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DAVID J. FOULIS 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. We introduce and initiate a study of a new class of partially ordered 
abelian groups called compressible groups. The compressible groups generalize 
the order-unit space of self-adjoint operators on Hilbert space, the directed addi­
tive group of self-adjoint elements of a unital C*-algebra, lattice-ordered abelian 
groups with order unit, and interpolation groups with order unit. We identify 
elements called projections in a compressible group, show that the set P of pro­
jections forms an orthomodular poset, and give sufficient conditions, satisfied in a 
Rickart C*-algebra and in an interpolation group with order unit, for P to form 
an orthomodular lattice. 

1. Introduction 

In [7], the authors propose that a certain class of directed abelian groups with 
order units might serve as a unifying framework for the study of the mathemat­
ical and philosophical foundations of the experimental sciences. 

The directed abelian group associated with orthodox quantum mechanics is 
the additive group G(H) of all bounded self-adjoint operators on a Hilbert space 
%, partially ordered as usual, and with the identity operator 1 as the order unit. 
The directed abelian group associated with a classical mechanical system is the 
additive group ^"(H) of all bounded Borel-measurable R-valued functions on the 
phase space H of the system, partially ordered pointwise, and with the constant 
function 1 as the order unit. 

Let G and H be directed abelian groups with order units u and v, respec­
tively. A mapping $ : G -» H is a unital morphism if and only if it is an order-
preserving group homomorphism and $>(u) = v. If the system R of real numbers 
is regarded as a directed abelian group under addition with 1 as the order unit, 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 06F20; Secondary 81P10, 03G12. 
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then a state for G is a unital morphism u: G -> R. An observable on G is a uni-
tal morphism $ : T(R) —> G. If u is a state for G and $ is an observable on G, 
then the composition oo o $ : ^"(R) -> R determines a probability measure \x on 
the field yW of Borel subsets of R according to ,u(M) :— (tvo$)(xM), where x M 

is the characteristic set function of M e M. A symmetry of G is a bijective uni­
tal morphism a: G -J> G such that a - 1 : G -> (3 is also a unital morphism. In 
this way, four of the fundamental ingredients of any viable approach to the foun­
dations of experimental science — states, observables, probability distributions, 
and symmetries — have natural and compelling mathematical representations 
in the context of directed abelian groups with order units. 

Suppose that G is a directed abelian group with order unit u and that 
the states, observables, probability distributions, and symmetries for a physical 
system S are represented on G. Then elements of the interval E :-= {e G G : 
0 < e < u} can be regarded as logical entities, called effects, that are associated 
with measurements on the system 5 . According to [12], an effect is supposed 
to correspond to "an elementary yes-no measurement that may be unsharp or 
imprecise". The set E, partially ordered by the restriction of the partial order 
on G, and with the partially defined binary operation 0 obtained by restriction 
of + on G to E, forms a logical structure called an effect algebra ([2]). 

For the directed abelian group G(H) over the Hilbert space H, the effect alge­
bra E('H), which consists of all self-adjoint operators between 0 and 1, contains 
the orthomodular lattice F(K) of projection operators on % as a sub-effect al­
gebra. The projection operators can be regarded as effects that are "sharp" or 
"non fuzzy". Analogously, for the directed abelian group T(E) over the phase 
space H, the effect algebra £(H), which consists of all Borel-measurable functions 
/ : H -> R such that / (H) C [0,1], contains as a sub-effect algebra the Boolean 
algebra V(E) of all characteristic set functions XM °f Borel-measurable sub­
sets of H. The functions x M can be regarded as effects that are "sharp" or 
"non-fuzzy". 

For an arbitrary directed abelian group G with order unit u, one would like 
to be able to identify a sub-effect algebra P of the effect algebra E := {e G G : 
0 < e < u] that could reasonably be regarded as consisting of the "non-fuzzy" 
effects. So far, in spite of some progress [11], [14], this goal has proved to be 
elusive, probably because the class of directed abelian groups with order unit is 
large and diverse, and there is no reason to expect that all members of this class 
are suitable for the representation of the states, observables, and symmetries of 
a physical system. 

In this article, we introduce a class of directed abelian groups with order 
units for which certain sharp effects called projections are easily identified and 
behave as expected. We call these groups "compressible" because such a group 
admits a well-behaved set of so-called compression operators that are in bijec-
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tive correspondence with the projections. The directed groups G(H) and T(E) 
are compressible groups. So is every lattice-ordered group with order unit, and 
indeed, every interpolation group with order unit. We are not suggesting that 
the compressible groups are the only groups fit for the proper representation of 
states, observables, probabilities, and symmetries, or even that every compress­
ible group satisfies this desideratum. We do propose that a better understand­
ing of compressible groups will contribute to the identification of an appropriate 
class of directed groups that are pertinent to the study of the foundations of the 
experimental sciences. 

2. Partially ordered abelian groups 

In this section, we offer a brief review of some mathematical notions that we 
shall be using. 

If G is a partially ordered abelian group, we denote the positive cone in G by 

G+:={geG: 0 < g} . 

A directed abelian group is a partially ordered abelian group G such that every 
element g G G can be written as g = a — b with a,b e G + ([9; p. 4]). Since we 
shall be dealing only with partially ordered abelian groups, we shall refer to a 
directed abelian group simply as a directed group. 

Let G be a partially ordered abelian group and let H be a subgroup of G. 
The partial order on H obtained by restriction to H of the partial order on G 
is called the induced partial order on H. Under the induced partial order, H 
forms a partially ordered abelian group with the positive cone H+ = H C\ G + , 
but, even if G is directed, H need not be directed. If, whenever /i1 , h2 G H and 
g G G, the condition hx < g < h2 implies that g G H, then H is said to be 
order convex in G. It is easy to see that H is order convex in G if and only if, 
for all g G G, 0 < g < h G H -=> g G H. If H is directed and order convex 
in G, then H is called an ideal in G ([9; p. 8]). 

An element u G G + is called an order unit if and only if each element in G is 
dominated by some positive-integer multiple of u ([9; p. 4]). If, for all a,b G G, 
the condition that na < b for all positive integers n implies that —a£ G + , 
then G is called archimedean ([9; p. 20]). If u G G + , we define the interval 

G+[0,u]:={eeG: 0 < e < u} 

and regard G+[0,/w] as a bounded partially ordered set under the restriction of 
the partial order < on G. A subset E C G + is said to be cone generating if 
and only if every nonzero element in G + is the sum of a finite sequence of (not 
necessarily distinct) elements of E. If u G G + and the interval E := G+[0, u] is 
cone generating, then u is called a generative element of G + ([2]). 
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A unital group is a directed group G with a specified generative element 
u G G + called the unit of G ([6]). The unit u in a unital group G is automati­
cally an order unit in G. If G is a unital group with unit u, then the bounded 
partially ordered set E := G+[0,u] is called the unit interval in G. The map­
ping e\-> u — e is an order-reversing involution on the unit interval E. With the 
partially defined binary operation © on E obtained by restriction of + on G 
to E, the unit interval E forms a so-called effect algebra. For the details, see 
[2], [4], [8], [10], [17]. 

If G is a unital group with unit interval E, then an element p E E is principal 
if and only if 

(Ve 1 , e 2 ) ( (e 1 , e 2 , e 1 +e 2 eE & eve2<p) ==> el+e2<p) 

([8; Definition 3.2]). If both p and u—p are principal elements of E, and every 
element e £ E can be written in the form e = e1+e2 with ex < p and e2 < u— p, 
then p is called a central element of E ([8; Definition 5.1]). The set of all central 
elements of E forms a Boolean algebra ([8; Theorem 5.4]). An element p E E 
is sharp if and only if the only element q E E such that q < p and q < u — p is 
q = 0 ([10]). Every principal element of E is sharp ([8; Lemma 3.3]). 

