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ASYMPTOTIC BEHAVIOR OF SOLUTIONS 
OF GENERALIZED "FOOD-LIMITED" TYPE 
FUNCTIONAL DIFFERENTIAL EQUATIONS 

Y U J I Liu* — W E I G A O G E * * 

(Communicated by Milan Medved') 

ABSTRACT. Using a new method, we establish sufficient conditions which guar
antee every solution of generalized "food-limited" type functional differential 
equation 

At)+
{1+x{t)^rXx{t))F(tM-)r) = o, *>0, 

1 + A 

to converge to zero as t tends to infinity, where a > 1 is a ratio of two posi
tive odd integers. The results in [LIU, Y. J.: Global attractivity for a differential-
difference population model, Appl. Math. E-Notes 1 (2001), 56-64], [FENG, W.— 
ZHAO, A. M.—YAN, J. Y.: Global attractivity of generalized delay Logistic equa
tion, Appl. Math. J. Chinese Univ. Ser. A 16 (2001), 136-142] are generalized 
and improved. 

1. Introduction 

Recently, there was an increasing interest into the study of the solutions of 
functional differential equations because of its importance both for the theory of 
functional differential equations and its ecological applications. For example, [1] 
investigate the asymptotic behavior of the so-called "food-limited" type func
tional differential equation 

(l + x(t))(l-\x(t)) , , ^ 

*'(*) + " 4 T A F^ X('}) = ° ' * " ° ' (1) 

where A > 0, F(t,(f) is a continuous functional on [0,+oo) x Ct, Ct is the 
space of all continuous functions (f>: [g(t),i\ —r [— 1,-f-oo) endowed with norm 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34K15. 
K e y w o r d s : functional differential equation, "food-limited" type, asymptotic behavior, 
solution. 
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\\(f)\\t = sup |0(«s)|. g: [0,+00) -» R is a nondecreasing function and satisfies 
se[g(t),t] 

g(t) < t, g(t) —> 00 (t —•> 00). The following assumptions are set: 

(A) F depends only on the value of (j) on [g(t), t] , F(t, 0) = 0 and F fulfils 

-p(t)Mt(^) < F(t, 0) < p(t)Mt(<t>), t > 0 , ( i G C t , (2) 

where Mt((/>) = maxjo, sup (f)(s)\ , p(t) G C([0, +00), (0, +00)) . 
1 se[g(t),t] J 

(B) For every e > 0, there exists 77 = 77(e) > 0 such that if inf (j)(s) > c, 
then s e [ 9 ^ 

F(t,(j))>r)r(t), or F(t, -(/)) < -r]r(t), for l>0. (3) 

Let r = g(0). The initial value condition of equation (1) is 

x(t) = <t>(t), t e [ - r , 0 ] , (4) 

where (j) G C([—r, 0], [— 1, x))> ^(^) > —V It was proved in [1] that every 

solution of equation (1) tends to zero as t tends to infinity if 

+ 0 0 

r(t)dt = +oc, (5) 
/ 
0 

and 
1 

I 
g(t) 

p(s) d s < | ( l + Л), (6) 

for sufficiently large t. 

Equation (1) contains many ecological models as special cases. One may see 
[1], [2], [5], [6], [10]. However, it is easy to see that the following generalized 
"food-limited" type functional differential equation 

., x (1 + X(t))(l-Xx(t)) , x r / x i a 

At) +A 4TA——*>( ' )-*(•)] = °' * > °. (7) 
does not satisfy the condition (A) since F(t, 0) = p(t) [(/)(-)] and a > 1, where 
a is a ratio of two odd integers, A G [0, +00), g is defined in (1). Hence, the 
results in [1] cannot be applied to this equation. Equation (7) is deduced from the 
so-called "food-limited" type model, which was proposed in [2] as a generalized 
food-limited model in the form 

^'^^"(iVZ-r))"' '-°' <8) 
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where a , A, p(t) are defined in (7). Transformation —x(t) = i^x^t\ converts 

equation (8) into the form of (7). Equation (8), if a = 1, becomes 

which is called "food-limited" population model. This equation was studied by 
many authors, we refer the reader to [6]—[13] and the references therein. 

