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cx -WEDGE AND WEAK CX -WEDGE FK-SPACES 

ILHAN DAGADUR 

{Communicated by Eubica Holá) 

ABSTRACT. In this paper we study the (weak) Cx-wedge FK-spaces for Cx 

methods defined by deleting a set of rows from the Cesaro matr ix Cx and give 
some characterizations. We also apply these results to summabili ty domains. 

1. Introduction and notation 

In Section 1 we introduce the notation and terminology while in Section 2 
we study the CA-wedge and weak CA-wedge FK-spaces, some characterizations 
related to these spaces and compactness of the inclusion mapping are found. In 
Section 3 we give some applications of results given above to general summability 
domains. Also some important applications are obtained for some particular 
summability domains. 

Let E be an infinite subset of N and consider E as the range of a strictly 
increasing sequence of positive integers, say E = {Hn)}n=zl • The Cesaro sub-
method Cx is defined as 

A(n) 
{C*x)n = XR5>* (n=l,2,...), 

where {xk}
<£Ll is a sequence of a real or complex numbers. Therefore, the 

CA-method yields a subsequence of the Cesaro method Cx, and hence it is regu
lar for any A. Cx is obtained by deleting a set of rows from Cesaro matrix. The 
basic properties of CA-method may be found in [1] and [11]. 

Let w denote the space of all real or complex-valued sequences. It can be 
topologized with the seminorms pn(x) = \xn\ (n — 1,2, . . . ). Any vector sub-
space X of w is a sequence space. A sequence space X with a vector space topo
logy r is a K-space provided that the inclusion map i: (X,T) —> w, i(x) = x, 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 46A45; Secondary 47B37, 40H05. 
K e y w o r d s : FK-space, CA-wedge FK-space, weak CA-wedge FK-space, CA-summability 
method, matr ix mapping. 
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ILHAN DAGADUR 

is continuous. If, in addition, r is complete, metrizable and locally convex, then 
(X, r ) is an FK-space. So an FK-space is a complete, metrizable locally con
vex topological vector space of sequences for which the coordinate functionals 
Pn(x) = xn, (n = 1 ,2 , . . . ) are continuous. An FK-space whose topology is 
normable is called a BK-space. The basic properties of FK-spaces may be found 
in [13], [14] and [16]. 

By c, c 0 , f ° ° we denote the spaces of all convergent sequences, null sequences 
and bounded sequences, respectively. These are FK-spaces under ||x|| = sup \x-\. 

3 EN 
£p, 1 < p < co, is the space of all absolutely p-summable sequences, 

cs = \ x e w : J2 x, exists > 
1 j = l J 

is the space of all summable sequences, and bs is as the following 

bs = \ x e w : sup I Y xj I < °° f • 
^ ken j=i J 

As usual, ll is replaced by L The sequence spaces 

r 1 A(n) . 
<70(A) = \ x e w : lim —— £ x- = 0 \ 

u I n->co \[n) j-i J ) 

and 

h(X) = \ x e w : lim x- = 0 and £ X(j) \AxA < oo \ 
I j->co J j = 1

 J ) 

are BK-spaces with the norms 

A(n) 
• „ 1 
I L /u = SUp , . ч 1 Mffo(A) П Є ^ Л ( П ) 3 

=i 

and 

xWutw = X ] A ( ^ l A : r j l + sup l.r̂ -1 
3 = 1 

respectively, where Ax- = x- — x,+l. Also, bo and bt)0 can be shown as the 
following 

bXi=\xew: Y, \Xj - xj+l\ < oo> , bt)0 = bt) H c 0 

(see [3], [4], [6] and [7]). 
Throughout the paper, e denotes the sequence of ones, i.e., e = ( 1 , 1 , . . . 

