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ON SOME UNARY ALGEBRAS AND 
THEIR SUBALGEBRA LATTICES 

KONRAD PlORO 

(Communicated by Martin Skoviera ) 

ABSTRACT. We first define lattices, called normal, which are uniquely repre­
sented by directed graphs. Secondly, we describe all unary algebras (called normal, 
too) such that their subalgebra lattices are normal. Next, we characterize pairs 
(A,L) such that the subalgebra lattice of A is isomorphic to L, where A is a 
normal unary algebra and L is a normal lattice. Further, we describe pairs of 
normal unary algebras with isomorphic subalgebra lattices. We use these results 
in the second part of the paper to find necessary and sufficient conditions for pairs 
of lattices to be isomorphic to a pair of the weak and strong subalgebra lattices 
of one normal unary algebra. 

In [10] we have investigated unary algebras and their subalgebra lattices. To 
this purpose we used connections between partial unary algebras and graphs 
given in [9]. Moreover, we did not restrict our attention to total algebras only, 
and we consider the more general case of partial algebras. This approach to 
unary algebras by partiality, and also this graph-algebraic language turned out 
to be very useful in such investigations. Recall, we first characterized all the pairs 
(A, L) such that the strong subalgebra lattice of A is isomorphic to L, where 
A is an unary algebra and L is a lattice. Secondly, necessary and sufficient 
conditions were found for pairs of unary algebras to have isomorphic strong 
subalgebra lattices. 

Now we show that these problems have much simpler solutions for special 
kinds of lattices and unary algebras. We first define special lattices, called nor­
mal. Secondly, we prove that every normal lattice L can be uniquely represented 
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Keywords : directed and undirected graph, weak and strong subalgebra, subalgebra lattices, 
unary algebra, partial unary algebra. 

255 



KONRAD PIORO 

by a digraph (directed graph); and it is "the least digraph" in the class of all 
digraphs without cycles having their strong subdigraph lattices isomorphic to L. 
Thirdly, we describe all unary algebras such that their strong subalgebra lattices 
are normal; such algebras will be called normal, too. Further, we prove that with 
every normal unary algebra A we can associate a digraph in such a way that for 
a normal lattice L, the strong subalgebra lattice of A is isomorphic to L iff the 
digraphs corresponding to A and L are isomorphic. We also show that normal 
unary algebras have isomorphic strong subalgebra lattices iff their digraphs are 
isomorphic. 

These results will be applied in the second part of the paper to find necessary 
and sufficient conditions for pairs of lattices to be isomorphic to a pair of the 
weak and strong subalgebra lattices of one normal unary algebra. 

We assume knowledge of basic concepts and results from the theory of partial 
and total algebras, and also from lattice theory (see e.g. [4], [5], [6] and [7]). We 
use notations and definitions from [10] (and also from [9]). 

1.1. It is well known (see [7; Theorem 3.8.8]) that a complete lattice L is iso­
morphic to the strong subalgebra lattice of a (partial) unary algebra iff 

(*) L is algebraic and distributive, 
(**) each element of L is a join of completely join-irreducible elements. 

Note that Theorem 3.8.8 concerns only total algebras, but it is also true for 
the partial case. Because, any partial unary algebra A = (.A, (fA)feA) can be 
modified to a total algebra A with the same subalgebra lattice (more precisely, 
we extend each partial unary operation / of A to total, by adding all pairs 
(a, a), where a £ A and fA is not defined on a ) . 

For a given lattice L satisfying (*) and (**), there are, in general, many dif­
ferent unary algebras (digraphs) having strong subalgebra (subdigraph) lattices 
isomorphic to L (see [10]). In this section we show that if a lattice L satisfies 
some additional condition, then L can be uniquely represented by a digraph 
D(L) . Further, the lattice S5(D(L)) is isomorphic to L. And D(L) is "the 
least digraph" in the class of all digraphs without non-trivial cycles and with 
the strong subdigraph lattices isomorphic to L. 

We start with the following auxiliary definition: A partially ordered set 
(P, <p) is said to satisfy the finite cover chain condition or briefly FC, if 
for all p,q G P , p <P q implies that there are p1,...,p/e G P such that 
p = p1 -<p p2 -<p • • • -<p pk = q (where -<p is the covering relation, see e.g. 
[6]). (The infinite set { 1 , 2 , 3 , . . . } U {z} ordered by the relation < as follows: 
1 < 2 < 3 . . . and n < z for n = 1, 2 , 3 , . . . , is an example of a partially ordered 
set which does not satisfy FC.) 
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THEOREM 1.1.1. Let (P, < p ) be a partially ordered set. Then the following 
conditions are equivalent: 

(a) (-PJ <p ) i>s a partially ordered set with FC 

(b) (P, < P ) is a partially ordered set such that 

(i) for each infinite chain px <P p2 <P . . . and q G P . i/ 1^ < P q 
/or i = 1, 2, 3 , . . . , then there are elements r 1 5 . . . , rn such that 

Pi = r i ^pr2<p--<Prn = <l> 

(ii) for each infinite chain ... < P p2 <P p1 and q e P, if q <P pi 

for i = 1 , 2 , 3 , . . . , then there are elements r l 5 . . . , rn such that 

Q = ri<pr2^p'"-<prn=Pi-

In particular, if (P, < p ) satisfies both the ascending and the descending chain 
condition, then (P, < p ) satisfies FC 

P r o o f . Assume first, (P, < p ) satisfies both the ascending and the descend­
ing chain conditions. Then (P, < p ) has no infinite chains. By Zorn's lemma, for 
any p, q G P , if p < q, then there is a maximal chain Q with the least element 
p and the greatest element q. Of course, Q is finite, let Q = {r11... , r n } and 
V = r\ < p r

2 <p • • • < p rn = q. Then the maximality of Q implies ri -<p ri+1 

for i = 1,..., n—1 . 
The implication (a) => (b) is obvious, so it is sufficient to show (b) => (a) . 