Recently, [3] studied asymptotic behavior of equation (8). It was proved that 
if AG (0,1], and 

+ oo t 

/ p(t) dt = +oo, lim / p(s) ds < 3Aa, (9) 
J t-̂ +oo J 
0 9(t) 

then every positive solution of equation (8) tends to 1 as t tends to infinity. If 
A £ (1,+co) , and 

+ oo t 

p(t)dt = +oo, lim p(s)ds<3, (10) 
J *->+oo J 
0 9(t) 

then every positive of equation (8) tends to 1 as t tends to infinity. 
The asymptotic behavior of the equation 

N'(t)=p(t)N(t)(l-N(t-r))a, t>0, (11) 

was studied in [4]. Transformation x(t) = N(t — T) — 1 converts equation (11) 
into the form 

x'(t) + p(t)(l + x(t))xa(t - T) = 0 , t>T. (12) 

+ oo 
It was proved that if f p(t) dt = +oo, and for sufficiently large /;, we have 

o 

} ( 1, ae [l,G(l)l , 
/ p(s) ds < h(a) = \ , \ (13) 

J W ~ ^ J I M(a), ae (G(l),+oo). V ' 
t — T 

Then every positive solution of equation (11) tends to 1 as t tends to infinity, 
where 

l n ( e * + l ) - l n ( 2 x ) (1, 1 < G(l), 
G ( X ) = 1 + ln(e--l) ' M{X) = \G-\X), X>G(1). 

It is showed that 0 < M(rj) < 1/2 + In 2 in [4]. 
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Motivated by papers mentioned above, it is of significance to study the asym
ptotic behavior of solutions of equation (7). The purpose of this paper is to 
improve conditions (9), (10) and (13). And these results also generalize and 
improve the results in [3], [4]. The proofs here are simple and the methods 
different from those in [1], [3], [4], 

For generality, we consider the following equation 

, , „ | + ( H - W ) ( i - M . ) ) f ( M i | . r ) g D i , £ 0 i (14) 

where a is defined in (7), F(t, <fi) is defined in (1), A is defined in (1). The main 
results are the following: 

THEOREM 1. Suppose that A G (0,1], (A) and (B) hold. In addition, for 

M = [2cra(l - u) a - 1(l + uУ"-1}-1, t* = o - v V - 1, 

if +00 

r(t)dt = +oo, (15) 

(16) 

/ 
0 

t 

limsup [ p{s) ds< §AfAa , 
t-+ + oo J -• 

9(t) 

then every solution of equation (14) tends to zero as t tends to infinity. 

THEOREM 2. Suppose that A G ( l , + o o ) , (A), (B) and (15) hold, and 

t 

limsup J p{s) ds< ^M. (17) 
t-> + oo J ^ 

9(t) 

Then every solution of equation (14) tends to zero as t tends to infinity. M is 
defined in Theorem 1. 

THEOREM 3. Suppose that there is S > 0 such that 

t +oo 

limsup / p{s) ds < 5 ( a ) , / p{s) ds = +oo , (18) 
t-> + oo J V CT — 1 / J 

9(t) 0 

and 
S 

Ы ) î_т(- M ) ( A Г 1 -iГ-ł 
* 2 

< 1 . (19) 

Then every solution of equation (11) tends to 1 as t tends to infinity. 
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Remark 1. By the definition of M, it is easy to see that if a > 1, then M > 2. 
Hence Theorems 1, 2 improve [3; Theorems A, B]. 

Remark 2. By (19), we see that if S = ( a ^ i ) a ~ 1 In 2 + \, then one gets 

6 

(M) ^тP-ł)(AГ"-'ГЧ 
a-1 

So 

tóГ=Ь2+|(ÄГ>ì+.n2. 
Thus Theorem 3 improves the results in [4]. The method here is different and 
simpler from that in [4]. 

2. Preliminary Lemmas 

LEMMA 1. Suppose that A E [0,1] and (A) holds. Then for the initial value 
condition (4) equation (1) has unique solution x(£;0,</>) which is defined on 
[0, +oo) and satisfies —1 < x(t\ 0, 0) < j . (If A = 0, then j = +oo.) 

LEMMA 2. Suppose that A E [0,1], (2), (A), (B) and (5) hold. Then every 
non-oscillatory solution of (14) approaches zero as t tends to infinity. 

LEMMA 3. Suppose that A E [0,1], (A) holds, and there is a positive number 
M such that for sufficiently large t 

t 

/ P(s) ds<M (20) 

9(t) 

is valid. Then every oscillatory solution of (14) is bounded below away from —1 
and is bounded above away from j , i.e. there are constants A > 0 and B > 0 
such that — 1 < A < x(t) < B < +oo for all t. 

