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ON C O N V E R G E N C E FOR T H E GR*k -INTEGRAL 

SUPRIYA P A L * — D. K. G A N G U L Y * * — L E E P E N G Y E E 

(Communicated by Miloslav Duchoň) 

ABSTRACT. The GRk -integral was introduced by the authors. In this paper, 
we study some convergence results for the GRk -integral. 

1. Introduction 

The authors introduced the GRk -integral in [3]. It is a Stieltjes type integral 
which for k = 1 includes classical Henstock Stieltjes integral in particular case. 
Later, in [4], the authors extended the GRk -integral and called the new inte
gral as the GRk -integral. Some new concepts of "local tagging" and "regulated 
o^-fine division" e t c were introduced to define GRk -integral. In [4] some ele
mentary results for the GRk -integral and also an analogue of the Saks-Henstock 
lemma are studied. Furthermore, one version of the Fundamental theorem of 
calculus is given. 

In this paper, we obtain some convergence results for the GRk -integral. First 
we obtain the uniform convergence theorem. Then we prove monotone conver
gence theorem and the basic convergence theorem for the GRk -integral. As 
an application of basic convergence theorem, we obtain the mean convergence 
theorem for the GRk -integral. 

2. P r e l i m i n a r i e s 

Let k be a fixed positive integer and S be a positive function defined on 
[a, b]. We shall call a division D of [a, b] given by a = x0 < xx < • • • < xn = b 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 26A39. 
K e y w o r d s : Henstock integral, <5fc-fine division, regulated <5fc-fine division, Saks-Henstock 
lemma, gk-variation, GB f c-integral, GB£-integral, g-regular function, equiintegrability, BVk, 
LBVk, nearly additive function. 
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wi th associated points {£0 , £ 1 ? . . . , £n_k} satisfying 

ti G [*.>*.+*] C (£.-<*&)>Zi+S(Q) for . = 0 , 1 , . . . , n - f c 

a 5k-fine division of [a, b]. For a given positive function o", we denote a J*-fine 
division D by {[xi,xi+k]^i}.=01 n_k. Using compactness of [a, b] it is easy 

to verify that such 5k-_ne division exists. When k = 1, it coincides with the 
usual definition of S-fine division. 

In [3], the GRk -integral is defined as follows: 

DEFINITION 2 .1 . Let a be a real-valued function defined on a closed interval 
[a, b]^1 in the (k + 1)-dimensional space, and / a real-valued function defined 
on [a, b]. 

We say that / is GRk -integrable with respect to g to I on [a, b] if for every 
£ > 0 there is a function 5(£) > 0 for £ E [a, b] such that for any <5fc-fine division 

D = {[Xi^l+k}^i}i=o,h...,n-k W e h a v e 

n—к 
_^f{Qя{xi,---,xi+к)-I <є. 
t = 0 

We shall denote the above Riemann sum by s(f,g\D). If / is integrable with 
respect to g in the above sense, we write (/, g) E GRk[a,b] and denote the 

b 

integral by f f dg. 
a 

Let x E [xvxi+k] where xi < xi+1 < ••• < xi+k. The jump of g at x, 
denoted by J(g; x), is defined by 

J(g;x)= Yimxg(xi,...,xi+k), 

if the limit exists finitely. 

In [3], it was proved that: 

THEOREM 2.2. Let (/,a) E GRk[a,c] and (/,g) E GRk[c,b]. If J(g;c) exists, 
then (/, g) E GRk[a, b] and 

b c b 

f f dg = J f dg + J f dg + (k - l)f(c)J(g;c). 
a a c 

We introduced in [3], o^-fine partial division of a special kind as follows: 
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V 

Let [ai1 bj, i = 1, 2 , . . . , p , be pairwise non-overlapping, and IJ [a{1 bj C [a, b]. 
i=i 

Then {Di]i=l 2 is said to be a Sk-fine partial division of [a,b] if each Di is 
a J^-fine division of [a z ,b j . Its corresponding partial Riemann sum is given by 

IXLaDi). 
i = l 

With this notion of partial division we have proved in [3] the following 
theorem. 

THEOREM 2.3. (Saks-Henstock lemma analogue for GRk-integral) If (f,g) G 
GRk[a, b] and J(g; c) exists for all c G (a, b). then for every e > 0 there exists 
a positive function S on [a, b] such that for any Sk-fine division D of [a, b] and 
for any Sk-fine partial division {Z^ i} i = 1 2 a/ [a, b] 

|s(Lg;D)-F(a,6)| <e and £{*(/, 5;Dť)-F(ať,6ť)} 
i = l 

< (fc+l)є 

i/jbere I7z zs a Sk-fine division of [az, bj ancf F(u,v) denotes the GRk-integral 
on [u, v] C [a, b]. 

