemma 1.5, F 
defines a compatible function fF on the semilattice M v . HencS it follows from 
Lemma 1.1 that the function g(x) = / F ( x V x * ) is a compatible function on M . 
If M is affine complete, then there must exist constants fc15..., fc4 e M such 
that 

g(x) = (kx V x) A (fc2 V x*) A (fc3 V x V x*) A fc4 

for every x e M. Since g(l) = 1, we have fc2 A fc4 = 1, thus fc2 = fc4 = 1. If 
x e My, then x V x* = x and g(x) = fF(x). Therefore 

fF(x) = (k1Ak3)Vx 

for every x e M v , implying F = t (^ i A fc3) n M v . This proves the necessity 
part of the theorem. 
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Now we prove the sufficiency of the two conditions. We assume that M is 
embedded in M ^ . Then for every i G I we have 7r-(M) G { M 4 , K 3 , B 2 } . Let 
/ be an n-ary compatible function on M . Our aim is to find a finite set P2 of 
polynomial functions on M such that for every n-tuples u, v G M£ there exists 
p G P2 such that P^(u) = /^(u) and p{(v) = /^(v) for all i G / for which it 
makes sense. 

In fact, if we have such a set P 2 , then the rest is easy. Using the majority 
term m(x,y,z) we shall define 

pk+i = {m(PvP2>Ps): PvP2^Ps^Pk}^ k>2. 
Then every set of polynomials Pk has the property that given an arbitrary 
fc-element subset X of MJ1, there exists p G Pk such that 1^(x) = / t (x ) for 
every x G X and every i G I for which it makes sense. Since \M™\ = 4 r l , the 
set P 4 n consists of a single polynomial function which must coincide with / . 

We start the construction of the polynomials which form the set P2, as 
we shall see later. Let a = (a1,a2,a3) be a triple of disjoint subsets of 
n whose union is n . With every such triple a we associate a set Sa of all 
(b ! , . . . ,b n ) G Mn such that 

{0,1} if i G ax , 

M v if i G a0 ь. є < l2 ' 

M л if i Є a 3 . 

We are going to find, for every a, a polynomial pa such that f\g = Pa\s • 

First consider the case ax = 0. Because the complementation * is an antiiso-
morphism between the semilattices M v and M A , M A = {x A x* : x G M} , we 
may assume without loss of generality that a 3 = 0. Now Lemmas 3.1 and 3.2 
imply that a suitable polynomial is: 

p(x1,...,xn)=(f(l,...,í)A Д ( / ( i 1 , . . . , i n ) V i i ) ) 
l < ѓ < n 

v V (/к -t -jлi;). 
Ki<n 

Now consider the subsets Sa corresponding to the triples a with ax ^ 0. We 
construct pa by induction on the size of ax. Suppose, without loss of generality 
that n G ax and take polynomials q0 and qx such that 

9 0(b) = /(b) if b G 5 a and 6„ 0, 

qx{h) / (b) if b G 5 Q and bm ~ 1. 

Such polynomials g0 and r/j exist by the induction hypothe is. Defiiie 

q(xx,.. ,xn)-(q0( , . . , T J A T J (<?I(^I, - - , ) A i . 
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It is easy to see that q(b) = / ( b ) for every b G Sa. 
It remains to show that the set of all polynomials pa has the property that 

P2 must satisfy. We take u, v e Mn and define a triple a as follows: 

' ai i f unvi € {0 ,1} , 

j e l a2 if ui,vi e {ax,a2,1} and {u^vj ^ {1} , 

k cY3 if K , v j = {0,a1} or K , u J = {0,a2} . 

Keeping in mind the embedding M < M^ , we take b , c G M n such that 
^ ( b ) = u and ^ ( c ) = v . It is easy to see that such n-tuples b and c exist 
in Sa. Now clearly (pa){(u) = / . (u) and (pa){{v) = / ; ( v ) . This proves the 
theorem. • 

4. Examples 

EXAMPLE 1. Since every Kleene algebra is a de Morgan algebra, all examples 
presented in [6] are also suitable for de Morgan algebras. 

Also every finite de Morgan algebra which is not a Boolean algebra is not 
locally affine complete. 

EXAMPLE 2. Let M1 — [—1,1]2. With respect to the natural order relation, 
Mx is a bounded distributive lattice. Let * be defined by (x,y)* = (—y, — x). 
It is easy to check that 

M 1 = ( M 1 ; V , A , * , ( - 1 , - 1 ) , ( 1 , 1 ) ) 

is a de Morgan algebra which is not a Kleene algebra. It is also easy to see that 

M 1
v = { 0 , j , ) € [ - 1 ) l ] 2 : x>-y). 

Obviously the semilattice M ^ does not contain nontrivial Boolean intervals. 
Hence, by Theorem 2.4, M 1 is a locally affine complete de Morgan algebra. 

Let F be an almost principal filter of the semilattice M ^ . Then 

F n t ( - i , i) -1(*0>!) a n d F n t(i, - i ) = t(i,y0) 
for some x0,y0 G [—1,1]. Take (x0,1) A (l,2/0) = (x0,y0) G Mx and show that 
F = Mx

v n t(^0»2/o)- Clearly F C M? PiUx0,y0). Now take any (x^yj G 
A/X

v n t(z0,2/0) a n d l e t 

Fr\^(xl,yl) = ^(x2,ij2). 

Then (x2,y2) > (x1,y1). Further, since 

(x l 31), (1, Vl) e F and (a^, 1), (1, j / J G t ( * i , 2/J , 
wc have (xly 1), (1, HJ G F n t f ^ , ^ ) . Thus (x l 51), (1, yx) > (x2,y2) and also 
(xliyi) = (x x , l ) A (1.J/.J > ( X 2 , T / 2 ) . Hence ( x ^ ) G F . Thus F = M / n 
t(x0 , / /0) and by Theorem 3.3 the algebra M1 is affine complete. 

269 



VLADIMIR KUCHMEI 

E X A M P L E 3. Let M 2 be the subalgebra of Mj_ with the universe 

M^K-MML-i)} . 

Now F — {(x,y) e M2 : (x,y) > (-1,1)} is a proper almost principal 
filter of the semilattice M2 without a smallest element and there is no element 
b e M2 such that F — tb D M2 . Thus M 2 is not an affine complete de Morgan 
algebra. However, it is clearly locally affine complete. 
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