The proofs of Lemmas 1, 2 and 3 are similar to those of [1; Lemmas 2.1, 
2.2, 2.3] and then are omitted. 
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LEMMA 4. The following inequalities 

(TT$r^-M*< **-0' (21) 

( i r S ) ^ - ^ ' ^ ° ' (22) 
(l-exr<-(^y~\, x<0, (23) 

fe
A - V l a 

( l - e * ) " ^ - 1 j x , , 0 < x < A (24) 

hold, where M is defined in Theorem 1, A is a positive parameter. 

P r o o f . We only prove (21) and (24), the proofs of (22) and (23) are exactly 
similar and therefore omitted. Let 

^ = M-X+{TT^T-
Then 

/'(x) = ^ - 2ae*(l - e^ r -^ l+ eaTQ-1. 

Again, let 

g(u) = u(l - u)a~l(l + u)-a~\ 

One has 

g'(u) = (1 - u)a~2(l + u)-a~2(u2 - 2au + 1). 

So g(u) has a unique maximum value point uQ = a — \fa2 — 1 in (0,1). If 
x < 0, then we get f'(x) > -^ - 2cm0(l - u ^ 1 ^ + ̂ 0 ) " a - 1 = 0. Thus (21) 
holds. 

Now, we prove (24). Let 

f(x) = (l-ex)a. 

Then f'(x) = -aex(l-ex)a~\ f"(x) = aex(l - ex)a~2(-l + aex). If 0 < 

x <A, then f(x) > -{eA ~ i r x since f"(x) < 0, f'(x) < 0. This completes the 
proof. • 

3. Proofs of Theorems 

P r o o f of T h e o r e m 1 . Suppose that x(t) = x(t\ 0, </>) is a solution of 
equation (14). By Lemma 1, x(t) exists on [0, +oo) and satisfies —1 < x(t) < \ 
for all £ > 0. By Lemma 2, every non-oscillatory solution tends to zero as t tends 
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to infinity, it suffices to prove that every oscillatory solution of equation (14) 
tends to zero. Let 

lims\ipx(t) = u, liminf x(t) = v. (25) 
t-^ + oo t-> + oo 

Then by Lemma 3, we have — l < v < 0 < u < j . For any positive number 
e < min{U + 1, j — u}, choose T sufficiently large such that 

í r(s)ds<ß + є)м\a, t>T, (26) 

g(t) 

and 

v1=v-e <x(g(t)) <u + e = u1, t>T. (27) 

It follows from (14), (A), (27) that 

Similarly, we get 

X'{t) > " ^ < , *>T.(29) 
(\ + x(t))(l-\x(t)) ~ 1 + A l 

Now, we choose increasing sequences { I ^ } ^ ! and {qn}n^=l such that 

g(pn) > T, x'(pn) > 0 , x(pn) > 0 x(pn) -> u , n^+oo 

and 

g(Qn)>T' x'(qn)<0, x(qn)<0, x(qn) -» v , n -+ +00 . 

From (A) and (14), there exist numbers £n and nn such that x(£n) — x(r7n) = 0 
and x(t) > 0 for * G ( £ n , p J and z(£) < 0 for * G (r7n,r/J. 

For s < £n , integrating (28) from 5 to £ n , we get 

VT / r(5) d5 

- * W < 1 _ e \ n • (30) 
v± f r(s) ds 

1 + A e -
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By (14), applying (30), we get for t £ [£ n , pJ 

x'(t) 
( i + 2 m ) ( i - ^ = -rTA f( '-M !*>)n 

< — — max<h, s u p [ - x ( s ) ] Q } 
1 + A I se[g(t),t] J 

= 7 — r max 0, sup [-x(s)]a \ 
1 + A l sC\n(t).í„] > 

< 
r(t) 

1 + Л 

/ *" \ Q 

' < / r(s) ás * 

£n 

1 - e 9( t ) 

i>5* J r(s) ds 

\ 1 + Ae 9(í) / 

< 
r(t) 

( 

(1 + Л)Л« 

v? f r(s) ď Л
a 

1 - e * ( t ) 

t,f / r(i) dí 
\ l + e "«> / 

í-(гда*"/rWds 

9(t) 

For * G [ £ n , p J , we have 

x'(t) 

(1 + »(*)) (1 - Xx(t)) 
< min< —UQ : Г(ŕ) 

(1 + Л ) ' (1 + Л)Л«M 
Г(t) l . , Q < /" r(s) ds j . 

