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ERROR ESTIMATES AND 
THE VORONOVSKAJA THEOREM 

FOR MODIFIED SZASZ-MIRAKYAN OPERATORS 

ZBIGNIEW WALCZAK 

(Communicated by Michal Zajac) 

ABSTRACT. In this paper we introduce certain positive linear operators. We 
give theorem on the degree of approximation of functions from polynomial 
weighted spaces by introduced operators, using norms of these spaces . This note 
was inspired by the results given in author 's previous papers. 

1. Introduc t ion 

M. B e c k e r in his paper [1] studied approximation problems for functions 
/ G C , p G N0 := {0,1, 2 , . . . } , and Szasz-Mirakyan operators 

5 „ ( / ; x ) : = e — ^ ^ - / ( | ) , x G ^ = [0, +00) , n G N := { 1 , 2 , . . . } , 
fc=0 ' (1) 

where 

C := {/ G C(Krj) '. w f is uniformly continuous and bounded on 

and 
wQ(x):=l, wp(x) ~ (I + x?)-1 if P > 1 - (2) 

The norm on C is defined by the formula 

l l / l l P ^ l l / ( - ) l l p : - s u p % ( x ) | / ( x ) | . (3) 

In [1] it was proved that Sn gives a positive linear operator C -> C . For 
/ G Cp, p G N0 , it was proved that 

wp(x)\Sn(f;x)-f(x)\<M1(p)u2(f;Cp,Jz), x € \ , n G N, 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 41A36. 
K e y w o r d s : Szasz-Mirakyan operator, degree of approximation, Voronovskaja type theorem. 
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where uo2(f\ •) is the modulus of smoothness of the order 2 and Mx(p) is a 

positive constant. 

Thus it follows that if / G C\ := {/ G Cp : / ' G Cp} and p G N, then 

Vx)|5n(/;x)-/(x)|<M2>/J 

for every fixed x G RQ and n G N ( M 2 = const > 0). From these theorems it 
was deduced that 

l i m S n ( / ; *) = / ( * ) (4) 
n—>-oo 

for every / G C , p G N0 and x G KQ • Moreover the convergence (4) is uniform 
on every interval [x 1 , .r 2 ], x2 > xx > 0. 

Recently in many papers various modification of operators Sn were intro
duced. We cite works of P. G u p t a and V. G u p t a [3], V. G u p t a and 
U. A b e l [4], V. G u p t a and R. P. P a n t [5], V. G u p t a , V. V a s i s h t h a 
and M.K. G u p t a [6], M. H e r z o g [7], H. G. L e h n h o f f [8], M. L e s n i e -
w i c z and L. R e m p u 1 s k a [9], and S. X i e h u a [18]. These operators are very 
interesting approximation processes. In particular, the authors [3]-[6] studied the 
rate of convergence of introduced operators. Their results improve other related 
results in the literature. 

Approximation properties of modified Szasz-Mirakyan operators 

w^-.-f^/Ш n + q. 
k=0 

for x G MQ , n G N and q > 0 in exponential weighted spaces were examined 
in [10]. Their extensions can be found in [11]—[17]. For example, in the paper 
[16], there were considered certain linear positive operators 

ir(/•*)•= I f ( ^ + D2fe / k + r \ 
n W ' '' g((nx + l)2;r)^ (k + r)\ J \n(nx + 1) J ' 

where 

k=0 

<?>0, r є N , X G І Q , 

0 0 tk 

k=0 

І .Є . 

(k + r)\ ' 

5(0;r) = i , r,(t;r) = - l ( e * - X ; ^ ) i f l > 0 -

In [16], there were proved theorems on the degree of approximation of / G C 
by operators Bn. 
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Similar theorems for the operators of the Szasz-Mirakyan type are given in 
[11], [13]-[15] and [17]. 

Theorems of many papers (e.g. [1], [7], [9], [10], [12]) concern point nice 
approximation. We give theorems on the degree of approximation of functions 
from polynomial weighted spaces by introduced operators, using norms of these 
spaces. Moreover, we shall prove that the operators An (defined by (8)) give 
better degree of approximation of functions / G Cp and / G Cp than that 
proved for Sn. This together with the simple form of the operator makes results 
given in the present paper more helpful. 