. . . , 1,...); 8J' (j = 1, 2 , . . . ) the sequence (0, 0 , . . . , 0,1,0,...) with the one in 
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the j t h position; (j) the linear span of the (P 's. The topological dual of X is 
denoted by X1. A sequence x in a locally convex sequence space X is said to 
have the property AK if x^ —» x in X, where x^7^ = (x 1 5 x 2 , . . . , xn, 0,...) = 

77, 

J2 xkS
k. Let z — { z j } ^ ! G u> be such that z- / 0 for every j = 1, 2 , . . . . Then 

oo 

is an FK-AK space with norm |k|lv 0( 2) = S \zj\ \^xj\ ([7])- We recall (see [7]) 
j=i 

that the /3-dual of a subset X of w is defined to be 

{ OO N 

yEw: J2 xjVj converges for all x e X> 
= {y e w : x • y G cs for all x G X } . 

For example <r0 = h with /i := <x e w : Yl j \Ax-\ < oo and x e c0> 
(see [4] and [6]). l i=1 J 

Following B e n n e t t [3] we say that a K-space (X, r ) containing 0 is a weak 
wedge space if (P -» 0 (weakly) in X . It is a wedge space if (P —>• 0 in X . I n c e, 
in [8], continued to work on Cesaro wedge and weak Cesaro wedge FK-spaces 
and to give some characterizations. 

2. Cx -Wedge FK-spaces 

In this section, the concept of CA-wedgeness for an FK-space X containing 
(j) is defined, and some characterizations related to this space and compactness 
of the inclusion mapping are studied. 

DEFINITION 2.1 . Let (X, r ) be a K-space containing (j) and 

9 (A(n) ) i A < n ) 
n Є 

џn := ~ X(n) 2^S ~ { A(n) ' A(n) ' " ' * > A(n) ' 0 ' ' ' j ' v1) Л(n) Л(n) fc=1 

Л(n) 

If //n -> 0 in X , then (X, r ) is called a Cx-wedge space] and if /in -> 0 (weakly) 
in X , then (X, r ) is called a Hjeak Cx-wedge space. 

We shall now present several examples of CA-wedge FK-spaces which are 
not wedge space. For example c, c0,£°°, brj, bn0, and lv (p > 1) are CA-wedge 
FK-spaces, but these are not wedge spaces. Also, bu0 is weak CA-wedge space 
but not wedge space. 
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Let s = {sn}n
<

=1 denote throughout a strictly increasing sequence of non-
negative integers with s2 = 0. Let c|s|(A) designate the space defined by 

r Sn+1 >! 

c|s|(A) = \x G c0 : sup £ A(j) \AxA <oo . 
^ n€Nj=, n +l J 

Then c|s|(A) is a FK-space under the norm 
•Sn + l 

WXWc\s\(X) = SUP J2 Xti)\Axj\-
n G N j = . n + l 

Also, it is obvious that h(X) C c\s\(X) C c0 C £°°. 
z™ 

LEMMA 2.2. Let lim TTT = 0 for n = 1, 2 , . . . . T/ien £IWe exists z E w with 

lim T̂ W = 0 such that lim -1- = 0 (n = 1,2,...). Moreover, for any such z, 
j —>oo A ^ ' j->oo * i 

we get 
oo 

WcflW-
n = l 

The proof uses the same technique as in [3] and [8], therefore it is omitted. 
Now we give the sufficient conditions for an FK-space X to be a CA-wedge 

space. 
LEMMA 2.3. Let X be an FK-space and sup A$ffl < oo. Consider the fol
lowing propositions: nGN 

(i) VQ(z) C X for some z G w such that z- = o(A(j)) ; 

(ii) X contains c|s|(A) for some s. and the identity map 

J: (c|.5|(A), || - ||cI,,(A)) -> (-X-,T) 

is compact; 

(iii) h(X) C X, and the identity map I: (/i(A), || • ||ci5i(A)) —> (X,r) is com
pact; 

(iv) (X, r) is a Cx-wedge space. 

Then (i) = » (ii) => (iii) = > (iv). 

P r o o f . 
(i) -=-> (ii): Let sx = 0 and s = {sn : n > 1} denote a strictly increasing 

sequence satisfying J^4 < ^ , j > sn (n = 1,2,... ). Let x G c|s|(A). Suppose 
t,m G N, £ < ra. Then 

•S-n + 1 m - 5n + l 771 -

E KH A ^I<E™ E A0-)l^l<INIcM(A)E^> 2n Z—̂  ^ " ,7• — •• "qsңл; Z--/ 2n 

j = 5 t + l П = ť j = 5 n + l П = ť 
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hence x G V0(z). So c|s|(A) C X. Let now K C c|s|(A) be such that | |^ | | c i 5 | (A) 
< M for all x G K. For sn < m < sn+1 and x G K, 

--V 
j = m - | - l 

OO S . + l OO ^ 5i + l OO .. 