S(í) 

Now, we consider two cases. 

C a s e i : J r(s) ds<M\a. 

Integrating (31) from £n to pn, applying (26), we get 

(31) 

ln 1 + XÍPn) < -T^J Jr(t) ír(s) ds 1 - Xx(p) - XaM J J w àt 

U g(t) 
Pn / t yn / l l \ 

= " Á S í / r W ( I r(s) ás - Ir(s) ds) dt 
ín \ ( í ) í„ ' 
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Pn t 

^ - A ^ / r W ( ( l + £ ) M A a - / r ( s ) d s ) d < 

s n £n 

Pn Pn t 

= -(\+e)v{j r(t) dt- ^ f r(t) j r(s) dsdt 

Zn tin £n 

Pn / Pn 

{l + e)fr(t)dt-^M\^fr(t)dt 
Sn Sn 

<-<{f\+e)MXa-^M\(MXaf) 
= -vaMXa(l + e). 

Case 2: / r(s) ds> MXa. 
£n 

Pn 

Choose sn e (£ n ,pJ such that J r(s) ds = XaM. Integrating (31), we get 

from (26) 

l n 1 + *(PJ 

< 

1 - A_(pJ 
Sn Pn ţn 

-vaf r(t) dí - -J^- І r(í) | ф ) ds dť 
ín 9(t) 

Sn Pn Pn t 

<-vafr(t)dt-^([\ + e)MXafr(t)dt-fr(t)fr(s)dsdt 
U Sn Sn U 

<-v«\ ír(t)dt- ( | + ^ M A a 

Un 
Pn v 2 / S n \ 2 

/"r(_) d_ j - í ÍTO) d.5 j i i 
MЛ Ö 2 

< -v° 
Sn / Pn Sn 

fr(t) dť - ( | + є)мXa - \ l fr(t) dt + fr(t) dt 

= -(l + e)MXava . 
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Then it follows that 

- Xx(Pn 

Let n —> +00 and s -> 0; we get 

1-Ax(»„) 

ln -i-t^- < -MXava . 
1 - Л Î Í 

(32) 

Then 

ua < -
1 - e -M\v° 

l + Xe-MXocv° 

If v -= 0, then i/ = 0. Thus the proof completes. If v / 0, then U < 0 . Thus by 
(21), we get 

1 / i _ e - M A v \ 1 1 

- Aa \ l + e - M A a ^ / A a M v ; 

On the other hand, if 5 < r/n, integrating (29) from s to rln, we get 

-x(s) > 
1 - e 

ul I r(s) d s 

W« / г(в) d5 

1 +Ae * 
Applying (A) and (22), we get for t G [rfn,qn 

x'(t) 

vit) ( 1 
> - - — — max^O, sup[x(s)] Q [ 

1 + A l *G\a(Í\.t\ J sЄ[g(t),t] 

r(t) 
1 + A - max ÍO, sup [ф)] a } 

^ c(Z\n( + \ П._l J 

sє[g(t),n 

> 

> 

r(t) 
1 + A 

/ Vn \ a 

( uf f r(s) ds \ 
1 - e a ( t ) 

i «? / r(s) ds 
\ 1 + Ae 9 ( t ) 

r(í) 
/ < 7 r(s) d s \ 

1 - e 5( t) 

Vn 

u<? / r(s) ds 
\ l + e *(t) / 

(1 + A)A« 

9(t) 
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Then by a similar fashion of Case 1, we get 

*'(*) 

g(t) 

Now, we consider two cases similar to those of Cases 1 and 2. We get 

(1 + *W)(1-Л*(t))
 ž maЧ-Æлr« • - W V ' ( ' ) Í Ф) 1'} • (33) 

i n ŕ^ l ! ) г - ( i + £ ) м A °<-
Let n -> +oo and є -> 0. r Гhen 

v > 
1 _ e - M A % a 

v > 
l + \e-M\«u<* ' 

By (22), one has va > —ua. Thus, combining ua < —va, we get ua < ua, a 
contradiction. The proof is complete. • 

P r o o f of T h e o r e m 2 . Let Ax(£) = — y(t), then (14) becomes 

y'(t) + I^I(l-\y(t))(l + y(t))F{t,^[y(-)]a)=0. 