In [4] the following concepts are introduced: 

DEFINITION 2.4. Given a function S: [a, b] -» M+ and a point x G [a, b], a 
(^-fine division L) of [u, v] C [a, b] is said to be locally tagged at x if [i£, v] C 
(x-J( . r ) ,x+^(x)) with either u = x or v = x. 

It may be noted here that for local tagging at x we need S to be defined in a 
neighbourhood of x. But for simple presentation we considered S to be defined 
on [a, b]. 

DEFINITION 2.5. A family of triplets {xi,Di, [a{, bj}^=1 is called regulated 

Sk-fine division of [a, b] if each D{ is a ^-fine division of [a i ?b j locally tagged 
v 

at £; where [a2-, bj, z = 1, 2 , . . . , p , are non-overlapping with |J [ai? bj = [a, b]. 
2 = 1 

Further, {xz, D{, [a{, &J}^=1 is called regulated Sk-fine partial division of [a, b] 

if U[a,,&,]C[a,&]. 
i = l 
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DEFINITION 2.6. Let / : [a, b] -» R and g: [a, b]k+1 -> R such that J(g; c) 
exists for all c G (a, b). 

We say that / is GRk -integrable with respect to g to A on [a, b] if for all 

c > 0 there exists 5: [a, b] -» R + such that for any regulated o^-fine division 

{x.,D.,[a.,b.]}J==1 of [a,b] we have 

JT s(f, g; DJ + j > - !)/(&.) j( 5; bt) - A 
2 = 1 2 = 1 

< є 

We can easily verify that GRk -integral is well defined. 

If / is GRk-integrable with respect to g, we write (/, g) G GRk[a, b] and 
b 

denote the integral also by J f dg. 
a 

In what follows we always assume that J(a; x) exists for all x G (a, b). 

The following theorem follows directly from the definition of GRk -integral. 

THEOREM 2.7. Let (fvg) G GR*k[a,b] and (f,gt) G G7t*[a,b] /or i = 
1, 2 , . . . , n. Then for real numbers A1? A 2 , . . . , An we have: 

(i) ( £ V i , ff) € G/^[a, 6] and / £ (V. ) d5 = £ Xt ( / ft dg) . 
Ki=l ' a i = l i = l v a y 

(ii) (f, £ \9i) e G^[o,6] and / / d( £ Aj5i) = £\iffdgi. 
V 2 = 1 7 a V 2 = l ' 2 = 1 a 

(iii) 7/ / ^ x ) < f2(x) for all x G [a, b] ana7 a: [a,b] /c+1 - • [0,00). lben 

Jfidg<Jf2dg. 
a a 

The following results were proved in [4]. 

THEOREM 2.8. Let a < c < b. If (f,g) G GR*k[a,c] and ( / ,a) G GIt*[c,b]. 
then (/, a) G GI?*,[a, b] ana7 

6 c 6 

J f dg = J f dg + J f dg + (k - l)f(c)J(g\c). 
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THEOREM 2.9 (CAUCHY CONDITION). (/, g) G Git* [a, b] if and only if for 
every e > 0 there exists a positive function S on [a, b] such that for all regulated 
8k-fine divisions {xvDv[avbi]Yi_l and {y.,P-,[c.,d.]\q of [a, b] we have 

f^s{f,g;Dl)^{k-l)f{bi)J{g]bi)\ 
ż = l i=\ 

q-1 

J2 s{f, g; Pj) + J^ik ~ mdj)A9', dj) 
j = l .7 = 1 

< є. 

THEOREM 2.10. If (f,g) e GR*k[a,b] and a < c < d < b, then (f,g) G 
GRUcd}. 

THEOREM 2.11. (Saks-Henstock lemma analogue for the GR^ -integral) 
{ft 9) £ GRl[a, b] if and only if there exists a function F, g-nearly additive with 
respect to f. satisfying the condition that for all e > 0 there exists 5: [a, b] —>> M+ 

such that for all regulated 6k-fine partial division {xi,Di^ [ai: bJ}P_1 of [a, b] 
we have 

É{ в ( / . 5 ; D . ) - E ( O i , ь . ) } 
ż = l 

< £ľ. 

In [4], we used the concept of local bounded variation of kth order of g as 
follows. 

DEFINITION 2.12. For X C [a, b], we define 

L ^ ( X ) = i n f s u p { g | 5 ( l , a ; ^ ) | } , 

where supremum is taken over all regulated o^-fine partial division 
{x i,J9 i,[a-,b-]}^ 1 of [a, b] such that xte X. 