<E E Ы I A ^ I < E Ӯ E ^ I ^ ^ I N І Ф I W E Ӯ 
І = П j = Si + l І = П j = Si + l i = n 

co 

- M E oi "̂  ° (uniformly)-2 
2 = n 

Hence, the convergence with respect to topology of the space V0(z) is uniform 
on K. On the other hand, since V0(z) is AK-space by [3; Lemma 2], we find 
that K is r-relatively compact. 

(ii) = > (iii): Since h(\) C c|s|(A), by [9; Proposition 3.1] the identity map 
from h(\) into c|s|(A) is continuous, hence (iii) follows from (ii). 

(iii) = > (iv): Since sup x(n)
 < °°» ^ r s t observe that ip := {lxn : n = 

nGN ^ ; 

1,2,...} is a bounded subset of h(\) and so it must be relatively compact in X. 

Therefore, it is easy to see that, for each i, p^71) = w^r if i < A(n), and 0 if 

i > \(n). Hence, for each z, p^fi71) —r 0 as n -» oo. Now [9; Theorem 2.3.11] 

implies that \in -+ 0 in (X, r ) , giving (iv). • 

Using the fact that the space z~l • X = {x £ w : z • x G -X} is an FK-space 
([14]) one can get immediately the following: 

LEMMA 2.4. Let (X, q) be an FK-space with (j) C X and z e w, then z l • X 
( A ( n ) ) 

AW" is a Cx-wedge space if and only if -̂r-— > 0 m K. 

P r o o f . 

Sufficiency: Consider [14; Theorem 4.3.6] to obtain the seminorms of z~l X. 

Hence it easy to see that, for each i, p^71) = jr^r if i < \(n), and 0 if i > \(n). 

Thus we have for each i, that p^fi71) ~+ 0 as n —> oo. Also, 

A(n) 

as n - ) o o . Лtø") = Ф ' M") = (щ E ****) "• ° 

D 
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THEOREM 2.5. If z G o~0(\), then z$ is a Cx-wedge FK-space. 

{ OO -N 

x : £ xkzk c o n v e r g e s f is an FK-space under 
k=i J 

the topology given by the seminorms 
V (x) = \x I 

([14]). Observe that 

n=l,2,...] 

Pniť 
- A( 

and PQ(X) 

í?у > n< Л ( r ) > 

sup 
m Є N 

E 
Ä = l 

ZkXk 

0, n > A ( r ) . 

Hence, for each n , pn((^
r) - ) 0 as r 4 oo. Now a few calculation yields 

By hypothesis, since z G cr0(A), choose that p0(fi
r) = max TT^J E -

l < m < A ( r ) ^ ; I A ; = 1 

an index sequence ( ^ ) n G N such that -^M- > 2N and for each \(v) > vN, 

AM 

/ c = l 

Let A(r) > vN; then for an arbitrary jV > 2, 

Mr) 

1 
Л(i/ 

(i) m = A(r), 

(ii) m < z/дr,!, 

ì 
Л(r) E ** 

k=l 
< 2 -ŻV . 

m 1 
Л(r) m 

m 1 

X > J < 2 - " s u p i £ г f c 

k=l ' m Є N k=l 

(Hi) v i ^ w x M ' - ) . ^ \ Z h 
J l k=l 

Hence, since 

p0(џr) = max<J sup фr £ zk 
^m<ľN^^ I fc = l 

< 2 - ( / v - i ) _ 

£ % 
fc=i 

Л(r) 

Л(r) 

T.Ч 
k = l 

D 

sup w 
i v 7 V _ 1 < m < A ( r ) 

this proves the theorem. 

COROLLARY 2.6. The intersection of all (weak) Cx-wedge FK-spaces is h. 