Since 0 < j - < 1, we get Theorem 2 from Theorem 1. • 

P r o o f of T h e o r e m 3 . Let 1 — N(t) = —x(t), then (11) becomes 

x'(t) + p(t)(1 + x(t)) [x(t - T)]a = 0 , t>0. (34) 

Similar to the proof of Theorem 1, if x(t) is non-oscillatory, then from Lemma 2 
it follows that x(t) tends to zero as t tends to infinity. If x(t) is oscillatory, let 

l imsupx(t) = u , liminf x(t) = i>. (35) 

By Lemma 3, we have — l < U < 0 < , u < +co . Similarly as in Theorem 1, we 
have 

x'{t) <-P(tK, te[sn,Pn], (36) 
l + x(t) 

x'(t) 
l + x(t) 

>-p(t)u«, te[Vn,qn], (37) 

where £n , r/n, pn, g;n and £, n x , vx are defined similarly as in Theorem 1. 
Then, for t G [£n ,Pn] , integrating (36) from t — r to £ n , we get 

i ( l + æ ( ť - т ) ) > u ^ / p ( s ) d s . 
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We get 

t-T 

There are two cases to be considered. 

Casei: / p(s) ds < i^)"'1. 
£n 

Case 2: Jp(s) ds > ( ^ r ) " " 1 . 

Similarly to the arguments of Cases 1 and 2 in the proof of Theorem 1, all 
these cases imply that 

ln(l + - ) < - ( < * - | ) ( ^ T r T ^ - (38) 

If v = 0, then u = 0. This completes the proof. If v ^ 0, then v < 0. Since 
v G (—1,0), together with (38), we get 

u < e(
5~h)(^-T 1 - 1 . 

Choose T sufficiently large such that 

x(t-T) < e ( ^ - * ) ( ^ ^ ) a " 1 - 1 + 6, t > T . (39) 

On the other hand, from (37), we get for s < r?n, 
Vn 

u? f r(t) dt 
-x(s) > 1 - e i . (40) 

By (23) and (24), if 0 < e C ^ X ^ ) " - 1 + e, it is easy to prove 

where _4 = (6 - ^ ) ( ^ _ _ f ) a - 1- Hence 

2/a > - Л ^ ln(l + y) 

x , ŕ í ) ( e ( Ч ) ( A Г l _ 1 + £ Г 

l f | ) ---*>* ^ L_(l + x ( í -r ) ) 
(eíHK^Г1-!^)" }" 

> _и?_ _ __p(/) j p{s) d s. 
Í - Г 

Weget for te [vn,Q„], 

^ L > max{-_?p(.), - _ ? ( e ( , " i ) ( 5 ^ " 1 + £ rpwTp(^) dS}. (41) 
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GENERALIZED "FOOD-LIMITED" TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS 

We consider two cases. 

Casel: f p(s) ds < A (e(*" *)(;*-•)* ' - l + e) . 
Vn 

Case 2: f p(s) ds > Afe^6'^^^1 - 1 + eY*. 
Vn 

Similarly to Cases 1 and 2 in the proof of Theorem 1, it follows that 

Ml+*(</„)) 

> - U - i y A 2 ( e ^ - X s - T Y - l + e ) "Au* 

Let n -» +co and _ —> 0. It follows that 

ln(l + .) 

a-iJeNW-l)0 -
> - tø" 

( e ( г --) (=-тГ ' - i ) a A u a . 

Let ln(l + u) = x, ln(l + f) = H. We get 

^('-.jfer^-')"-
. > 

g r , ( Ѓ W - i ) ' ; 
U-IУ Л 2 ( e ^ - Ш ^ Г - i p d - e ^ 

By (23) аnd (24), we get 

S t~(M)(__тГ 1 Ч Q 

î / > г ( e ( ' - ł ) ( A Г - i ) 0 _ i] (eC-.îí---)-1-!)-^ (- ( e Д ; 1 ) a *) 

> -

-£_(e(.-è)(.-r)- -i)° - 1 ( ^ - i ţ - . p - W A ) - _i)-" 

І ^ t e Г - ' ) ' - i («-è)(-_т)",(1-^ 
>('-è)ié ( ' (- ł ) (* r '- l)-è(_-т) ( ^ ) »• 

It follows from H < 0 that 

t П l / a ч a - i ( e ( ' - - ) ( = - т Г x _ i ) в _ i 1 <('"_) K A ) л L 1 
This contradicts (19). The proof is complete. D 
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