Assume that (P, < p ) does not satisfy FC . Then for some p,q € P, p <P q and 
there is not a finite sequence of elements r1,..., rn connecting p and q such 
that ri -<p ri+1. Hence we deduce also that Q = {r G P : I> < P r < p q} has an 
infinite ascending chain or an infinite descending chain. These two facts imply 
that (b) does not hold. • 

Let (P, < p ) be a partially ordered set. Then D p o s (P , < p ) is the digraph 
with P as its vertex set, and {(p,q) G P x P : q -<p p} as its edge set. For 
example, for the real numbers R with the natural less-or-equal order., D p o s (E) 
has not edges. But the facts below are easy to verify. (Recall that < G is the 
natural, reflexive and transitive, relation on the vertex set VG of a digraph G 
(see e.g. [12]), i.e. v < G w iff there is a (directed) chain from w to v or v = w. 

Recall also that an edge e is said to be an isthmus (see e.g. [3]) if e is regular 
(i.e. it is not a loop) and each chain from the initial vertex of e to the final vertex 
of e contains the edge e (or equivalently, e forms the only one path connecting 
these points, because a path does not contain the same vertex twice).) 

PROPOSITION 1.1.2. Let (P,<P) and (Q,<Q) be partially ordered sets with 
FC. Then 

(a) ( P , < P ) ^ ( Q , < Q ) ^ D P ° S ( P , < P ) - ^ D P O S ( Q 5 < Q ) . 

(b) ( V ^ ( ^ ) , < D P O . ( P | < P ) ) ^ < P , < P > -
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(c) D p 0 S (P, <p) is a simple digraph without cycles, and each of its edges is 
an isthmus. 

(d) D P - ( y D P O S ^ - ) , < D P O S ( P i < p ) ) ~ D P ° B ( P , < p ) . 

Note, (c) and the implication = > in (a) hold for any partially ordered set 
(with or without FC). 

Let L = (L, < L ) be a lattice and Ir(L) the set of all completely join-
irreducible elements of L. Then 

D(L) = DP° s ( l r (L) ,< L ) . 

Further, L is said to be a normal lattice if L satisfies (*), (**), and (lr(L), < L ) 
satisfies FC. 

For instance, the set of real numbers R with the natural less-or-equal order is 
a complete lattice which has no completely join-irreducible elements. Thus D(R) 
is the empty digraph. However, every normal lattice L is indeed represented by 
its digraph. 

THEOREM 1.1.3. Let L and K be normal lattices. Then 

(a) K ~ L <=* D ( K ) ~ D ( L ) . 

(b) S 5 ( D ( L ) ) _ ^ L . 

(c) D(L) is a simple digraph without cycles, and each of its edges is an 

isthmus. 

P r o o f . It is proved in [6; p . 83] that if a lattice L satisfies (*) and (**), 
then L is isomorphic to the lattice of all order-ideals of ( l r ( L ) , < L ) with set 
inclusion. Thus (because <= is obvious) 

( l r ( K ) , < K ) ~ ( l r ( L ) , < L ) <-=> K ~ L 

This equivalence and Proposition 1.1.2(a) complete the proof of (a). 
Next, (b) follows from Proposition 1.1.2(b) and [10; Corollary 3.10]; and (c) 

is just a reformulation of Proposition 1.1.2(c). • 

Now we show that for every normal lattice L, its digraph D(L) is "the least 
digraph" in the class of all digraphs G such that G does not contain non-trivial 
cycles and S5(G) ~ L. We first prove the following analogous result for partially 
ordered sets. 

THEOREM 1.1.4. Let (P, < P ) be a partially ordered set satisfying FC and let 
G be a digraph. Then the following conditions are equivalent: 

(a) (VG,<G)~(P,<p). 

(b) D p o s (P , <p) is (up to isomorphism) a weak subdigraph of G having the 
same vertex set and for each regular edge e of G, there is a chain in 
D p o s (P , <p) going from the initial vertex PP(e) of e to the final vertex 
IG(e) ofe. 
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P r o o f . 
(a) ==> (b). To simplify notation we assume that partially ordered sets 

(V G ,< G ) and (P, < P ) are equal. It is easy to see that for any vertices v, w 
of G, if w -<G v, then there is an edge from v to w. Hence we obtain that 
Dpos(P, <p) is a weak subdigraph of G; with the same vertex set, of course. 