A mapping ip: E -> K from the unit interval E of a unital group G to an 
abelian group K is called a K -valued measure if and only if 

(Ve 1 , e 2 ) (e 1 , e 2 , e 1 +e 2 eE = » ^(e1 + e2) = ^(e-J + ^(e 2 ) ) . 

If each if-valued measure I/J: E -* K can be extended to a group homomor-
phism * : G -± K, then G is called a K-unital group. If G is a if-unital group 
for every abelian group K, then G is called a unigroup ([7]). 

Let G be a partially ordered abelian group. If, whenever a,b,c,d E G with 
a,b < c,d (i.e., a < c, a < d, b < c, and b < d) there exists t £ G with 
a,b < t < c,d, then G is said to have the interpolation property and G is 
called an interpolation group ([9]). In an interpolation group, every order unit 
is automatically generative. If, as a partially ordered set, G is a lattice (i.e., 
the greatest lower bound g Ah and the least upper bound g V h of g and h 
exist for every g, h G G), then G is said to be lattice ordered. Every totally-
ordered group is a lattice-ordered group, and every lattice-ordered group is an 
interpolation group. A unital interpolation group, i.e., a unital group with the 
interpolation property, is automatically a unigroup ([17]). 

The ordered field R of real numbers with the standard positive cone 1R+ = 
[x2 : x G R} , regarded as a totally ordered group under addition, is an 
archimedean unigroup with unit 1, and the corresponding unit interval is the 
standard unit interval [0,1] C IR+ . The ordered integral domain Z of integers 
with the standard positive cone Z + := { 0 , 1 , 2 , . . . } , regarded as a totally or­
dered group under addition, is an archimedean unigroup with unit 1, and the 
corresponding unit interval is the two-element set {0,1}. 
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The following example will motivate and illustrate much of the subsequent 
development. 

2.1. EXAMPLE. Let A be a C*-algebra with unit 1 and let G(A) be the additive 
abelian group of self-adjoint elements of A. Then G(A) is organized into a 
directed group with positive cone G(A)+ := {aa* : a € A} and, with 1 as 
the unit, G(A) forms an archimedean unigroup. Elements e in the unit interval 
E(A) := G(A)+[0,1] are the effects and idempotent elements p = p2 G G+ are 
the projections in A. The set P(A) of all projections in A is a sub-effect algebra 
of E(A) and, as an effect algebra in its own right, P(A) forms an orthomodular 
poset. An element of E(A) is principal if and only if it is sharp if and only if it 
is a projection [8; Theorem 6.8]. 

Each projection p G P(A) gives rise to a mapping a H-> pap from A to A 
called the compression determined by p. If g G G(A), then pgp is self-adjoint, so 
the compression determined by p maps the unital group G(A) into itself. Denote 
by J : G(A) -> G(A) the restriction to G(A) of the compression determined 
by p, so that Jp(g) = pgp for all g G G(A). As 1 G G(A) and Jp(l) = p, the 
compression a H-r pap on A is determined by Jp . We shall refer to J as the 
compression on G(A) determined by p G P(A). 

In Example 2.1, the compression Jp has the following properties: 

(1) Jp : G(A) -> G(A) is an order-preserving group endomorphism on G(A), 
(2) p = J p ( l ) < l , 
(3) for all e G G(A)+, e < p = > e = Jp(e). 

Properties (1), (2), and (3) make sense in any unital group, thus suggesting a 
generalized notion of compression called a retraction ([5]). 

2.2. DEFINITION. Let G be a unital group with unit u and unit interval E. 
Then a mapping J: G —> G is called a retraction on G if and only if the following 
conditions hold: 

(i) J : G -> G is an order-preserving group homomorphism. 
(ii) J(u) < u. 

(iii) If e G G+, then e < J(u) => e = J(e). 

If J is a retraction on G, then J(u) is called the focus of J . 

The following basic properties of a retraction were proved in [5]. 
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2.3. LEMMA. Let G be a unital group with unit u and unit interval E, and 
let J be a retraction on G with focus p. Then: 

(i) J is idempotent, i.e., J(J(g)) = J(g) for all g G G. 
(ii) If e G E, then e<u-p = > J(e) = 0. 
(iii) The focus p of J is a principal element of E, hence p is a sharp element 

ofE. 

2.4. LEMMA. Let J be a retraction on the unital group G with unit u, let 
p := J(u) be the focus of J, and let H := J(G) be the image of J . Then, 
H = [h £ G : J(h) = h] and, with the induced partial order, H is a unital 
group with unit p. Furthermore, if I is a retraction on the unital group H, then 
the composition I o J is a retraction on G with focus I(p). 

P r o o f . That H = {h G G : J(h) = h) follows from Lemma 2.3(i). 
Suppose h G H. Then there exist gvg2 £ G + such that h = g1 - g2, and we 
have h = J(h) = J(gx) - J(g2) with J ( g J , J(g2) G H n G + = H+, so H is 
directed. Evidently, p = J(u) G H+. Suppose h G H+. Then h G G + , so there 

n 
exist e, G G with 0 < e, < u for i = 1,2, . . . , n such that h= Yl ei > whence 

* - * - »=i 

/i = J(ft) = £ J(e-) . But, 0 < e- < u implies that 0 < J(ei) < J(u) = p for 
2 = 1 

i = 1,2, . . . , n , and it follows that p is a generative element of H. Therefore, H 
is a unital group with unit p. 

Let J be a retraction on H with focus q := I(p). Then, regarded as a 
mapping from G to G, J o J is an order-preserving group endomorphism. Also, 
(I o J)(u) = I(p) = q<p<u.lfeeG with 0 < e < <7, then 0 < e < p , so 
J(e) = e and e G H. Therefore, (J o J)(e) = I(J(e)) = /(e) = e. • 

Let J be a retraction on the unital group G, let H := J(G) be the image 
of J , and let K := ker(J) = J _ 1 ( 0 ) be the kernel of J . Define $: H xK -*G 
by $(/&,&) :=- h + fc for all h G H, fc G K. Because J is idempotent, $ is a 
group isomorphism and $ _ 1 (g ) = (J(g) ,g — J(g)) for all g G G. Thus, as an 
abelian group, G is the direct product of H and if. We regard the subgroups 
H = J(G) and if = ker(J) of G as partially ordered abelian groups with the 
induced partial orders. Then H is directed (Lemma 2.4), but it need not be order 
convex in G . On the other hand, K (being the kernel of an order-preserving 
group homomorphism) is order convex in G, but it need not be directed. If 
H x K is organized into a partially ordered abelian group with coordinatewise 
partial order, then $ : H x K -» G is order preserving, but $ _ 1 : G -> H x K 
need not be order preserving, i.e., G is not necessarily the direct product of 
H and K in the category of partially ordered abelian groups. A necessary and 
sufficient condition for $ _ 1 to be order preserving is that the retraction J is 
direct in the sense of part (i) of the following definition. 
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2.5. DEFINITION. Let G be a unital group with unit interval E, let J be 
a retraction on G with K := ker(J) , and organize K into a partially ordered 
abelian group with positive cone K+ := K C\ G + . Then: 

(i) J is a direct retraction if and only if g G G + ==> J(g) < g. 
(ii) J is a compression if and only if e G E n K => e + J (u) G 2?. 

If a retraction J on G is direct, then it is a compression and both II = J(G) 
and K = ker(J) are ideals in G ([5]). Even if both H and K are ideals in 6?, 
the retraction J need not be a compression and it need not be direct. 