For / eCp we define the modulus of continuity ^ ( / j •) as usual ([2]) by the 
formula 

uJxU;Cv,t):= sup | |A f t / ( - ) | | p , t e \ , (5) 
0<h<t 

where Ahf(x) := f(x + h)- f(x), for x, h G MQ . From the above it follows that 

t Umo; 1 ( / ;C p ; « ) = 0 (6) 

for every / G Cp. Moreover, if / G Cp, then there exists M 3 = const > 0 such 
that 

" i ( / ; C p ; * ) < M 3 . t for t G ^ . (7) 

In this note we introduce in the space C , p G N0 , a new modification of the 
Szasz-Mirakyan operators as follows 

A(f.ra-x)-= e -< n ' * + 1 > r T (n<?X + 1)rfc f ( * ^ (8) 

for x G MQ , n G N, r G H^ := [2, +oo) and q > 0. 

Similarly as Sn, the operator An is linear and positive. 

Using technique found in [l]-[2], [7]-[17], we shall obtain error estimates and 
the Voronovskaja type asymptotic formula for An. It turns out that the order 
of approximation by the operators examined in [11], [13]-[14] and [16] is O(lfn) 
for / G C . Thus, to improve the order of approximation, we consider the 
operators (8). 

2. Auxiliary results 

In this section we shall give some properties of the above operators, which 
we shall apply in the proofs of the main theorems. 
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From (8) we easily derive the following formulas 

An(l;r,ç;.t) = l , 

An(t;r,q;x) = x+±, 
nч 

An(Ѓ;r,q;x)= (x + ±)' 

An(Ѓ;r,q;x)=(x+±y 

1 + 

1 + 

(nix + l ) f 

3 

(9) 

(n^x + iy (nЧx + ì)2r 

for every fixed r € E^, q > 0 and for all n G N and x € MQ . 

From formulas (8), (9) and An(t
k; r, q; x), 1 < k < 3, given above we obtain: 

LEMMA 1. Fix r S l ^ , q > 0. Then for all x £RQ and n G N we have 

An(t-x;r,q;x) = — , 

An((t-^
r^;x) = — 

An((t-x)3;r,q;X) = ^ 

Next we shall prove: 

1 + 

1 + 

i 
(nix + iү-2 

3 
+ (n"x + l ) r " 2 (nix + l ) 2 r - 3 J 

LEMMA 2. Le£ s G N. g > 0 and r £ ^ be fixed numbers. Then there exist 
positive numbers Xsj, 1 < j < s, depending only on j and s such that 

S 

An(ť;r,q;x)=(x + ±[) _T Д.J (10) 
^ (n*x + l)(J~l)r 

for all n G N ana7 x G Eg . Moreover, Xs x = Xs s = 1. 

P r o o f . We shall use the mathematical induction for s. 

Formula (10), for s = 1, 2,3, is given above. 

Let (10) holds for f(x) = xj , 1 < j < s, with fixed 5 G N. We shall prove (10) 
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for f(x) = xs+1. From (8) it follows that 

An(ts+1;r,q]x) = 

(n*x+lVy-(nqX + l)Гk 

ГÍ ( f c - ! ) ! (n«(n«.c + l ) ' - 1 ) 

( n ^ + lY -{n*x+iГ v - (nqx + l) 

5 + 1 

(nя(nяx + iy-iy+1 fo k-
±Щ^(k + iУ 

(П"X+1У e-(nяx+lV f > (n"X+iУk ^ ( Л k џ 

(Пя(nяx + iy-iy+1 to k- í=íW 

, / " ł Ж Ч ; 1 ) Г

n J + i E (!) И « 9 * + - Г Ч Ч Д f ; r, Í; *) • 
(n^(n<?x+ l ) r _ 1 ) ^Ţo W 

By our assumption we get 

An(ts+1;r,q;x) = 

( n ^ n ' x + l ) - - 1 ) ' 4 - 1 ! ^ 1 V."/V ^ ( n ^ + l)0-D»-/ 

= f x + J_V+1/ I + f ff J ] ^ \ 
I n " / | (nix + l)rs - ^ + W (nqx + l)(»+i-*»-i)r J 

= V + n^J | (n«s + 1)™ + - ^ (n«x + l)(i--)*- ^ W X^+i-° J 

„ , , s + l \ 

= ( x + J_V+ 1y- ^ 
\x^ nij Z-> ( ^ x + i)0-i)r 

and A5+1 1 = A 5 + 1 + 1 = 1, which proves (10) for f(x) = xs+1. Hence the proof 
of (11) is completed. • 