Next, if e is a regular edge, then IG(e) <G Ip(e), so there are elements 
px,..., pn G P such that 

IG(e) = Pl ^p p2 ^p • • • -<p pn = J G (e ) , 

because (P, < p ) satisfies FC. 
Obviously the sequence ((Pn,Pn_i), (Pn_i,Pn_2), • • •, (p2,Pi)) is the desired 

path. 
(b) = > (a). Again, to simplify notation, we assume that Dpos(P, < p ) is 

just a weak subdigraph of G . Then by Proposition 1.1.2(b) we have that 

v <p w ==> v < G w. 

On the other hand, let v,w G VG and (e1 ? . . . , en) be a chain in G going from 
w to v. Then for each 1 < i < n, there is a chain in Dpos(P, < p ) going from 
IG(ei) to IG(^i)- Obviously the sum of these chains is a chain in Dpos(P, < p ) 
going from w to v. Thus for each v, w G VG, 

v <G w ==> v <p w . 

D 

By Theorem 1.1.4 and [10; Corollary 3.10] we obtain our result for normal 
lattices and digraphs. 

COROLLARY 1.1.5. Let L be a normal lattice and G a digraph. Then the 
following conditions are equivalent: 

(a) S5(G)_.L andCn(G) = 0. 
(b) D(L) and G satisfies (b) of Theorem 1.1.4. 

In the above result, and also in the rest of the paper, by Cn(G) we denote 
the family of all non-trivial (i.e. with at least two different vertices) directed 
cycles of a digraph G. 

Note that if we want to omit in (a) the condition Cn(G) = 0, then in (b) it is 
necessary and sufficient to replace G by the quotient digraph G/#(G). (Recall 
that the quotient digraph with respect to an equivalence relation 6 on VG is 
obtained by the contraction each equivalence class of 6 to one vertex (for precise 
definition see [10; Definition 2.1]). Moreover, 6(G) is the equivalence relation on 
VG containing all pairs (v,w) such that v = w or v and w lie on some cycle 
(see [10; Definition 3.1]).) 
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1.2. In this section we characterize digraphs with normal strong subdigraph 
lattices. Such digraphs will be called normal, too. Next we prove that with any 
normal digraph G we can associate a digraph TQ(G) in such a way that for 
a normal lattice L, the strong subdigraph lattice S5(G) is isomorphic to L 
iff TQ(G) and D(L) are isomorphic. Moreover, we show that for any normal 
digraphs G and H , their strong subdigraph lattices S5(G) and S 5(H) are 
isomorphic iff TQ(G) and TQ(H) are isomorphic. Using these digraph results, 
we will solve our algebraic problems. 

We start with some technical notation. For a given digraph G , by G s m we 
denote the unique (up to isomorphism) weak subdigraph of G which is simple 
and VGsm = "VG, and for each v,w G VG with v ^ u>, if there is an edge of 
G from v to u>, then there exists an edge of G s m from v to w. First, such a 
simple weak subdigraph really exists (it easily follows from the axiom of choice). 
Secondly, there are, in general, many such simple digraphs, but they are all 
isomorphic. Thirdly, 

(VG,<G)^(VG^,<GJ and S5(G s m)^S s(G). (SM) 

Note that here < G need not be a partial order, because G may contain non-
trivial cycles. 

Now we define an auxiliary kind of digraphs. A digraph G is called to be 
critical if G is simple and it does not contain cycles and each of its edges is an 
isthmus. Note that for a partially ordered set (P, <p) and a lattice L, digraphs 
D p o s ( P , < P ) and D(L) are critical. 

LEMMA 1.2.1. Let G and H be critical digraphs. Then 

(a) (V G , <G) is a partially ordered set satisfying FC 

(b) G ~ D p o s ( V G , < G ) . 

(c) ( V G , < G ) ^ ( V H , < H ) <=• G ^ H . 

P r o o f . 
(a) (VG, < G ) is partially ordered, since G contains no cycles. Take v, w £ VG 

such that v <G w. Then there is a path ( e 1 , . . . , en) going from w to v. Hence, 
since e 1 , . . . , en are isthmi, 

« = I2G(0 ~<G IiG(0 = I2
G(e„_!) -<G- = IG(e,) <G IG(e,) = w. 

(b) It follows from (a) and Theorem 1.1.4 (applying to G and ( ^ G , < G ) ) 
that D p o s ( V G , < G ) is, up to isomorphism, a weak subdigraph of G satisfying 
conditions from the point (b) of Theorem 1.1.4. Hence it easily follows that 
D p o s ( V G , < G ) is isomorphic to G , because each edge of G is an isthmus. 

(c) The implication 4 = is obvious, so it is sufficient to show the second. 
Take any order isomorphism (j>: (V G , < G ) —> (VH, < H ) and let 

A= {(v,w) e VG xVG : w-<Gv}, B = {(v,w) € V H x Vu : w -<H v} . 
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Then 0 x 0 is a bijection from A onto B. It is easy to see that for each pair 
(U, w) G A, there is an edge from v to w, and such edge is exactly one (because 
G is simple); moreover the inverse fact also holds, i.e. for any edge e of G , 
its endpoints form a pair belonging to A (because each edge is an isthmus). 
Analogous facts for H are also satisfied. Thus </> forms a digraph isomorphism 
from G onto H . • 

Let G be a simple digraph. Then T(G) is the weak subdigraph of G contain­
ing all vertices of G and all isthmi of G . Next, for an arbitrary digraph G we 
define T (G) = T ( G s m ) and T Q ( G ) = T ( G / 0 ( G ) ) . Finally, T (A) - T ( G ( A ) ) 
and T Q ( A ) = T Q ( G ( A ) ) for any partial unary algebra A (where G(A) is 
the digraph representing A , see [9] and [10], which is obtained from the algebra 
by omitting the names of all operations). Note (see also Theorem 3.4 from [10]) 
that 0 (TQ(G)) is the identity relation, T Q ( G ) is a critical digraph without 
cycles and T Q ( T Q ( G ) ) = T Q ( G ) . Further, T Q ( G ) = T ( G ) if G contains 
only trivial cycles, and T ( G ) = G if G is critical. 