2.6. LEMMA. Let G be a unital group with unit interval E and let J be a 
retraction on G. Then J is direct if and only if e G E => J(e) < e. 

P r o o f . Suppose e G E -=> J(e) < e and let g G G+. Then we can write 
n n 

g = ^2 e{ with ei G E for i = 1 ,2, . . . , n , and it follows that J(g) = Yl J{ei) < 
i = l i=l 

n 

S ei — 9-> s o ^ i s direct. As E C G + , the converse is obvious. • 
i=l 

The following theorem pertaining to Example 2.1 is a consequence of [5]. 

2.7. THEOREM. If A is a C*-algebra with unit 1, then every retraction on 
G(A) is a compression and has the form g i-r Jp(g) = pgp for p G P(A), g G G. 
Thus, there is a bijective correspondence p «-» J between projections p G P(A) 
and compressions J on G(A). 

3. Compressible groups 

In Theorem 2.7, if p G -P(-4), then u—p G P(-4) and the compressions Jp and 

Ju-P
 a r e quasicomplementary in the sense of the following definition (cf. [1]). 

3 .1 . DEFINITION. Let J , J be retractions on the unital group G. Then J and 
I are quasicomplementary if and only if, for all g G G + , J(g) = # <==> 1(g) = 0 
and J(g) = 0 <=> 1(g) = g. 

If J and J are quasicomplementary retractions, we say that I is a quasicom-
plement of J and that J is a quasicomplement of 7. 

3.2. LEMMA. Lei G be a unital group with unit u and unit interval E. Suppose 
that J and I are quasicomplementary retractions on G. Then: 

(i) If p = J(u) is the focus of J, then the focus of I is u — p. 
(ii) The images J(G) and 1(G) of J and I are ideals in G. 

(iii) J and I are compressions. 
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P r o o f . 

(i) We have 0 < u — p with J(u) = p and J(p) = p , whence J(u — p) = 0, 
so I(u) — I(p) = I(u — p) = u—p. But, 0 < p with J(p) = p , so I(p) = 0, and 
it follows that I(u) — u—p. 

(ii) Let H := J(G). By Lemma 2.4, H is directed, so we have only to prove 
that H is order convex in G. Assume that g £ G and h G H with 0 < g < h. 
Since 0 < h and J(h) = /i, we have 0 < 1(g) < 1(h) = 0, whence 1(g) = 0. 
Therefore, g = J(g) G H and H is order convex in G. By symmetry, 1(G) is 
order convex in G. 

(iii) Let p = J(u), so u — p = I(u) by (i). Suppose e e E with J(e) = 0. 
Then 1(e) = e and since 0 < e < u, we have 0 < e = 7(e) < I(u) = u — p. 
Thus, J is a compression, and by symmetry, so is I. • 

The unital group G(A) in Theorem 2.7 satisfies the conditions in the following 
definition. 

3.3. DEFINITION. A compressible group is a unital group G such that every 
retraction on G is uniquely determined by its focus and every retraction on G 
has a quasicomplement. Let G be a compressible group with unit u. An element 
p G G is called a projection if and only if it is the focus p = J(u) of a retraction 
J on G. The set of all projections in G is denoted by P(G). If p G P(G), we 
denote by J the unique retraction on G with focus p , so that Jp(u) = p. 

3.4. LEMMA. Let G be a compressible group with unit u and let p G P(G). 
Then every retraction on G is a compression and the compression J has a 
unique quasicomplement, namely Ju_p. 

P r o o f . Assume the hypotheses. By Lemma 3.2(iii), every retraction on 
G is a compression. Let I be a compression on G, and suppose that / is a 
quasicomplement of Jp. Then 0 < p,u—p < u and by Lemma 3.2(i), I has 
focus u — p, so u — pG P(G) and i" = Ju_p• • 

The terminology "compressible group" is suggested by the notion that the 
compressions on such a group are particularly well-behaved. The conditions in 
Definition 3.3 are fairly strong. For instance, if G is a compressible group and 
p G P(G), then a unital automorphism of G fixes p if and only if it commutes 
with J . Also, if p G P(G) and p is an atom in the unit interval E of G, then 
there is one and only one Z-valued state LJ on G with u(p) = 1. 

The archimedean unigroups affiliated with unital C*-algebras (Example 2.1 
and Theorem 2.7) provide prototypic examples of compressible groups. Another 
important class of compressible groups is afforded by the following theorem. 
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3.5. THEOREM. Let G be an interpolation group and let u be an order unit 
in G. Then G is a unigroup with unit u and, as such, G is a compressible group. 
If E is the unit interval in G, then P(G) is the set of sharp elements of E, 
P(G) is a sub-effect algebra of E, and P(G) forms a Boolean algebra in such 
a way that, for p e P(G), u — p is the Boolean complement of p. Furthermore, 
if geG andpe P(G), then g = Jp(g) + Ju_p(g). 

P r o o f . By [17; Theorem 3], G is a unigroup with unit u. Following [9; 
p. 127], we say that an element p e E is characteristic if and only if the greatest 
lower bound pA(u—p) of p and u—p exists in G and pA(u—p) = 0. Evidently, 
a characteristic element is sharp. Conversely, suppose p is a sharp element of E, 
i.e., 0 is the greatest lower bound of p and w - p as calculated in E. Suppose 
geG and g < p, u—p. Then g, 0 < p, u—p and, as G is an interpolation group, 
there exists t e G with g, 0 < t < p,u—p, whence t = 0 and g < t < 0. 
Therefore 0 is the greatest lower bound of p and u — p as calculated in G. 
Consequently, the characteristic elements in E coincide with the sharp elements 
in E. 

Let p be a characteristic element of E, let 

H := {h e G : (3n e Z+)(-np <h< np)} , 

and let 

K := {ke G: (3n eZ+)(-n(u-p) <k<n(u-p))} . 

By [9; Lemma 8.2], H and K are ideals in G, G = H + K, and H n K = {0}. 
Let Jp be the projection of G onto H with kernel K and let Ju_p be the pro­
jection of G onto K with kernel H. Then Jp and Ju_p are quasicomplementary 
retractions on G and g = Jp(g) + Ju_p(g) for all g e G ([9; p. 128]). 

Suppose J is a retraction on G and let p := J(u). By Lemma 2.3(iii), p is a 
sharp element of E, hence p is characteristic and we can form the retraction Jp. 
Suppose h e H+. Then there exists n e Z + such that 0 < h < np. By [9; 
Proposition 2.2(b)], there are elements ei e E with ei < p for i = 1,2,... , n 

n n n 

such that h = X)e;> whence J(h) = _ZJ(^i) = J2 ei = h. Therefore, J 
1 = 1 1 = 1 2 = 1 

coincides with Jp on H+, hence on H. A similar argument using the fact that 
J(e) = 0 for all e G E with e <u — p shows that J(k) = 0 for all k e K, hence 
that J = Jp. Consequently, each retraction J on G is uniquely determined by 
its focus, and G is a compressible group. Furthermore, P(G) is exactly the set 
of all sharp elements, i.e., characteristic elements, of G. By [9; Theorem 8.7] and 
its proof, P(G) is a Boolean algebra and for p e P(G), u — p is the Boolean 
complement of p. D 

If G is a lattice-ordered abelian group with order unit -u, then G is an 
interpolation group, so by Theorem 3.5, G is a compressible unigroup with 

441 



DAVID J. FOULIS 

unit u. Various rings of bounded R-valued functions, partially ordered pointwise, 
and regarded as additive abelian groups, form lattice-ordered archimedean unital 
groups with the constant function 1 as unit. An example is the ring F(E) of 
bounded Borel-measurable functions on a phase space E. Here are two more 
examples. 