LEMMA 3. Fix p E N0 . r E l ^ , r l > 0 . Then there exists a positive constant 
M4 = M4(p:r) depending only on the parameters p and r such that 

| K ( l / % ( t ) ; r , g ; . ) | | p < M 4 > n e N . (11) 
Moreover, for every f e Cp we have 

P„(/;r ,«;-) l l P <^4l l/ l lp . n e N . (12) 

Formula (8) and inequality (12) show that AnJ n E N. is a positive linear 
operator from the space C into C for every p E N0 . 
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P r o o f . Inequality (11) is obvious for p = 0 by (2), (3) and (9). Let p e N. 
Then by (2) and (8)-(10) we have 

%{x)An{l/wp{t);rìq-x) = ™v{x){l + An{tv-r,q;x)} 
v Л 

K ^ _ _ _ E i Ł _ _ 
'-£-' (n<-я + l )ü- 1 ) г 

j = 1 

1 {x + l/n<iy 
1 + XP 1 + XP 

/x=0 N r ^ / j=l v 

for x e KQ , n e N, f/ > 0 and r G l ^ , where M4(p,r) is a positive constant 
depending only on p and r. Prom this (11) follows. 

Formula (8) and (3) imply 

I K ( / ( * ) ; r ,« •) llP < H/llplK(!/%(*)! r, g; •) | |p , n € N, r 6 R, , 

for every f € Cp. Applying (11), we obtain (12). This completes the proof of 
Lemma 3. • 

LEMMA 4. Fix p E N0, q > 0 and r £ M^ . Then there exists a positive 
constant M5 = M5(p,r) such that 

I K ( ^ f ; r , g ; - ) | p < ^ | M a / / n e N . (13) 

P r o o f . The formulas given in Lemma 1 and (2), (3) imply (13) for p = 0. 

By (2) and (9) we have 

An((t - x)2/wp(t);r,q;x) = An((t - x)2;r,q;x) + An(t»(t - x)2;r,q;x) 

for p, n € N, q>0 and r G Ĥ  . If p = 1, then by the equality we get 

An((t-x)2/Wl(t);r,q;x)=An((t-x)2;r,q;x)+An(t(t-x)2;r,q;x) 

= An((t-x)3;r,q;x) + (l + x)An((t-x)2;r,q;x), 

which by (2), (3) and Lemma 1 yields (13) for p = 1. 
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Let p > 2. Applying (10), we get 

wp(x)An(t
p(t - x)2;r,q;x) 

= wp(x){An(t
p+2; r, q; x) - 2xAn(t

p+1; r, q; x) + x2An(t
p; r, q; x)} 

^{(^rgi^w 
( 1 \ P + 1 V^ /Vfl,j 2( 1\P\^ \ j \ 

-2X\X+rti) lL(nqx+l)(3-l)r+X \X+rfi) Z.w(nax+l)(j-l)r f 

-"Wit* hl{b + (*^)%j?^ 
P+i \ p A 1 

which implies 

w p (x)A n ( f p ( f -a ; ) 2 ; r ,g ;a ; ) 

- n2<? 1 + XP { + (n«.t + iy~2 \ 4?2
 p+2<j - ^ p + 1^' + - ^ p^'J J 

< ^ 5 ( P > r ) 
- n2qr 

for x G KQ , n G N, 9 > 0 and r G 1 ^ . This ends the proof of (13). • 

3. Error estimates 

In this part we shall give some estimates of the rate of convergence of the 
operators An. 

We shall apply the method used in [1], [7], [9]-[17]. 

THEOREM 1. Let p G N0 , q > 0 and r G IR.2 be fixed numbers. Then there 
exists a positive constant M6 = M6(p,r) such that for every f G C1 we have 

\\An(f;r,q;-)-f(-)\\p<^-\\f'\\p, n € N. (14) 

P r o o f . Fix x G MQ . Since we have 
t 

f(t)-f(x) = Jf'(u)du, t 
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for / G Cp and the fixed x, we have by (8) and (9) that 

An(f(t);r,q;x) - f(x) = An(f f'(u) du;r,q;x), n G N. 
X 

But by (2) and (3) we have 

t 

u) du <mjA*+ ' wЛť) wÁx) 
\t-x\, te 

(15) 

Consequently 
w

P{x)\An{f;r,q;x)- f{x)\ 

< ll/'llp K (I* ~ *l; r, ?! *) + ™p(*)An ( ] £ $ ; r, 7; *) } 

for n G N. By the Holder inequality and by (9) and Lemmas 1, 3, 4, it follows 
that 

An(\t-x\;r,q;x) < [An((t - xf; r, q;x)An(l; r, q; x)}1'2 < ~ , 

w, ̂ ^(^^^^^v^K^^^^)}17^^^^^^)}172 

< 
n<i 

D for n G N. From this and by (15) we immediately obtain (14). 