Obviously T Q ( G ) is, in general, completely different from G, but for special 
digraphs this construction preserves some graph properties. First, we say that a 
simple digraph G without cycles is normal if for each regular edge e of G , there 
is a path ( /1 ? . . . , fn) from IG(e) to IG(e) and / 1 ? . . . , fn are isthmi. Secondly, 
a digraph G without non-trivial cycles is normal if G s m is normal. Thirdly, a 
digraph G is normal if G /0 (G) is normal. And finally, partial unciry algebra A 
is normal if its digraph G(A) is normal. The third definition is correct, because 
for a digraph G, G/0(G) contains no non-trivial cycles (see [10; Theorem 3.4]). 
Note also that every critical digraph is, in particular, normal. Moreover, we have: 

LEMMA 1.2.2. Let G be a normal digraph and 9 = 0 (G) . Then 

( ^ G ^ < G / , ) - ^ T Q ( G ) , < T Q ( G ) > -

The proof follows directly from (SM) and the definition of normal digraphs. 

THEOREM 1.2.3. Let G be a digraph and A a partial unary algebra. Then 

(a) G is normal iff the partially ordered set ( ^ G / ^ G \ <G/6>(G)) satis­
fies FC. 

(b) G is normal iff S5(G) is a normal lattice. 
(c) A is normal iff S5(A) is a normal lattice. 

P r o o f . By [10; Theorem 3.9] we get (it is sufficient to take L = S 5 (G)) 

{VG^G\<G/0{G))^(lr(Ss(G)),<Sa{G)). 

We also know that S5(G) satisfies the conditions (*) and (**). By these facts 
and (a) we obtain (b). Thus also (c), because S5(A) ~ S 5 (G(A)) (see [9; 
Theorem 2.2.4]). 
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(a) <= . Let H = ( G / 0 ( G ) ) a m . Then ( V H , < H ) also satisfies FC. Thus 
for any regular edge e of H , there are vertices v1,v2,...,vn such that 

lf{e) = v1<li---^Yivn = lf(e). 

It follows from the definition of the covering relation (since H is simple) that 
from fi+1 to vi (for i = 1 , . . . , n—1), there is the exactly one path consisting of 
the exactly one edge, say fi. Hence, / 1 5 . . . , / n _ 1 are isthmi, and they form a 
path going from vn to vx. 

The implication => follows from Lemmas 1.2.1(a) and 1.2.2. • 

Theorem 1.1.1 can be reformulated for digraphs to obtain a characterization 
of normal simple digraphs without cycles. It is sufficient to replace the covering 
relation by the concept of isthmus, and ascending ordered chains by infinite 
paths (in a digraph) with the final vertices and descending ordered chains by 
infinite paths with the initial vertices. Note also that the fact from the end of 
Theorem 1.1.1 can be translated for arbitrary (not only simple and without 
cycles) digraphs, i.e. 

if a digraph G does not contain infinite paths, then G is normal. 

It is sufficient to show that G/0(G) does not also contain infinite paths. This 
follows from the fact that two vertices belong to the same equivalence class if 
they are equal, or there are paths from the one to the other and conversely 
(see [10; Definition 3.1, Proposition 3.2]). More formally, if G/0(G) contained 
an infinite path, then it would be sufficient to substitute between edges of this 
path finite paths connecting the suitable endpoint of one edge with the suitable 
endpoint of the other. In this way we would obtain an infinite path in G , because 
equivalence classes are disjoint. 

Now we can formulate and prove our main results. First, for digraphs, and 
next, for algebras. 

THEOREM 1.2.4. Let G be a normal digraph and L a normal lattice. Then 

S 5 ( G ) ~ L «=> T Q ( G ) ~ D ( L ) . 

P r o o f . By [10; Theorem 3.9] (where 0 = 6(G)), 

S 5 ( G ) ^ L *=> ( V G ^ , < G / , ) c ( l r ( L ) , < L ) . 

Secondly, by Proposition 1.1.2(a), and also Theorem 1.2.3(a), we have 

(VG/\ <G/e) ~ (irCL), <L> <=» D P ° S ( F G ^ , <G/&) ~ D ( L ) . 

Now it is remained to show 

TQ(G)~D*°s{VG/e,<G/e). (1) 
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By Lemma 1.2.2, 

(vG/9,<G/6)^(v^G\<TQ(G)). 
Hence, 

D p o s ( F G / , ; < Q / J „ D pos ( F TQ ( G ) ; < T Q ( G ) ) _ 

This fact and Lemma 1.2.1(b) imply 

D p o s ( F G / ( ? , < G / , ) ~ T Q ( G ) , 

since TQ(G) is critical. • 

COROLLARY 1.2.5. For each normal digraph G, 

TQ(G) ~ D(S,(G)) , S,(G) ~ S,(TQ(G)), 

T Q ( G ) ~ D P ° S ( F G ^ G ) , < G / ( ? ( G ) ) . 