X C [a, b] is said to be of Lgk -variation zero if LVk{X) = 0. 
A function g is said to be LBVk{X) if LVk{X) is finite. 

00 

Also g is said to be LBVkG{X) if X = [J A .̂ such that g is LHV^(A^) 
for each j . •7==1 

A property is said £o bo/d Lgfc a.e. if it holds everywhere in [a, 6] except on 
a set of Lgk -variation zero. It is easy to verify that: 

THEOREM 2.13. If either fx or f2 is GR\-integrable with respect to g on 
[a,b] and fx = f2 Lgk a.e. in [a, b], then the other is also integrable and 

b b 
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3. Some convergence results 

We now give some convergence results for the GR*k -integral. 

We first prove the uniform convergence theorem. 

T H E O R E M 3.1 ( U N I F O R M C O N V E R G E N C E T H E O R E M ) . Let g G 

LBVk[a, b] and {/n}n

<L1 be a sequence of functions defined on [a, b] such that 
(/n,g) G GR*k[a,b] for all n = 1,2,.... If fn is uniformly convergent to f as 

b b b 

n —» oo . then f f dg exists and lim f fn dg = f f dg. 
a n->oo a a 

P r o o f . Since g G LBVk[a,b], there exists M > 0 and S0: [a, 6] -> M+ 

v 
such that *}2 \s(f,g]Di)\ < M for all regulated c^-fine partial division 

{xitDit[attbt]}P

i=1of[atb]. 

LetAn = ffndg. 
a 

For e > 0, by the Saks-Henstock Lemma (Theorem 2.11), there exists 
Sn(x): [a,b] —> M+, n = 1,2,..., where Sn < S0 such that for every regu
lated Sn-fine partial division {x^D™, [a™, b™]}1!^ of [a, b] we have 

Y^s(fn,g-D»)-An 

І=\ 

< Є. 

We may assume that o :

n + 1 < Sn, n = 1,2,... . 

For ra,n G N and n > ra we fix a regulated f5n-fine partial division 
{xitDit[altbt]Yi=l. 

Then \An-Am\<2e+t\s(fntg-tDl)-s(fm,gtDl)\<2e + \\fn-fJ\M 

where ||/„ - / J | = sup \f~(x)-fm(x)\. 
a<x<b 

As fn is uniformly convergent to /, we have | |/ n — fm\\ —> 0 as n -> oo. So, 
there exists positive integer N± such that for n, ra > jY1, | |/ n — fm\\ < fj. 

Thus, {An}n

<L1 is a Cauchy sequence in R, and let A = lim A . 
n—>oo 

Now we can find a positive integer JV2 > Nx such that for n > N2 we have 
\An-A\<e. 

Let 5(a;) = (5W (x) for x G [a, b]. 
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Then for any regulated (Y -̂fine partial division {yj,Pj,[cj,dj]}q

=1 of [a, b] 

we have 

j = l ' 3 = 1 j = 1 

Q 

+ J2S(fN2'9'iPj)-AN2 

.7 = 1 

+ 1 ^ -A\<3є. 

b b 

So, by Theorem 2.11, (f,g) € G ^ [ a , 6 ] and / / dg = lim / / „ dy. D 

THEOREM 3.2 (MONOTONE CONVERGENCE THEOREM). If the follow
ing conditions are satisfied 

(i) the sequence {fn(x)}n=1 is monotonic Lgk a.e. in [a, b], 

(ii) g is a nonnegative function defined on [a, b]k+1 such that (fn,g) E 

{
b N oo 

ffn^g} is bounded, i.e. 
a J n = 1 

b 

\I fn dg| < M for some M and att n € N. 
a 

(iii) lim / = / is finite Lgk a.e., 
n—>oo 

6 6 

£ben (/,g) G Gi?^[a,b] ana7 / / da = lim f fn dg. 
a n ->oo a 

P r o o f . Since the change of a function on a set of Lgk variation zero influ
ences neither the existence nor the value of the integral, we can assume that the 
functions fn and / are defined and finite everywhere in [a, b]. By considering 
—/ or fn — f1 instead of / n , if necessary, we can achieve that the sequence 

{ b >, oo 

I fn dg f is a l s° monotonic 
a * n = 1 

b 

and bounded. So, lim f f dg exists. Let us denote it by L. Given e > 0, we 
n—>-oo 

a 
b 

can find TV such that / fN dg > L — | . 
a 

Next we find n(x) > N such that, for n > n(x), 
3L + 3£ ЗL + є 

fn(x)>f(x). 