THEOREM 2. Let p G N0 . g; > 0 and r G 1̂2 6e /ized numbers. Then there 
exists M7 = M7(p, r) such that for every f G C and n G N we have 

I K ( / ; r , ç ; - ) - / ( - ) l l P < ^ i ( / ; C P ; ^ ) - (iб) 

P r o o f . We use Steklov function fh of / G Cp 

h 

x Gin , ft>0. 

o 

Prom (17) we get 

h 

n 

fћ{x):=^ff{x + t)dt, (17) 

fh{x)-f{x) = lf \f{x)dt, 

0 

/;(*) = £-V(*)' li> 0, 
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and 

H 4 - / l l p < ^ ( / ; C p ; n ) , (18) 

\\f'h\\p<h-lu(f;Cp,h) (19) 

for h > 0. From this we deduce that fh € Cp if / € Cp and h > 0. Observe 
that 

wp(x)\An(f;r,q;x)-f(x)\ 

<wp(x){\An(f - fh;r,q;x)\ + \An(fh;r,q;x) - fh(x)\ + \fh(x) - f(x)\} 

:= Lt(x) + L2(x) + L3(x) 

for n e N, /i > 0 and x G RQ . From (12) anti (18) we get 

l | i 1 l l p <M 4 | |4 - / | | p <M 4 W l (LC p ;n) , 

l |£3llP<^i(/;Cp ; lO-

By Theorem 1 and (19) it follows that 

B-.ll,s£llrJI,<^(/iC,i»). 

Consequently 

\\An(f;r,q;-)-f(-)\\p<(l + M4 + ^yi(f;Cp,h). 

Setting h = -̂ - we obtain the assertion of Theorem 2. • 

From Theorem 1 and Theorem 2, applying (6)-(7), classical theorems of 
mathematical analysis and elementary calculations, we can prove following two 
corollaries: 

COROLLARY 1. For every fixed r G 1^ . q > 0 and f E C , p G NQ, we have 

lim \\An(f;r,q;-)-f(-)\\p = 0. 

COROLLARY 2. If f G C£ . I) G N0 and r G B g , q > 0. then 

Pn(/;r j 9;-)-/(-)l lP = 0 ( l / ^ ) . 
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4. The Voronovskaja type theorem 

THEOREM 3. Let f e (7* and let r eR}, q > 0 be fixed numbers. Then, 

lim nq{An(f;r,q'x)-f(x)}=f'(x) (20) 

/Or every x > 0. 

P r o o f . Let „ > 0 be a fixed point. Then by the Taylor formula we have 

/(*) = /(*) + /'(*)(* " ^) + e(*i *)(< " *) 

for t G MQ , where _:(_) __ £(£;x) is a function belonging to C and _(#) = 0. 
Hence by (8) and (9) we get 

An(f;r,q;x) = f(x) + f'(x)An(t-x]r,q]x)+An(£(t)(t-x);r,q;x), n <E N, 
(21) 

and by the Holder inequality 

\An{e(t)(t-x);r,q;x)\<{An(e
2(ty,r,q-x)}1/2{An((t-x)2-,r,q-,x)}1/2. 

By Corollary 1 we deduce that 

lim An(e
2(t)\r,q',x) = e2(x) = 0. 

n-+oo 

From this and by Lemma 1 we get 

lim nqAn (e(t)(t - x); r, q; x) = 0 . (22) 
n—»-oo v ' 

Applying (22) and Lemma 1 to (21), we obtain the desired assertion (20). • 

Remark. It is easy to verify that analogous approximation properties in the 
space C have the operators 

( /e+l+r) / (n 9 (n g _ + l ) r - 1 ) 

AW(f;r,q;x):=e-^*^"£{n a + 1 J n'fr's + l ) - 1 J f(t) dt 
k=0 (fc+r)/(n^(n9„ + l )^- 1 ) 

and 

.___ e - ( n « _ + l ) r ,,x+1)- £ (я'* + iГ*я.(я._ + „--_ / • e - (» . í + i ) - _ _ _ + _ _ - / ( É ) dí. 
fc=o k- { 

foг / є Cþ, p Є N0 , _ є Қ,, n Є N, ç > 0 and r ЄЩ. 
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