P r o o f . The third part has been shown in the previous proof. 
By Theorem 1.2.3(b), S,(G) is a normal lattice. Thus by Theorem 1.2.4, 

applying to L = S,(G), 

T Q ( G ) ~ D ( S , ( G ) ) . 

Hence and by Theorem 1.1.3(b) we obtain also 

S , ( T Q ( G ) ) ~ S , ( D ( S , ( G ) ) ) ~ S , ( G ) . 

• 
T H E O R E M 1.2.6. Let G and H be normal digraphs. Then 

S,(G) ~ S,(H) <=> TQ(G) ~ TQ(H) . 

P r o o f . By Corollary 1.2.5, 

T Q ( G ) ~ T Q ( H ) <=.=> n*°s(vGWG\<G/0(G)) ^n*°s(vH/0(H\<H/e(H)). 

Moreover, by Proposition 1.1.2(a) and Theorem 1.2.3(a) we obtain 

(vG^G\<G/e(G))^(v«^\<H/e(H)) 
<=> Dpos(vG^G\ <G/e(G)) ~ D P - ( F « / ^ H ) , <H/e(H)). 

These two facts imply 

(VG^G\ <G/e(G)) ~ (V»'°™, <H/e(H)) <=> TQ(G) ~ TQ(H) . 

Thus [10; Theorem 3.11] completes the proof. • 
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If we additionally assume that digraphs G and H in Theorems 1.2.4 and 1.2.6 
do not contain non-trivial cycles, then TQ(G) and TQ(H) can be replaced by 
T(G) and T ( H ) . 

Note that it is not true for digraphs having non-trivial cycles. To see it, take 
digraphs G and H having integers as their vertices and with the following edge 
sets respectively 

{ ( n , n - l ) : n G Z} U {(-n,n) : n = 1 ,2 ,3 , . . . } and { ( n , n - l ) : n G Z} ; 

and take the lattice L = S 5 (H) . 

It is easy to see that for any n G Z , (n,n—1) is an isthmus in G, thus 
also in H , and (—n, n) is not an isthmus in G for n = 1, 2, 3 , . . . . Hence first, 
T ( G ) = H . Secondly, H is a critical digraph. So TQ(H) = T ( H ) = H and 
L is a normal lattice. Thus also H ~ D(S 5 (H)) = D(L) by Corollary 1.2.5. 
On the other hand, S5(G) and L are not isomorphic, because it is easy to see 
that S5(G) is the two-element chain (the empty digraph and G ) , and L is an 
infinite lattice. Summarizing we have found the digraphs G , H and the lattice 
L such that 

T ( G ) ~ D ( L ) , T ( G ) = T(H) and S S ( G ) ^ L , S S ( G ) ^ S S ( H ) . 

Now applying the above digraph facts and [9; Theorem 2.2.4], we can formulate 
our algebraic results. 

THEOREM 1.2.7. Let A and B be normal partial unary algebras, and L a 

normal lattice. Then 

(a) S5(A) ~ L ^=> TQ(A) ~ D(L ) . 
(b) S 5 ( A ) ^ S 5 ( B ) «=-> T Q ( A ) ~ T Q ( B ) . 

We know (see [10; Proof of Corollary 3.14]) that G(A) contains only triv­
ial cycles iff (a)A y-- (b)A for all a, b G A, a ^ b (where (a)A is the strong 
subalgebra generated by a) . Hence and by Theorem 1.2.7, we have: 

COROLLARY 1.2.8. Let A and B be normal partial unary algebras such that 

(i) For any ax,a2 eA,a1^a2 = > ( a x ) A ^ (a2)A. 
(ii) For any b^b2 e B, bx^b2 => (b1 / B ^ (b 2 ) B . 

Then 

S 5 ( A ) ~ S 5 ( B ) 4=^ T ( A ) ~ T ( B ) . 
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2 

Investigations of relationships between properties of algebras or properties of 
varieties of algebras and those of their subalgebra lattices are an important part 
of universal algebra (see e.g. [7], [8]). The theory of partial algebras provides 
additional tools for such investigation, since several different structures may be 
considered in this case (see e.g. [4] or [5]). The important concept of subalgebra 
in this theory, beside the usual (strong) subalgebra, is that of weak subalgebra. 
Let A = (A, (kA)keK) and B = (B,(kB)keK) be partial unary algebras of 
type K. Recall that B is a weak subalgebra of A , written B <w A , iff B C A 
and kB C kA for all k G K. The set of all weak subalgebras of A with the 
(weak subalgebra) inclusion < ^ forms a complete and algebraic lattice S^(A) . 
It seems that the weak subalgebra lattice alone, and also together with the strong 
subalgebra lattice, yields a lot of interesting information on an unary algebra, 
also total (see e.g. [2] and [11]). 

In this part we apply results from the first and some facts of the graph 
theory to describe pairs of lattices isomorphic to the weak and strong subalgebra 
lattices, respectively, of one normal unary algebra. 