P r o o f . Let the set of all (Cx-wedge) CA-wedge FK-spaces be (T(C X )) 
F ( C A ) . Since every ^-wedge FK-space is CA-wedge, we get T(C 1 ) C T(CX). 
Also, 

f]{X: XeT(C,)}cf]{X: XeT(Cx)}. 

On the other hand the intersection of all (weak) Cx -wedge FK-spaces is h in [8]. 
Hence h C f]{X : X G T(CX)}. Therefore, we have 

hcf]{X: XeT(Cx)}cf){zP: z G a0} = Of = h, 

thus the result. D 
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THEOREM 2.7. 

(i) An FK-space that contains a (weak) Cx-wedge FK-space must be a (weak) 
Cx-wedge FK-space. 

(ii) A closed subspace containing <j) of a (weak) Cx-wedge FK-space is a 
(weak) Cx-wedge FK-space. 

(iii) A countable intersection of (weak) Cx-wedge FK-spaces is a (weak) 
Cx-wedge FK-spaces. 

The proof is easily obtained from elementary properties of FK-spaces (see, 
e.g, [14]). 

THEOREM 2.8. 

(i) If X is a Cx-wedge space, then X n (bs \ cs0) is non-empty. 

(ii) If X is a Cx-wedge space, then X D (cs\ £) is non-empty, where 

cs0 = {x : £ Xj = o} . 

P r o o f . 
(i): It is clear that cs is not (7A-wedge, and hence, by Theorem 2.7 (i), nor is 

csDX. Theorem 2.7(ii) implies that c s n X is not closed in X. Thus we consider 

the one-to-one and onto mapping S: X -» F , Sx = ( x 1 , x 1 +x2,..., J2 xk> • • •) 

([9] and [3]). Hence S ( c s n X ) = cDY is not closed in Y. If cflY is not closed 
in Y, then c0 is of codimension 1 in c so it follows from [2] that c0 H Y is not 
closed in Y. Therefore, by [12; Corollary 1], YD (£°° \ c 0 ) is non-empty. We have 
that S'1 (Y n (£°° \ c0)) is non-empty. Moreover, since S~l (Y n (£°° \ c0)) = 
Ar n (bs \ C50), we get X D (bs\ cs0) is non-empty. 

(ii): Since £ is not a (7A-wedge space, then by Theorem 2.7(i), £D X is not 
CA-wedge space, too. Hence, Theorem 2.7(ii) implies that £ n X is not closed 
in X . Therefore, by [2; Theorem 2(i)], X n (cs \ £) is non-empty. D 

THEOREM 2.9. 7/ X zs a Cx-wedge space, then X n bs is a non-separable 
subspace of bs. 

P r o o f . Since cs is not a CA-wedge space, then by Theorem 2.7(i), cs n X 
is not a (7A-wedge space either. Theorem 2.7(ii) implies that c s n X is not closed 
in X. Therefore, S(cs n X) = c n Y is not closed in Y. Hence [2; Theorem 8] 
implies that the space £°° HY is a non-separable subspace of £°°. In this case 
we claim that the space S"1 (£°° n Y) = bs n X is a non-separable subspace of 
5 , _ 1 (£°°) = bs. To see this, suppose that bs D X is a separable subspace of bs. 
Then there exists a countable set K, C bs(~)X such that Rb*nX = bs n X . Thus, 

S(«) c 5(b5 n X) = s(r,b5nx) = (̂ °° n Y) n 5(rxb5). 
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However, since Rbs C Rl°° , then S(Rbs) C S(R£°°) therefore, we get 

t°°nY 

r n y - - s(«) 
Since S(K) is countable and £°° PiY is dense in the topology of £°°, then it is 
a separable subspace of £°° , which is a contradiction. This completes the proof. 

• 
THEOREM 2.10. Let X be an FK-space and sup A\A,^;J < oo. If h(X) C X. 

nEN l n j 

and £/ie identity map I: (/i(A), || • \\hf\\) —> (X,r) is weakly compact, then X is 
weak Cx-wedge space. 