3.6. E X A M P L E . If X is a compact Hausdorff space, then the ring C(X, R) of 
continuous R-valued functions on X with the usual positive cone C(X, R ) + : = 
{/ G C(X, R) : f(X) C R+ } forms a lattice-ordered archimedean unigroup un­
der addition with the constant function 1 as unit. Thus, C(X, R) is a compress­
ible unigroup. The corresponding effect algebra E(C(X,R)) is an MV-algebra 
([4], [16]). The projections in C(X, R) are the characteristic set functions of 
compact open subsets of X, hence P(C(X, R)) is a Boolean algebra. 

3.7. E X A M P L E . Let X be a nonempty set, let M be a field of subsets of X, and 
define F(X, M) to be the commutative ring under pointwise operations and writh 
pointwise partial order of all bounded functions / : X —> Z that are measurable 
in the sense that f~x(z) G M for all z G Z . Then, under addition, and with 
the constant function 1 as unit, F(X, M) forms a lattice-ordered archimedean 
unigroup, whence it is a compressible unigroup. Every element of the unit in­
terval E(F(X,M)) is a projection, i.e., P(F(X,M)) = E(F(X,M)), and the 
projections are the characteristic set functions XM °f s e t s M e M. The field 
of sets M is a Boolean algebra under set inclusion, and E(F(X, M)) forms a 
Boolean algebra isomorphic to M under the correspondence XM *~* M. 

By the Stone representation theorem, every Boolean algebra is isomorphic to 
the Boolean algebra formed by a field of subsets of a set, whence by Example 3.7, 
every Boolean algebra can be realized as the unit interval in a lattice-ordered 
archimedean compressible unigroup in which every effect is a projection (cf. 
Theorem 6.5 below). 

Some unital groups G are compressible groups "by default" in that the only 
retractions on G are the zero compression J0 and the identity compression Ju. 
For instance, any totally ordered unital group is compressible by default. So is 
the unital group G in the following example. 

3 .8 . EXAMPLE. Let Z 2 = {0,1} be the additive group of integers modulo 2 and 
let G := Z x Z2 with coordinatewise addition. With the usual order on Z and the 
trivial order on Z 2 (i.e., Z j = {0}), give G the lexicographic order ([9; p . 18]). 
Then G is a compressible unigroup with unit u := (2,0) and P(G) = {0,u}. 

The "general comparability property", introduced in the next section (Def­
inition 4.6), rules out compressible groups such as the unigroup G in Exam­
ple 3.8 that admit only the zero and unit elements as projections, but are not 
totally ordered. It also rules out compressible groups that are not torsion free 
(Lemma 4.8). 
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4. Compatibility in a compressible group 

For the remainder of this article, we assume that G is a compressible group 
with unit u, that E = E(G) is the unit interval in G, and that P = P(G) is 
the set of projections in G. Elements e G E are called effects. 

If A is a unital C*-algebra (Example 2.1 and Theorem 2.7), G(A) is the 
compressible archimedean unigroup of self-adjoint elements in A, and P(A) is 
the orthomodular poset of projections in A, then for g G G(A) and p G P(A), 
g = Jp(g)+Ji_p(g) if and only if g commutes with p. This suggests the following 
definition. 

4 . 1 . DEFINITION. If g G G and p G P , we say that g is compatible with p 
if and only if g = Jp(g) + J n _ p (g ) - The set of all elements g in G that are 
compatible with the projection p G P is denoted by C(p). 

4.2. LEMMA. Let p G P, let H := Jp(G) be the image of the compression J , 

and let K := ker( jp) be its kernel. Then, with tf+ := tf n G + , K+ := KC)G+, 

and C(p)+ := C(p) n G + , we have: 

(i) C(p) is a subgroup of G and u G C(p)+ . 
(ii) tf + U K+ C C(p)+ = tf + + # + . 

(iii) tfCC(p). 
(iv) With the induced partial order, C(p) is a unital group with unit u and 

with unit interval E(C(p)) = {e + d : e, d G E, e < p , d < ^—p] . 

P r o o f . 
(i) Evidently, 0 G C(P). Suppose o,6G C(p). Then Jp(a-b) + Ju_p(a-b) = 

Jp(o) + Ju.p(a)-{Jp(b) + Ju_p(b)) = a-b. As Jp(u) + Ju_p(u) = p+(u-p) = u , 
we have -U G C(p)+. 

(ii) If h G tf+, fc G # + , and # = ft + fc, then J p(h) = h, Jp(k) = 0, 
J„_p(fc) = A:, and Ju_p(h) = 0, whence g = h + k = Jp(g) + J u_ p(g) G C(p)+. 
Conversely, if # G G+ with £ = Jp(g) + J w _ p (^) , then ft := Jp(p) G tf+ and 
k:=Ju_p(g)eK+. 

(iii) By (ii), tf + C C(p), so by (i), tf = tf + - tf + C C(p). 
(iv) As u is an order unit in G and u G C(p)+, it follows that u is an order 

unit in C(p), hence that C(p) is directed. Let g G C(p)+, so that g = /i+A: with 

h := Jp(g) £ tf + and A: := Ju_p(g) G -RT+. As ft G G+, we can write ft = £ e i 
z = l 

n 

with e{eE, whence h=__ai with a- := J p ( e J G £? n tf + for z = 1, 2 , . . . , n . 
z = l 

Thus, 0 < o{ < u and flj = J^) e H+ C C(p) for i = l , 2 , . . . , n . By 
m 

a similar argument, A: = £ 6- with 0 < 6. < u and b. G K+ C C(p) for 
j=i J 3 J 
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n m 

j = 1,2, . . . , m. Consequently, g = J2 ai + _Z bj where each summand belongs 
t= l j=i 

to {c G C(p) : 0 < c < u]. Therefore, u is a generative element of C(p) and 
C(p) is a unital group with unit u. 

If c G C(p) with 0 < c < u, then c = e + d with 0 < e := Jp{c) < p and 
0 < d := Ju_p(c) < u — p. Conversely, if c = e + d with 0 < e < p and 0 < d 
<u-p, then e G if+ C C(p) and d G K + C C(p), so c e H+ + K+ = C(p)+ 
with c < P + ( w — p) = u. • 

4 .3 . THEOREM. Le£ G be a compressible group with unit interval E and let 
p e P. Then the following conditions are mutually equivalent: 

(i) ker(J ) is an ideal in G. 

(ii) k e r ( J p ) C C ( p ) . 
(iii) G = C(p). 
(iv) p belongs to the center of the effect algebra E. 
(v) J is a direct compression. 

P r o o f . Let H := Jp(G), H+ := HHG+, K := ke r ( J p ) , and K+ := 

KHG+. 
(i) => (ii). Assume (i). Then K = K+ - K+, whence K C C(p) by 

Lemma 4.2(i) and (ii). 
(ii) ==}> (iii). Assume (ii). By Lemma 4.2(iii), H C C(p), whence G = 

H + K C C(p) by Lemma 4.2 (i). 
(iii) = > (iv). Assume (iii). By Lemma 2.3(iii), both p and u-p are prin­

cipal elements of E. If e G E, then e = Jp(e) + Ju_p(e) with 0 < Jp(e) < p 
and 0 < Ju_ (e) <u — p, hence p belongs to the center of E. 

(iv) => (v). Assume (iv). If e G E , we can write e = ex + e2 with 0 < 
e2 < p and 0 < e2 < iz — p , whence Jp(e) = J p (e 1 ) + Jp(c2) = e1 < e. By 
Lemma 2.6, J is direct. 