2 .1 . We will need R o b i n s o n ' s Theorem (see [13] or [3; Chap. 9, Theorem 10]) 
about (undirected) graphs which can be directed to a form of strongly connected 
digraph. First, recall that a digraph is strongly connected if each directed pair 
of different vertices is connected by a (directed) path . Secondly, for a digraph 
G, the graph obtained from G by omitting the orientation of all edges will 
be denoted by G* . Thirdly, VG and EG denote the vertex and edge sets of 
G , respectively, and IG is the incident function. Finally, we assume that an 
undirected cycle contains pairwise different edges. 

THEOREM 2.1.1. ( R o b i n s o n , H. E.) Let U be a graph. There is a strongly 
connected digraph G such that G* = U iff U is connected and each of its 
regular edges lies on an undirected cycle. 

Note that R o b i n s o n proved this theorem for the finite case only, but we 
consider here also infinite graphs. Therefore we now show the result for arbitrary 
graphs. 

P r o o f . The implication = > is obtained by the following fact (see [3; 
Chap. 3, Theorem 7], observe that the assumption in its proof about finiteness 
of digraph is not essential): a digraph is strongly connected iff it is connected 
and each of its regular edges lies on a (directed) cycle. 

It is sufficient to show that there is a digraph G such that G* = U and 
each of its regular edges lies on a (directed) cycle. To do this, we will use trans-
finite sequences. Recall that cardinal numbers can be defined as initial ordinal 
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numbers, i.e. the least ordinal number in a class of equipotent ordinals. Let £ 
be the cardinality of the set of all undirected cycles of U . Define (Ta)a <£ to be 
a transfinite sequence of all the undirected cycles of U . Next, for any ordinal 
number a < £, let U a be the weak subgraph of U with 

Vu" = Vu and £u« = \J Ere , 
P<a 

where ETf3 is the set of all edges of To. 
Then first, 

Uai <w U a 2 for any a1<a2<£i. 

Secondly, 
U^ = U . 

It follows from the facts that U^ contains all vertices and all undirected cycles 
of U , and each regular edge lies on an undirected cycle, and each loop forms a 
trivial cycle. 

Now we prove that there is a transfinite sequence of digraphs ( G a ) a < ^ such 
that for every ordinal number a < £, 

(1) each regular edge of G a lies on a (directed) cycle, 
(2) G * = U a , 
(3) for each ordinal number 7 < a , G 7 <w Ga. 

Having this fact it is sufficient to take G = G , . Note that (3) is only a technical 
condition needed to construct the sequence. 

We apply transfinite induction on a. For a = 0 we have Eu° = 0, so U 0 

can be regarded as a digraph which, of course, satisfies (1), (2) and (3). 
Induction step. 
Take an ordinal number 1 < a < £ and assume that there is a transfinite 
sequence (G^)^ < a of digraphs satisfying (l)-(3) for each ordinal number C < &. 

If a is a limit ordinal, then we take the following digraph G a 

yGa = yV ) EGa = [J EG< a n d / G . = (J / G c 

C<a c«* 

First, by (3), IG<* is a well-defined function, so G a is indeed a digraph. Secondly, 
this definition implies G^ <w Ga for each ordinal number ( < a , so (3) holds. 
Further, since a is a limit ordinal, we obtain 

£G« = u EG< = u EV< = u U Erp = U £rp = EUa -
C<a C<« (<a(3<(, j3<a 

Hence, also IG« = Iu-, because by (2), IG« = |J IGc = \J Iuc c Iu-. 
C<a C<« 

Thus Ga = U a , so (2) holds for a. 
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Take a regular edge e G EGa . Then e G EG< = E^z for some ordinal 
number ( < a. Thus e lies on a (directed) cycle in G^, which is also a cycle in 
G Q . Thus (1) is also satisfied. 

Now assume a = (3 + 1 for some ordinal number j3 < £ (i.e. a is a succes­
sor). Take the undirected cycle r^ = ( ( / -_ , . . . , / n ) , (u1:..., un+1)) of U , (where 
I^Ui) = {uvui+1}), and the following digraph G a 

VGa=vu EGa=EG?U{f1,...Jn}, 

IGa\EG(3 =IG? and 

IG-(fx) = (uvul+1) if f^EG^ for i = l , 2 , . . . , n . 

First, IGa is well-defined on {fv ..., fn}\EGe , because /-_, . . . , fn are pairwise 
different. Thus G is indeed a digraph. Secondly, G^ = U^ <w U a and EJJa = 
E^ u {/,,..., fj = EG^U{f^...Jn} = EG«. Hence, G a = U a , so (2) is 
true. Thirdly, it is clear that Gp <w G a , which implies (3) for a , because G^ 
satisfies induction hypotheses. 

Obviously if {fv . . . , / n } C EG? or {/15..., fj n EG? = 0, then (1) holds 
for cY. Note that in the second case r^ is just a (directed) cycle in G a . 