If f(x) > 0, this is possible because the left-hand side has a limit strictly larger 
than the right-hand side; if f(x) = 0, we can take n(x) = N. By Theorem 2.11 
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(Saks-Henstock lemma), there is Sn: [a, b] —j> M+ such that 

bi 

É|s(/n.5;Ą)-//„ 
i=l í. 

dg < 
3 - 2 n 

for all regulated (Y^-fine partial division {xvDv [^j&J}^= 1 of [a, b]. 
We define S(x) = Sn^(x). 

Let {a^.Z^, [a^, &J}^= 1 be a regulated ^-fine division of [a, b]. 
The proof will be complete if we show that 

p p- i 

Y, s(f, g; DJ + (k-i)J2 f(bt)J(g; b{)-L 
ѓ = l 

Now, 

г'=l 

p - 1 

< Є. 

É ffn(Xi) ^+(k-í)J2fn(X,)(bi)J(9;bi) 1=1í i=1 

p bi p - i 

>E ÍN^+ik-l^fN^JiS^K) 
A—1 « I A—l ѓ = l , 

Ь 

• / 
fN dg > L - I . 

Denoting by N the largest n ( x j we also have 

E //»(-.) dP + (fc-l)E/B(xo( 6 i) J(P! 6 i) 
» = 1 a , i = 1 

p h p-i 

< E / fff da + (fc -1) E /^ .Vta M 
* = 1 a, i = 1 

b 

= | / , v d 3 < L . 

a 

The n(xz) are not necessarily distinct; let i 1 , z 2 , . . . , z ; be the distinct i such 
that n ( x j — I and we have by Theorem 2.11 

l bi-

J2{s(f^g;Dlз)- ff^dg} 
j=i 

< 
3 - 2 ' * 
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Consequently 

P г Á -1 00 

E sUn{Xiy9iDi) - / L(Xi)
 d9 < E 

t = l L n. J . = 1 
3 • 2l 3 ' 

Now, 

p - i 

^(/.fl;A) + (*--)E/(6.)J(^6i) 
ѓ = l ѓ = l 

P - I 

^E^/n^O^^г^ + ^ - ^ E / n ^ ) ^ ) ^ ; ^ ) 
г'=l 

i = l „ . i = l 

2є 
3 

and on the other hand 

(3L + e) 

3(L + є) 

p - i 

£ < Д ,?; D.) + (fc - 1) £ / ( ò . ) Jtø; 6J 
г ' = l 

P - I 

г ' = l ѓ = l 

P *2 P - I 

< E / / n ( , г ) ^ + f + ( Å : - 1 ) E / n ^ ) ( Ò г ) ^ ^ г ) < i + | -
A 1 •/ „" 1 ѓ = l 

So, 

£ *(f, 9; D.) + (* - 1 ) E /(&ѓ) J(5; ьť) -
 L 

г ' = l г ' = l 

< Є. 

This completes the proof. D 

T H E O R E M 3.3 ( B A S I C C O N V E R G E N C E T H E O R E M ) . Let the following 

conditions hold 

(-) Uni9) ^ GRl[a,b] where g G LBVk[a, b] and J(g;c) exists for all 
c e (a, 6). 

(ii) fn(x) —> f(x) as n —> 00. Lgk a.e. in [a, b]. 
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Then (/, g) G GR*k[a,b] if and only if for all e > 0 there is a function M(x) 
defined on [a, b] taking integer values such that for infinitely many m(x) > 
M(x). there is 6: [a, b] —> R, such that for any regulated 5k-fine partial division 

{xvDv[avbi\}P
i=1 of[a,b] we have 

Eî^iK-y-^.y} 
ż = l 

< є. 

where Fn(u,v), F(u,v) denote the integral of fn, f over [u,v] C [a, b] with 
respect to g respectively. 

P r o o f . We can assume that fn(x) -> f(x) as n -> oc everywhere in [a, b]. 

Let (/, g) G GRk[a, b]. Since fn(x) —> f(x) as n —> oo, we have for x G [a, b] 
there exists integer M(x) such that whenever m(x) > M ( x ) , 

I W - 0 " /(*)!< ВДMľ 

Since each (fn,g) G Git£[a, b], by Theorem 2.H, there exists 5n({,) > 0 for £ G 
[a, b] such that for any regulated 5*-fine partial division {xn,Dn, [a" ,&f]}^i ' 
we have 

ËW/n.^DD-^Ҝ.ь?)} 
ѓ = l 

< 
2 n 

Since (f,g) G Git£[a, b], there exists 50(£) > 0 for £ G [a, b] such that for all 

regulated o^-fine partial division {?/ , i ^ , [c-, d-]]q_l of [a, b], we have 

EW/'^;)'^^)} 
j=i 

< £ . 