(v) =-*» (i). Assume (v) and let k G K. There exist gvg2 £ G?+ with 
k = gx-g2. Let k{ := g.-Jp(g.) for i = 1,2, so that k = k1-k2 + Jp(g1-g2) = 
kx — k2 + Jp(k) = kx - k2. By (v), k{ G G + , and it is clear that k{ e K for 
z = 1, 2, whence fc G if+ - K + . • 

If p is an effect in the center of E, then p € P and J p satisfies the conditions 
in Theorem 4.3. Thus, there is a bijective correspondence p <+ Jp between effects 
p in the center of E and direct compressions Jp on G. If G is an interpolation 
group (Theorem 3.5), then every compression on G is direct and P is the center 
of the effect algebra E. 

4.4. COROLLARY. If A is a unital C* -algebra, and p G P(A), then C(p) = 
G(A) if and only if p belongs to the center of A. 
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4 .5 . DEFINITION. If g e G and p € P, we write g £ C±(p) if and only if the 
following four conditions hold: 

(i) geC(p), 
(ii) for all g € P, g € C(q) =-> g e C(p), 

(iii) 0 < J ( s ) , 
(iv) J „ _ p ( 5 ) < 0 . 

Suppose g G ( ^ ( p ) . Although the projection p is not necessarily uniquely 
determined by _/, it can be shown that _/+ := J (g) > 0 and g~ := —Ju(g) > 0 
are uniquely determined, whence that \g\ := _/+ + g~~ > 0 is well defined. Fur­
thermore, g < \g\ = | — g\ and g = g+ + (—_/") is split into a "positive part" 
_/+ and a "negative part" —_/~, cf. [18; Section 108]. 

4.6. D E F I N I T I O N . 

(i) G has the general comparability property if and only if, for every g G G, 
there exists p G P such that _/ G C± (p). 

(ii) G has the central comparability property if and only if, for every g G G, 
there exists p e P such that (7 = C(p) and _/ G C - ( p ) . 

For operator algebras, there is a close relationship between the existence of 
spectral measures and the general comparability property. 

4.7. EXAMPLE. Let A be a von Neumann algebra with unit 1 and let G(A) be 
the compressible unigroup of self-adjoint elements of A. If g G G(A), then by the 
spectral theorem, there is a projection p G A such that p commutes with every 
element of A that commutes with g, 0 <pa = ap, and (1 —p)a = a(l —p)<0. 
Therefore, G(A) has the general comparability property. 

4.8. LEMMA. Let G have the general comparability property. Then: 

(i) G is torsion free, i.e., 0 is the only element in G with finite order. 

(ii) G is unperforated, i.e., if n is a positive integer, g G G, and 0 < ng, 
then 0 < g. 

P r o o f . 
(i) Suppose g G G, n is a positive integer, and ng = 0. By general com­

parability, there is a projection p G P such that 0 < J p (g ) , 0 < Ju_p(—g), 
and g G C(p). But then nJp(g) = Jp(ng) = 0 and, owing to the fact that 
J
P(9) G C?+, it follows that Jp(g) = 0. Likewise, as n(—g) = 0, we have 

Ju-P(-9) = 0, whence Ju_p(g) = 0. Therefore, g = Jp(g) + Ju_p(g) = 0. 
(ii) Suppose g G G, n is a positive integer, and 0 < ng. Then there exists 

P G P such that 0 < Jp(g), Ju_p(g) < 0, and g = Jp(g) + Ju_p(g). Then 
0 < Ju_p(ng) = nJu_p(g) < 0, so nJu_p(g) = 0, and it follows from (i) that 
Ju-V(9) = 0. Hence, 0 < J(g) =g. D 
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4.9. THEOREM. If the compressible group G has the central comparability 
property, then G is lattice ordered. 

P r o o f . Assume the hypotheses, let u be the unit in G, and let g,h G G. 
Then there exists p G P such that G = C(p), 0 < Jp(g-h), and Ju_p(g-h) < 0, 
whence Jp(h) < J (g) and Ju_p(g) < Ju_p(h). Let a := Jp(h) +Ju_p(g). Then 
a < Jp(g) + Ju-P(g) = g and a < Jp(h) + Ju_p(h) — /i, so a is a lower bound 
in G for # and /i. Suppose b G G and b < g,h. Then J (b) < <Ip(^) and 
J„_p(6) < Ju_p(g) ,sob= Jp(b) + Ju_p(b) <a. D 

Let G be an interpolation group with order unit. By Theorem 3.5, G forms 
a compressible unigroup and G = C(p) for every projection p G P. Therefore, 
G has the general comparability property if and only if it has the central compa­
rability property. Furthermore, the general comparability property is equivalent 
to the property of the same name in [9; p. 131]. Thus, Theorem 4.9 extends 
[9; Proposition 8.9] to cases in which G fails to have the interpolation prop­
erty. A compressible group G without the interpolation property can have the 
general comparability property without being lattice ordered. For instance, the 
compressible unigroup G(K) of self-adjoint operators on a Hilbert space H has 
the general comparability property, yet it forms an anti-lattice, i.e., two self-
adjoint operators have a greatest lower bound in G(%) if and only if they are 
comparable ([15]). 

If G is a lattice-ordered unital group, then the unit interval E in G is an 
MV-algebra. If G is not only lattice ordered, but has the general comparability 
property, then E is not only an MV-algebra, but a Heyting algebra as well ([4]). 
If G is a Dedekind <7-complete lattice-ordered abelian group with order unit it, 
then G is a compressible unigroup with unit u, and by [9; Theorem 9.9], it has 
the central comparability property. 

5. Projections in a compressible group 

In this section, we shall be studying the structure of the system P of projec­
tions in the compressible group G and some of the basic calculus of compressions 
on G. 

5.1 . THEOREM. If p,q G P, then the following conditions are mutually equiv­
alent: 

(0 Jp(Q)=0. 
(ii) Ju-p°Jq = Jq. 

(iii) p + q < u. 
(iv) Jq(p) = 0. 
(v) u - (p + q) € P and Ju_{p+q) = Ju-P ° Ju-q = Ju-q ° Ju-P • 

(vi) p + qeP. 
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P r o o f . Let p,q G P. 

(i) -=> (ii). Suppose that Jp(q) = 0. Then Ju_p(q) = q, whence Ju_p o Jq 

is an order-preserving endomorphism on G with (Ju_poJq)(u) = Ju_p(Jq(u)) = 
Ju_p(q) = q. Let e G G with 0 < e < q. Then Jg(e) = e. Also, 0 < Jp(e) < 
Jp(q) = 0, so Jp(e) = 0, whence Jn__p(e) = e. Therefore, (Ju_p o J j ( e ) = e, 
and it follows that Ju_p ° Jq is a retraction on G with focus g. Consequently 
Ju-poJ

q = J
q-

(ii) ===> (iii). Assume (ii). Then q = Jq(q) = Ju_p(Jq(q)) = Ju_p(q) <u-p, 
whence p + q < u. 

(iii) = > (iv). Assume (iii). Then Jq(p) + q = Jq(p + q) < Jq(u) = q. But 
0 < Jq(p), and it follows that Jq(p) = 0. 

(iv) <-=> (i). By the arguments already made, (i) = > (iv), so by symme­
try (iv) = > (i). 