P r o o f . Suppose that h(X) C X and I: (h(X),\\ • \\h^) -> (X,r) is weak 

compact. Since sup x( \ < oo, ip := {lxn : n = 1, 2, . . .} is a bounded subset 
n<EN W 

of /i(A) and it is a(X:X') -relatively compact. Observe that p^71) = ^ y if 
i < A(n), and zero if i > X(n). Hence, for each z, p^(lxn) —r 0 as n -» oo. The 
same is also true in a(X, X') by [9; Theorem 2.3.11]. This proves the theorem. 

D 

THEOREM 2.11. Let X be an FK-space with </> C X and z G w, then z~l X 
is a weak Cx-wedge space if and only if z

x<n\ > 0 (weakly) in X. 

P r o o f . 
Necessity: Let / G (z~l-X)'.By [14; Theorem 4.4.10], / G (z~l • X)' if and 

only if f(x) = ax + g(z • x), cY. G (/>, g € X'. Also, 

,o(M™)) / i i i 

Tn ._ ( n\ _ £ _ l _l 1_ 1 Q 

-{xk)~ A ( n ) - ^A(n) ' A ( n ) ' ' " ' A ( n ) ' U ' " ' 

Hence we get that 
f(xn) = axn+g(z-xn) 

k=i 

X(n) ) 

+,(*£"ť) = < 

лfe £ ak , p < Л(n 
fc=l 

A(n) 

r̂ y £ ttfc > P > A W 
^ л < n ) , = i 

(2) 

/ A(n) \ 

Therefore, for each / G ( z - 1 • K)', /( ^ £ <5fc J -> 0 as n -> oo, which 

proves the theorem. 
Sufficiency is trivial by (2). D 
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3. Summability domains and applications 

In this sections we give simple conditions for a summability domains EA to be 
(weak) CA-wedge. We shall be concerned with matrix transformations y = Ax, 
where x.y G w. A = {a--}°°-_, is an infinite matrix with complex coefficients, 
and 

oo 

Vi = lLaiJX3 ( i = l ,2 , . - . )-
3 = 1 

The sequence {a- J}^= 1 is called the zth row of A and is denoted by a1 (i = 
1,2,.. .); similarly, the j th column of the matrix A, {a^}?^ is denoted by a? , 
(j = 1,2,... ). For an FK-space E, we consider the summability domain EA 

defined by 
EA = [x G u> : -4.r exists and Ax G -B} . 

Then i? A is an FK-space under the seminorms pn(x) == | x n | (n = 1,2,... ); 

tг-(x) = sup 
mЄN 

E%xj 
• 7 = 1 

( i = l , 2 , . . . ) and (q o Ä)(x) = q(Ax) 

([14] and [16]). 
The following theorem is an application of Lemma 2.3 to summability do

mains. 

THEOREM 3 .1 . Let E be an FK-space, A be a matrix and sup A(
A

A/n,)) < oo. 
nGN l ; 

Then consider the propositions below. 

(i) h(X) - EA, a1 € (T0(X) for all i > 1 and the mapping A: h(X) -» E is 
compact; 

( A(n) \ ( A ( n ) >| <*> 

(ii) £fte sequence defined by A ( ^4-r ^ <P) = < w -̂r ]T aij f for eac^ n 

belongs to E and converges to zero there; 

(iii) EA is a Cx-wedge space. 

Then (i) =-> (ii) ==> (iii). 

P r o o f . 

(i) = > (ii): Observe that 6j G /i(A) for all j , and since h(X) C F7A , we have 

a> =A(5i) eE for all j > \ . Since sup - ^ ^ < oo, ip := {/in : n = 1 ,2 , . . .} 
nGN l ' 

is abounded subset of h(X) and _4: h(X) -> E is compact, A(T/>) = {.A(/in) : n = 
1,2,...} is relatively compact in E. Thus, by [9; Theorem 2.3.11], A(fin) -> 0 
in uj implies that A(/in) - > 0 in F. 

The proof (ii) ==> (iii) is similar to Theorem 2.5 and hence is omitted. • 
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The following theorem is an application of Theorem 2.12 to summability 
domains. 

THEOREM 3.2. Let E be an FK-space, A be a matrix and sup Awffi} < oo. 
n£N 

Then consider the propositions below. 