Now assume {/1?..., fj £ EG? and {/1?..., fj n EG? / 0. Of course, 
we can also assume fn G EG? and f1 $ EG?. Let k be the greatest number 
such that {/ l 5 . . . , fk} H F?G/3 = 0 and let / be the greatest number such that 
/ > k + 1 and {fk+i, • • • > / /} = ^ G / 3 • By o u r assumptions, such numbers exist 
and k < n - 1, / < n . Then (/-_,..., /fc) is a (directed) chain in G a . Further, 
for i = k + l , . . . , / , {lGcx(fi)J?a(fi)} = {uvui+1} and /• lies on a (directed) 
cycle, because fi G # G / 3 • Thus there is a (directed) chain going from u • to 
! / i + 1 . This implies that there is a chain (#-_,... ,g m ) going from uk+1 to w i+1 

(where un+1 = ^ ) . Hence, (] = ( / 1 , . . . , / f c ^ 1 , . . . , f j J is a chain going from ux 

to t t / + 1 . If / = n , i.e. izz+1 -= wx, then g is a (directed) cycle. If / < n , then 
this procedure can be repeated, as many times as needed, to obtain a (directed) 
cycle q containing all edges from Er? \ EGe . 

Thus each regular edge of G a lies on a (directed) cycle, i.e. (1) also holds 
for a. This completes the proof of the induction step. • 

2.2. It is proved in [1] that a complete lattice L = (L, < L ) is isomorphic to the 
weak subalgebra lattice of some partial unary algebra iff 

(i) L is algebraic and distributive, 
(ii) each element of L is a join of join-irreducible elements, 

(iii) each non-zero and non-atomic join-irreducible element of L contains 
exactly one or two atoms, 

(iv) the set of all non-zero and non-atomic join-irreducible elements of L is 
an antichain with respect to the lattice order < L . 
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Recall (see [9; Definition 2.3.7]) that with any lattice L satisfying (i)-(iv) we 
can associate the graph G(L) containing the set of all atoms of L as its vertex 
set and the set of all non-zero and non-atomic join-irreducible elements of L as 
its edge set, and a vertex v and an edge e are incident if v < L e. 

In this section we describe pairs of the weak and strong subalgebra lattices 
of one normal partial unary algebra. By results from [9] we first have that 
an algebra can be replaced by a digraph. Secondly, we can replace the weak 
subalgebra lattice by a graph ([9; Theorem 2.3.11]), and the strong subalgebra 
lattice by a critical digraph (Theorem 1.2.7). Summarizing it is sufficient to find 
necessary and sufficient conditions for a graph U and a critical digraph H to 
exist a normal digraph G such that G* ~ U and TQ(G) ~ H . The desired 
conditions are given by the following main result. (Recall that the quotient graph 
G/6 of a graph G with respect to an equivalence relation 9 on VG is obtained 
by the contraction of each equivalence class of 9 to one point (see [10]). Further, 
for any X C VG, [X]G denotes the subgraph consisting of X and all edges 
with endpoints in X.) 

THEOREM 2.2.1. Let XJ be a graph and H a critical digraph. Then the fol­
lowing conditions are equivalent: 

(a) There is a normal digraph G such that G* ~ U and TQ(G) ~ H . 
(b) There is an equivalence relation 9 on Vu such that 

(b.l) for any equivalence class W £ V13/9, [W]v is a connected graph 
such that each of its regular edges lies on an undirected cycle, 

(b.2) H* is a weak subgraph (up to isomorphism) of XJ/9 having the 
same vertex set and if H* is identified with this weak subgraph, 
then for each regular edge e of XJ/9, there is a (directed) path in 
H going from one endpoint of e to the other. 

P r o o f . 
(a) => (b). Let G be a normal digraph such that 

G * ~ U and T Q ( G ) ~ H . 

The orientation of all edges of G can be transported onto U . Thus we can 
assume G* = U . Observe 

fflu = W forany xcvu. 
Hence it is easy to see that the equivalence relation 9 = 9(G) (see [10]) satis­
fies (b.l). 

Now take K = (G/9) . Since K is a simple digraph without cycles, between 
any two different vertices there is at most one undirected edge in the graph K* 
(otherwise we would have a directed cycle in K ) . Hence and by the equalities 

U / # = G*/6> = (G/0)* 
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we deduce that K* is a weak subgraph of U/9 having the same vertex set and 
such that for any pair of different vertices, if there is an edge between them in 
U/rJ, then there is an edge between them in K*. This fact and the definition 
of the digraph T Q ( G ) , since G is normal, imply that T Q ( G ) , thus also H 
satisfies (b.2). 

(b) ==> (a). Let 9 be an equivalence relation on V13 satisfying (b.l) and 
(b.2). Take the graph U/9 and assume that H* is its weak subgraph satis­
fying (b.2) (it is sufficient to take an isomorphic copy of H* by any digraph 
isomorphism forced by (b.2)). Then all edges of U/9 which belong to H can 
be directed as in H . Obviously all loops of U/9 can be regarded as directed 
edges. Finally, observe that all regular edges of U/9 outside H can be directed 
according to the orientation of H . More formally, take an arbitrary regular edge 
e of U/9 such that e does not belong to H . Then there is a (directed) path 
in H from one endpoint v of e to the other endpoint w of e. Thus v can be 
taken as the initial vertex of e and w can be defined as the final vertex of e. 
Since H has no (directed) cycles, it follows that any path in H connecting the 
endpoints of e must go from v to w. This implies that the above procedure 
uniquely direct e. In this way we construct the digraph D such that 

D* = U / 0 . (1) 

H <w D and VH = Vu . (2) 

Since H has not (directed) cycles and the orientation of all edges of D is ac­
cording to H , we deduce that D does not contain non-trivial cycles, i.e. (see 
the definition at the end of Section 1.2) 

O„(D) = 0 . (3) 

Take the simple digraph D s m . Since H is a simple digraph and H <w D , H 
can be assumed to be a weak subdigraph of D s m . Then by the construction of 
D and D s m we infer that for any regular edge e of D s m , there is a (directed) 
path in H going from the initial vertex FPsm(e) of e to the final vertex F|Psm(e) 
of e. Hence, all isthmi of D s m belong to H . 