(iv) = > (v). Assume (iv). Then, since (iv) <=> (i), we have both Jp(q) = 0 
and Jq(p) = 0, whence Ju_p(q) = q and Ju_q(p) =p. Also, since (i) = > (iii), 
we have p + q < u. The composition J := Ju_p o Ju_q is an order-preserving 
group endomorphism on G and J(u) = Ju-p(Ju_q(u)) = Ju_p(u — q) = u—p — 
Ju_p(q) = u-p-q = u-(p+q) < u. Suppose that 0 < e < u-(p+q). Then 0 < 
Jq(e) < Jq(u-q)-Jq(p) = 0+0 = 0. Therefore, Jq(e) = 0, whence Ju_q(e) = e. 
By symmetry, Ju_p(e) = e, so J(e) = Ju-p(Ju_q(e)) = e, and it follows that 
J is a retraction with focus J(u) =u- (p + q). Therefore, u - (p + q) G P and 
Ju_p o Ju_q = J = Ju_{p+q) • By symmetry, Ju_q o Ju_p = Ju_(p+q). 

(v) -=> (vi). II u- (p + q) €P, then p + q = u - (u - (p + q)) G P. 

(vi) = > (i). Suppose p + q G P. Then 0 < p + q < u, and it follows that 
0 < Jp(p) + Jp(q) < Jp(u). Thus, 0 < p + Jp(q) < p, from which it follows that 
JM = 0. D 

5.2. COROLLARY. 

(i) If A is a finite nonempty subset of P and __ p <u, then __ p G P 
for every nonempty subset B C A. peA P^B 

(ii) P is a sub-effect algebra of E. 
(iii) P is an orthomodular poset. 
(iv) If p,q G P, then p < q <=> q-p € P. 
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P r o o f . 
(i) Let p, q, r e P with p + q + r < u. Then p + q<u, so p + qeP by 

Theorem 5.1. Again by Theorem 5.1, (p + q) + r <u implies that (p + q) + r e P. 
Continuing in this way, we obtain the more general result by mathematical 
induction. 

(ii) We have 0,u e P and P is closed under p »-> u — p. By Theorem 5.1, if 
p,q e P and p + q < u, then p + q e P, so P is a sub-effect algebra of E. 

(iii) Follows from (i) and (ii). 
(iv) Let r := u — q. Then r e P, and p < q =-=> p + r < u = > q — p = 

u — (p + r) e P by Theorem 5.1. Conversely, if q — p e P , then 0 < q — p, so 
p<q. • 

5.3. COROLLARY. Letp,q,p+q e P. Then, for all g e G+ , Jp(g) = Jq(g) = 0 
=> Jp+q(9) = 0. 

P r o o f . If Jp(g) = Jq(g) = 0, then Ju_p(g) = Ju_q(g) = g, and it follows 
from Theorem 5.1(v) that Ju_(p+q)(g) = g, whence J p + g(g) = 0. • 

5.4. THEOREM. Let p,q e P. Then the following conditions are mutually 
equivalent: 

W Jp°Jq = Jq°Jp-
(ii) J o J is a compression. 

(iii) Jp(q)eP and Jp(q)<q. 
(iv) There exist r,s,t e P such that r + s + teP, p = r + s, and q = r + t. 
(v) There exist r,s e E such that p = r + s, r < q, and s < u — q. 

(vi) peC(q). 

P r o o f . 
(i) =-> (ii). Assume (i), let J := Jp o Jq = Jq o Jp) and let r := J(u) = 

Jp(Jq(
u)) = Jp(<l)' T h e n r = Jq(Jp(u)) = Jq(p). Evidently, 0 < r < p,q. Also, 

J is an order-preserving endomorphism on G, and if e e E with e < r , then 
e < p,q and J(e) = Jp(Jq(e)) = Jp(e) = e. Therefore, J is a retraction, hence 
a compression on G with focus r . 

(ii) => (iii). Assume (ii). Then there exists r e P with JpoJq = Jr. Thus 

Jr(
u ~ Q) = Jp(Jq(

u ~ Q)) = Jp(
Q) = °> whence u - q < u - r , i.e., r < q. 

Therefore Jp(q) = Jp(Jq(u)) = Jr(u) = r e P and Jp(q) = r<q. 
(iii) =-> (iv). Assume (iii) and let r := Jp(q). Then r e P with r < p,q. 

By Corollary 5.2(iv), s := p - r e P and t := q - r e P. Also, J p ( t ) = 
Jp((l) — ^ p ( r ) = r — r = 0, so by Theorem 5.1, r + s + t =p + t e P. 

(iv) =-> (v). Assume (iv). Then s + q = r + s + t<u, so s <u — q. Also, 
r < r + t = q, and p = r + s. 

(v) ==> (vi). Follows directly from Lemma 4.2(ii). 
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(vi) =-> (i). Suppose p G C(q). By Lemma 4.2 (ii), there exist r,s G E 
with p = r + s, r < q, and s < u — q. Then t := q — r € E and we have 
t + p = q — r + r + s = q + s<u, so t <u—p. As r < p and t < u — p,we have 
J p ( r ) = r and Jp( t) = 0, whence Jp(q) = Jp(r + t) = r. Define J := Jpo Jq. 
Then J is an order-preserving endomorphism on G and J(u) = Jp(q) = r . 
Suppose e € E with e < r . Then e < r + s = p and e < r < g, so J(e) = 
Jp(Jq(e)) = Jp(e) = e, and it follows that J is a retraction with focus r G P, 
i.e., JpOJq = J = Jr. We also have g = r + t with r,t £ E, r <p, and £ < u—p, 
so by symmetry, Jqo Jp = Jr = Jpo Jq. • 

5.5. COROLLARY. If p,q G P , tten the following conditions are mutually 
equivalent: 

(i) q<P-
(ii) Jp(«) = ?. 

(iii) JpoJq = JqoJp = Jq. 
(iv) JpoJq = Jq. 
(v) JqoJp = Jq. 

P r o o f . 

(i) =-> (ii). If q < p , then 0 < g < p < w, and it follows that Jp(g) = q. 

(ii) = ^ (iii). If Jp(q) = q, then by Theorem 5.4(iii), JpoJq = JqoJp = Jr 

with r = Jp(q) = q. 

(iii) =---> (iv) ==> (i). Obviously (iii) =4> (iv). If (iv) holds, then q = 

Jq(q) = Jp(Jq(q))<p. 
(v) ^=4> (i). If (v) holds, then Jq(u— p) = 0, so u—p < u — q, and it follows 

that q < p. Conversely, if (i) holds, then by the arguments above, (iii) holds, 
and (v) follows. • 

Condition (iv) in Theorem 5.4 is equivalent to the well-known condition that 
the elements p and q of the orthomodular poset P are Mackey compatible, i.e., 
that they commute ([16]). 

5.6. COROLLARY. If p,q G P, then the following conditions are mutually 
equivalent: 

(i) PeC(q). 
(ii) qeC(P). 

(iii) Jp(q)eP. 
(iv) Jq(P)eP. 

Furthermore, if any one, hence all, of these conditions hold, then p /\q = J (q) 
= Jq(p) is the greatest lower bound of p and q both in E and in P. 
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P r o o f . 
(i) <==> (ii). The condition in Theorem 5.4 (i) is symmetric in p and g, so 

(i) «=> (ii) by Theorem 5.4(vi). 
(i) ^=> (iii). By parts (vi) and (iii) of Theorem 5.4, (i) => (iii). Con­

versely, suppose that r := Jp(q) G P. By Theorem 5.4(iii), it will be sufficient 

to prove that r < q. As r < p , Corollary 5.5 implies that J (r — Jr(q)) = 
Jp(r)-J

r(
Jp(<l)) = r - J r ( r ) = 0 . As Jr(q) < r , it follows that 0 < r - J r ( q ) < 

u — p <u — r, whence r — Jr(q) = Jr(r — Jr(q)) = 0, i.e., r = J r(r/) . Therefore, 
J
r(

u "" ?) = ^r(^) ~~ ^r(^) = r - r = 0, so u- q <u-r, i.e., r < q. 
By symmetry, (ii) <£=-> (iv). 
Finally suppose conditions (i)-(iv) hold and let r := Jp(q) • Then r G P with 

r < P. By Theorem 5.4, Jpo Jq = Jqo Jp = Jr and r = Jq(p) <p,q.lieeE 
with e < p, q, then e = Jp(jq(e)) = Jr(e) < r , so r is the greatest lower bound 
of p and q in E, hence also in P . • 

5.7. COROLLARY. P is a Boolean algebra if and only if p G C(q) for all 
p,qeP. 

There are orthomodular posets in which the pairwise compatibility of finitely 
many elements does not imply their joint compatibility, i.e., the elements need 
not lie in the same Boolean subalgebra. As a consequence of Theorem 5.4, it is 
not difficult to see that this anomaly cannot occur in the orthomodular poset P 
of projections in a compressible group. 