(i) h(\) C EA, a1 G &0(\) for all i > 1 and the mapping A: h(\) -> E is 
weakly compact; 

( A(n) \ ( X(n) >|OO 

(ii) the sequence defined by A ( ^4-r ~2 $J ) ~ \ \k~ S %• ( for eac^ n 

V j=i / I j=i J 2=1 
belong to E and converge weakly to zero there; 

(iii) EA is a weak Cx-wedge space. 

Then (i) = > (ii) = > (iii). 

P r o o f . 
(i) = > (ii): Proceed as in the proof (i) = > (ii) of Theorem 3.1. 
(ii) .=> (iii): By [14; Theorem 4.4.2], / G E'A if and only if f(x) = 

oo 3 ( °° 
~2 ®kxk + g(Ax) for all x e EA, where a G wA = < x : £ ] x n y n converges 

fc=l l n= l 

for all y G wA >, and g e E'. Thus we get for each z G N 

7П 

| ax | < M sup 
mЄN 

= A//iť(.г), M > 0 . 

Therefore 
|a( lxn) | < Mht(fin) for all i > 1. (3) 

A(n) 

Since jr—- ~2 aij ~> 0 (weakly) in E for each i G N, and E is a K-space, we 
.7 = 1 

get 
M n ) NOO \ 1 A(n ( ( . A(n) . oo \ -. A(n) 

a s n —)• oo 

j=i ' * - • l / N ' j=i 

for each i G N. Hence as in the proof of (ii) = > (iii) of Theorem 3.1, 
/i-(/in) —> 0 as n —r oo for each z G N. Thus (3) implies that 

a(/i n ) -> 0 as n -r oo. (4) 

Also, 
/( l i n ) = a ( M

n ) + g(A(/In)) , a G v>\ , g G E ' . (5) 

By hypothesis, g(A([in)) -•> 0 as n —•> oo. Therefore, by (3), (4) and (5), 
/(/in) -» 0, for each / G 25^ as n -> oo. D 

Let A := {A(n)}^_ be an infinite subset of N and sup xr™\ < oo. Then 
~~ n£N 

we have some important applications. 
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COROLLARY 3.3. If 
A(n) 

W SUP JTn) E a n < °° (n = !»2> • • •) 
iGN v ; j = l 

A(n) A(n) 

lim ^ y ^ %• exists /Or eac/i n , respectively lim ^ - y ^ a • • = 0, 
j = i j=i 

A(n) 

(ii) lim sup ^4-y ]T %• — 0; ^ e n (^°°)A (CA> respectively (c0)A) is a 

Cx-wedge space. 

P r o o f . This is just Theorem 3.1, (ii) = > (iii), with E = £°° (c , respec
tively c0). D 

oo A(n) 

COROLLARY 3.4. If lim V -r-K- V a-- = 0 ; £/ien £A is a C^-wedge space. 
n->oo i _ 1

 Ayn> j = 1
 iJ / 1 

P r o o f . This follows at once from Theorem 3.1, (ii) = > (iii), with E = £. 
D 

Л(n) 

+ lim 
i—>oo 

Л(n) 

Л(nT E aгj 
І = l 

COROLLARY 3.5. // fcnj £ | ^ £ ( a y - a i + 1 , , ) 
V. I— 1 J — 1 

= 0. then (bx>)A is a Cx-wedge space. 

P r o o f . This is just Theorem 3.1, (ii) ==> (iii), with E = bb. D 

A(A(n)) PROPOSITION 3.6. Let A e (£,£;p) and sup Wn
)
)) < oo. Then £A is not 

nGN [U) 

Cx-wedge space. 

P r o o f . A e (£, £\ p) if and only if 
oo 

(a) sup J2 Kk\ < ° ° ; 
/ c G N n = l 

oo 

(b) E ank = 1 f o r all fc > 1 
n = l 

(see, [10; p. 189]). Hence we get the following 

oo 1 A(n) oo A(n) A(n) , oo v 1 A(n) 

-- ' Л(n) - - ' 
= i v ; j=i 

^ A ( r 
г = l x І = l j = l x i=\ j = l 

oo A(n) 

Therefore, ^ xfel E %• -^ 0 as n -» oo. Thus ^ A is not CA-wedge space by 
2 = 1 j = \ 

Corollary 3.4. D 
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