Also, since g G FHVJJa, b], there exists n(x) > 0 such that for all regulated 

rjk-fine partial division {z{,Qv [u^vj\}l=l we have 

^ ( l . S j Q , ) ! <LVg
k[a,b]. 
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For x e [a, b], we choose any integer m(x) > M(x) and we take S(x) = 
min{o?

m(;r)(x),50(x),r/(.T)}.Let {x^D^ [a-, bJ}J=1 be any regulated 5k-fine par
tial division of [a, b]. Then 

< 
г' = l 

Eí IW^льI^л)} 
г = l 

V 

E { F - ( x ) K ' 6

г ) - s ( / n г W ^ ; ^ ) } +\Y,{s(fm{x),9;Di)-s(f,g;Dl)} 
i=l 

J2Ш,g;Dг)-F(avbг)} + 
ѓ = l 

<є + _£_- îg|в(l, í ř;D i)|+ Є<3Є. 

Hence the condition is proved to be true for every m(x) > M(x). 
Conversely, let the condition hold. So there exists an integer valued func

tion M(x) defined on [a, b] such that for infinitely many m(x) > M(x), 
there is a 50: [a, b] —•> R+ such that for any regulated o^-fine partial division 

Е^М^ЛЬ^КЛ)} < e. 

Also since fn(x) —.> /(x) as n —r oo for all x G [a, b], we can find m(x) > M(x) 
such that 

l/mw )̂-1 )̂1 < I ^ q -
Using the same notations as in the first part, we choose 

5(x) = mm{Sm{x)(x), S0(x), rj(x)} , x E [a, b]. 

Let {x̂ , D{, [a-, &J}^=1 be a regulated (Ŷ -fine partial division of [a, b]. Then 

] [ > ( / , ^o/J -F(at,b{)} 

i=l 

V 

Y.{s^^',Di)-s(frn{xVg]Di)}\+ ^2{s(fm{x),g]D.) ~ Fm{x)(aiA)} 
= 1 

+ i E K w ( « , . y - % l y } 

< 
І=I 

i=l 

< Зe. 

D 
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THEOREM 3.4 ( M E A N CONVERGENCE THEOREM). If the following con
ditions are satisfied 

(i) fn(x) —r f(x) Lgk a.e. in [a, b] as n -» oc where each (fn,g) G 

GR*k[a,b], 

(ii) g G LBVk[a, b] and J(g, c) exists for all c G (a, b), 
oo 

(iii) [a, b] -= (J K\ such that for every i and for every e > 0 there exists an 

integer N and 5: [a, b] -» R+ 5u.cb that for all regulated Sk-fine partial 

division {xl:Dl,[al^bl]}P
=1 tagged in Xi we have 

£{-*>,,&,)-F(o,.&.)} 
1 = 1 

< є for all n > N 

for some function F where Fn(u: v) = f fn dg for [it, v] C [a, b]. 

(iv) Fn(u,v) converges to F(u,v) as n -^ oo for all [u,v] C [a, b], 
b b 

lben (/, g) G G i t ^ a , b] ivi£b primitive F and f fn dg -> f f dg as n —>• oo . 
a a 

P r o o f . Let £ > 0. In view of (iii) above, for every i and every j there 
exists integer N{. and 5 • •: [a, b] -» R+ such that for any regulated c^-fine 

partial division {xl,Dl,[al,bl]}P
=1 of [a, b] with xl G X i 

E ^ ( s У - % ţ у } < 
2-+j 

for аll n> N,, 

Take n = n(i,j) so that the above inequality holds. We may assume that 

for each z, {P1,^ A} . is a subsequence of {Fri_1 -A . . Now consider 
Fn(j) = FnU,j) i n P^ce of F„ and write Y. = X. - \x[ U • • • U A ^ J for 

i = 1,2,... with XQ empty. 
Put M(x) = n(i) when x G Y{. We note that there are infinitely many 

m(x) > M(x), namely all n(j) > n(i). 
If m(x) takes values in {n(j) : j > i} when m(x) > M(x) = n(i), we put 

S(X) = 5m(x)(X)' 

Let {x^D^ [av &/]},_-, be any regulated 8k-fme partial division of [a, b]. 

É^i^^-^^J-ËË 2^+3 
= є . 

Z = l ' j=l i=l 

Hence conditions of the Basic convergence theorem is satisfied. Hence (/, g) G 

• Git*[a,b] with ffndg^ffdg. 
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