5.8. LEMMA. Let p,q G P with q < p, and let h G Jp(G) with 0 < h. Then 
Jq(h) = h <=-=> Jp_q(h) = 0. 

P r o o f . As g < p , we have p — q G P by Corollary 5.2(iv). Also, p — q 
< u — r/, so Corollary 5.5 implies that Jp_ = J o Ju_ . Therefore, if 
Jq(h) = /i, then Jp_q(h) = Jp_q(Ju_q(h)) = Jp_q(0) = 0. Conversely, suppose 
that Jp-q(h) = 0. As h G Jp(G), we have Ju_p(h) = 0. Thus, with s := p - q 
and t := u — p, we have s, t, s-\-t=u—q G P with Js(h) = Jt(h) = 0, and it 
follows from Corollary 5.3 that Ju_q(h) = 0, so J (h) = h. • 

5.9. THEOREM. Let G be a compressible group, let p G P, and let H := J (G). 
Then, with the induced partial order and with p as a unit, H is a compressible 
group, and the set of projections in H is P(H) =- {q G P : q <p) . If q G P(H), 
then the compression on H with focus q is the restriction J Iff to H of the 
compression J on G, and J \JJ o J = J 

P r o o f . By Lemma 2.4, H is a unital group with unit p. Suppose q G P 
with q < p. Then Corollary 5.5 implies that J o J = J o J = J . Therefore, 
if h G H, then Jp(Jq(h)) = Jq(Jp(h)) = Jq(h), whence Jq(h) G H. Therefore, 
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the restriction Jq\n is a group endomorphism on if, and it is clearly order 
preserving. As p = q + (p - q) and p-q<u-q,we have Jq(p) = Jq(q) + 

Jq(P ~ <l) = Q + 0 = q, whence Jq\jj(p) = q < p. If e e H with 0 < e < q, 

then J \jj(e) = J'(e) = e, and it follows that Jq\fj is a retraction on H with 
focus q. Evidently, Jq\fj o Jp = Jq. 

Suppose I is a retraction on H with I(p) = q. Then q e H with 0 < q < p 
and by Lemma 2.4, IoJ = J so q G P. Furthermore, IoJ = J = Jq\}joJ 
and since H = Jp(G), it follows that I = Jq\jj. In particular, each retraction 
on H is uniquely determined by its focus. By Corollary 5.2 (iv), p — q G P 
with p — q < p, whence Jp_q\ff is a retraction on H. By Lemma 5.8, Jq\fj 
and Jp-q\g are quasicomplementary retractions on H, so H is a compressible 
group with unit p. • 

5.10. THEOREM. Let G be a compressible group and let p G P. Then, with the 
induced partial order, C(p) is a compressible group with unit u. Furthermore, 
P(C(p)) = C(p)C\P, and for q G C(p)r\P, the compression on C(p) with focus 
q is the restriction Jq\c(v) °f ^Q ^° C(p)-

P r o o f . By Lemma 4.2(iv), C(p) is a unital group with unit u. Suppose 
that I is a retraction on C(p) with focus q := I(u) G E(C(p)). With s := 
Jp(q) _̂  P a n d t := Ju_p(q) < u - p, we have q = s +1. Let h := p - s and 
k :=u— p — t , so s + t + h + k = u with s,t,h,k £ C(p). Then h + k = u — r/,so 
I(h + k) = 1(h) + I(k) = 0, and since 0 < 1(h),I(k), we have 1(h) = I(k) = 0. 
As Jp(G) C C(p), we can form the composition (/ o J ) : G -r G. Evidently, 
IoJ is an order-preserving endomorphism on G and (I o Jp)(u) = I(p) = 
I(s + h) = I(s) + 1(h) = I(s) = s, the last equality following from the fact 
that 5 G C(p) with 0 < s < q. Suppose e G E with e < s. As 5 < p ,g , 
we have 0 < e < p, q, whence (i" o Jp)(e) = 1(e) = e, and it follows that 
IoJ is a retraction on G with focus s. Therefore, 5 G P and I o J = Js. 
A similar calculation shows that t £ P and 7 o J u_ = J r As p , s , t E P , we 
have q = s + t G P , h = p- s e P, and fc=(u-p)-£G-P.If#G C(p), 
then /(<?) = 7(Jp(g) + J t t_p(_)) = (I o Jp)(g) + ( / o Ju_p)(g) = J3(g) + Jt(g). 
Consequently, I is uniquely determined by its focus q. 

Since Jp(q) = s G P and s < q, Theorem 5.4 implies that Jp° Jq = Jqo Jp. 

Likewise, since Ju_p(q) = t G P and t < g, we have Ju_p o Jq = J g o J u _ p . 

Consequently, if g G C(P), then Jq(g) = Jq{Jp(g) + Ju_p{g)) = J p ( J g (g ) ) + 

Ju_p(Jq(g)), whence Jg(^) E C(p). Therefore, the restriction ^JcYp) °^ ^g t o 

C(p) maps C(p) into C(p), and it is obviously a retraction on C(p) with focus q. 
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By the uniqueness established above, I = Jq\c(y)' Similarly, Ju-q\c(v) ls a 

retraction on C(p), and it is clear that I and Ju-q\c(v) a r e ( l u a s i c o m p l e m e n t s -
D 

If G has the general comparability property and p G P , it can be shown 
at the compressible 

inherit this property. 
that the compressible groups Jp(G) in Theorem 5.9 and C(p) in Theorem 5.10 

6. The projection-cover property 

A Rickart C*-algebra (respectively, an AW*-algebra) is a C*-algebrain which 
the right annihilator of each element (respectively, each subset) is a principal 
right ideal generated by a projection ([13]). If .A is a Rickart C*-algebra, an 
AW*-algebra, or a von Neumann algebra with unit 1, then the compressible 
group G(A) of self-adjoint elements in A has the projection-cover property as 
per the following definition. 

6.1 . DEFINITION. If e G F, then a projection c G P is called a projection 
cover of (or for) e if and only if, for all p G P, e < p ^=> c < p. If e G E has a 
projection cover c, it is uniquely determined by e and is denoted by 7(e) := c. 
A projection p G P is a Sasaki projection if and only if, for every q G P , Jp(q) 
has a projection cover denoted by 4>p(q) := l(Jp(q)). If p is a Sasaki projection 
in P , then (j) : P —> P is called the Sasaki mapping for p. If every projection 
p G P is a Sasaki projection, then the compressible group G has the Sasaki 
property. The compressible group G has the projection-cover property if and 
only if each e G E has a projection cover 7(e). 

The projection-cover property is closely related to the sharp domination prop­
erty for effect algebras ([11]). In fact, for a compressible group in which every 
sharp element is a projection, the two properties are equivalent. It can be shown 
that, if G is archimedean, G has the general comparability property, and P sat­
isfies the ascending chain condition, then G has the projection-cover property. 
Also, if G has the projection-cover property and p G P , then the compressible 
groups Jp(G) in Theorem 5.9 and C(p) in Theorem 5.10 inherit this property. 

6.2. LEMMA. Let p,q,r G P and suppose that p is a Sasaki projection. Then: 

(i) Jp(q)<$p(q)<p. 
(ii) q<r = » (j)p(q) < (j)p(r). 

(iii) q<p <^> (j)p(q) = q. 

(iv) (j)p(u - (j)p(q)) = Jp(u - (j)p(q)) =p- (j>p(q) <u-q. 
(v) r + Jp(q)eE <=> q + Jp(r)eE. 
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(vi) <t>p(q) <r <=> q<u- <j)p(u - r). 
(vii) The greatest lower bound of p and q in P exists and is given by p/\q = 

0p(u - <l>p(u - g)) = JP(U- <t>P(u ~q))=p- <t>P(u - ?) • 

P r o o f . 
(i) As Jp(q) G E with Jp(q) < p G P , we have Jp(q) < l(Jp(q)) < P. 

(ii) If q < r, then Jp(q) < Jp(r) < (j>p(r) G P , so <j>p(q) = l(Jp(q)) < <j>p(r). 
(iii) H q < V-> then Jp(q) = q, whence <j)p(q) = l(q) = q, and the converse 

follows from (i). 
(iv) Define t := u - (j)p(q) and 5 := <j)p(t). Then t,s G P , and by (i), 

5 < p. By (i) again, (£p(g) < p, so Jp(t) = p - cj)p(q). Also, by Corollary 5.2(iv), 
Jp(t) =P~ <t>p(Q) € -P, whence * = l(Jp(t)) = Jp(t) =p- (j>p(q). 

By (i), Jp(q) < (t>p(q) = u-t, whence Jt(Jp(q)) = 0. As (j)p(q) < p, we 
have (j) (q) G C(p), and it follows that t = u - (j)p(q) G C7(p). Therefore, by 
Theorem 5.4, Jp°Jt = Jt°Jp is a compression with focus Jp(Jt(u)) = Jp(t) = s. 
Consequently, Js(q) = Jt(

J
p(q)) = 0, so q<u-s, i.e., s <u-q. 

(v) r + Jp(q)eE = » J p ( < l ) < u - r = * 0p(q) = l(Jp(q)) < u - r =-==> 
r < u- (j)p(q). By (i), (ii), and (iv), r < u - <j)p(q) => Jp(r) < (j)p(r) < 

<I>P(U - ^P(?)) < ^ - g = > ? + Jp(r) < u => q + Jp(r) G E. Thus, 
r + J (q) e E ==> q + Jp(r) e E, and the converse follows by symmetry. 

(vi) By (v) with r replaced by u - r, we have Jp(q) < r <(=--> Jp(u - r) < 
w - f/, whence 0p(g) < r <̂ => <£p(u - r) < tz - g 4=> q<u- (f)p(u - r). 

(vii) Let 5 := ^p(tx " <t>P(u " Q)) • B y (iv), s = Jp(u - 4>p(u - q)) = p -
<l> (u - q) < u- (u - q) = q, and it is clear that s < p. Suppose r e P with 
r <p,q. Then by (iii), r = (j)p(r) < q, so by (vi), r < u - c/)p(u - q), whence 
r = (j)p(r) <(j)p(u- (/)p(u -q))=s. Therefore, s=pAq. • 

The condition in Lemma 6.2 (vi) implies that the Sasaki mapping </>p is resid-
uated ([3]). 

6.3. THEOREM. Let G have the Sasaki property. Then P is an orthomodular 
lattice and, for all p,q€ P, (f)p(q) = p A (q V (u - p)). 

P r o o f . By Corollary 5.2 (iii), and Lemma 6.2 (vii), P is an orthomodular 
poset in which every pair of elements has a greatest lower bound, hence P 
is an orthomodular lattice. We omit the straightforward proof that (j>p(q) = 
p/\(qV (u-p)). • 

If .A is a unital von Neumann algebra and e G E(A), then the projection 
cover 7(e) commutes with every element of A that commutes with e, hence 
it commutes with every projection that commutes with e. For a compressible 
group 6?, we have the following analogous result. 
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6.4. THEOREM. Suppose that G has the projection-cover property, and let 
e e E. Then, for every peP, e G C(p) => 7(e) G C(p). 

P r o o f . Assume that e G E, p G P , and e G C(p). Then e = e1+ e2 with 
ex := J (e) < p and e2 := Ju_p(e) < u — p. Therefore, ex < 7(ex) < p and 
e2 < 7(e2) < u — p, so e = ex + e2 < 7(eJ + 7(e

2) < u- By Theorem 5.1, 
7(ex) + 7(e2) G P , and it follows that 7(e) < 7(ex) + 7(e2). Also, e l5e2 < 
e < 7(e)j whence 7(ei)>7(e

2) < 7(e)- But 7(e) is a principal element of E, so 
7\ei) + 7(e2) — 7( e) ' a n d therefore 7(e) = 7(eJ + 7(e2). As 7(e-_) < p and 
7(e2) < u — p, it follows that 7( e i ) ,7( e

2) £ C(p), and therefore 7(e) G C(L>). 
n 

If At is a field of subsets of the nonempty set X, then F(X, M.) in Exam­
ple 3.7 is a compressible group in which every effect is a projection. Conversely, 
we have the following theorem: 

6.5. THEOREM. Suppose that G is a compressible group in which every effect 
is a projection. Then E = P is a Boolean algebra. Furthermore, if X is the 
Stone space of P and M is the field of compact open subsets of X, then there 
is a unital isomorphism from G onto F(X,M). 

P r o o f . Assume the hypotheses. Then P = E, G has the projection-cover 
property, every element in E being its own projection-cover. In particular, G has 
the Sasaki property, so by Theorem 6.3, P is an orthomodular lattice such that, 
for p,qeP,pAq = Jp{u-Jp(u-q)) = p-p + Jp(q) = Jp(q) = p/\(qV(u-p)) . 
Consequently, P = E is a Boolean algebra and p A q = Jp(q) = Jq(p)> By 
Corollary 5.6, we have p G C(q) for all p, q G P = E. Since evefy element g G G 
can be written as a finite linear combination of elements of P = E with integer 
coefficients, it follows from Lemma 4.2 (i) that G = C(p) for every p G P. 

m 

Let g e G and write g as g = ^ X^e- with ex, e 2 , . . . , em G E = P and 

A G Z for j = 1,2,..., m. Let B be the Boolean subalgebra of P generated 
by e., j = 1,2, . . . , r a . Since a finitely generated Boolean algebra is finite, it 
follows that every element in B can be written uniquely as a least upper bound, 
hence as a sum, of the atoms px,p21.. .,pn in B. In particular, each e. can be 

n 

so written, and it follows that there are integers OLie'L such that g = ^ ocipi. 

Let I := {i : 1 < i < n , 0 < a{} and p := £ p . . Then, p G P , 0 < Jp(g), 
iG1 

and Ju_p(g) < 0, so G has the central comparability property. Consequently, 
by Theorem 4.9, G is lattice ordered, so G is a unigroup. 
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Let X be the Stone space of the Boolean algebra E, let M be the field of 
compact open subsets of X, and form the lattice-ordered archimedean unigroup 
F(X,M) (Example 3.7). Then there is a Boolean isomorphism 0 from E onto 
E(F(X,M)) and, since both G and F(X,M) are unigroups, (j) can be extended 
to a unital isomorphism from G onto F(X, M). • 
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