On the other hand, take an isthmus e of H and assume that p = ( / p . . . , fk) 
is a (directed) path in D s m going from Ix

 sm(e) to I^sm{e). Then there are 
(directed) paths p1^...,pk in H such that pi goes from / ^ ^ ( / J to I^smUi) 
for i = l , . . . , k . Since H does not contain cycles, the sum of these k paths 
form another (directed) path in H going from I^sm{e) to FPsm(e). But e is an 
isthmus in H , so this path contains only e. This implies that p has also only 
one edge. Hence, p = (e), because D s m is simple. Thus e is also an isthmus 
i n D s m • 

Summarizing, H consists of all vertices and all its isthmi of Dg m . Hence, 
T ( D s m ) = H , s o 

T (D) = H . (4) 
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Moreover, by the definition of D and (3) we obtain 

(5) D is a normal digraph. 

Now take an equivalence class X G V u / 9 . Then by (b.l) and Theorem 2.1.1, 
all (undirected) edges of [X]^ can be directed to a form of strongly connected 
digraph Kx, i.e. 

K*X = [X]V. 

Let e be an arbitrary edge of U . If e is a loop in U / 0 , then Ju(e) C X for some 
equivalence class X G V u /0 (recall, see [10], that endpoints of e in U / 0 are 
equal to equivalence classes of endpoints of e from U , i.e. JU//^(e) = I13(e)/9). 
Then we direct e in the same way as in K x . If e is not a loop in U / 0 , then 
by (1), there are vertices v and w such that Ju(e) -= {v,w} and u/0 = / P ( e ) , 
w/6 = i p ( e ) . These two vertices are uniquely determined, so v can be defined 
as the initial vertex of e and w can be denned as the final vertex of e. In this 
way we construct the digraph G such that 

G* = U . (6) 

G/0 = D . (7) 

K x <w G for any X G Vv/0. (8) 

Now take the equivalence relation 0(G). Then 

0 = 0(G). 

To see this, take vertices v and w such that v6w and v i=- w. Then v,w G X 
for some equivalence class X G Vu/8. So f,Hj G F7Kx . Since K x is strongly 
connected, there is a path going from v to w, and there is a path going from 
w to v. These two paths are also paths in G by (8). Obviously their sum form 
a cycle in G containing v and w. Thus v9(G)w. On the other hand, take two 
different vertices v and w such that v6(G)w. Then there is a (directed) cycle r 
containing these vertices. Obviously the image of r is also a cycle in G/6 = D 
containing v/6 and w/6. By (3), it is a trivial cycle in D , so v/6 = w/9, 
i.e. vOw. 

By the above equality 
G/0(G) = D . 

Hence and by (5), G is normal. Next, by (4), T Q ( G ) = H , which completes 
the proof of (b) ---=> (a). • 

COROLLARY 2.2.2. Let U be a graph and H a critical digraph. Then the 
following conditions are equivalent: 

(a) There is a n o r m a l digraph G such that C n (G) = 0. G* c_. U . 
T Q ( G ) ~ H . 
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(b) H* is a weak subgraph (up to isomorphism) of U having the same vertex 
set and for each regular edge e of V, there is a (directed) path in H 
going from one endpoint of e to the other. 

P r o o f . Observe that (b) is the particular case of the condition (b) from 
Theorem 2.2.1 for the identity relation. Moreover, 0(G) is the identity relation 
iff G does not contain non-trivial cycles. Thus our corollary follows from the 
proof of Theorem 2.2.1. • 

Using Theorem 2.2.1 we obtain the following solution of our algebraic prob­
lem. 

THEOREM 2.2.3. Let K and L be lattices. Then the following conditions are 

equivalent: 

(a) There is a n o r m a l partial unary algebra A such that 
S J A ) ~ K and S s ( A ) ~ L . 

(b) K and L are lattices such that 

(b.l) K satisfies conditions (i)-(iv). 

(b.2) L is a normal lattice, 

(b.3) the graph G ( K ) and the digraph D(L) satisfy (b) of Theorem 2.2.1. 

P r o o f . 
(a) => (b). First, (b.2) follows from Theorem 1.2.3. Secondly, by [9; 

Theorem 2.3.12], 
G ( A ) * ~ G ( K ) ; 

and also by Theorem 1.2.7, 

T Q ( G ( A ) ) - T Q ( A ) ~ D ( L ) . 

Hence and by Theorem 2.2.1 we obtain (a) =-> (b), because G(A) is normal 
and D(L) is critical. 

(b) ==i> (a). By assumptions, G ( K ) and D(L) satisfy (b) of Theorem 2.2.1, 
and D(L) is a critical digraph. Thus there is a normal digraph G such that 

G* ~ G ( K ) and T Q ( G ) ~ D ( L ) . 

Then by [9; Theorem 2.3.12], 

Moreover, by Theorem 1.2.4, 

S Ш ( G ) ~ K . 

S S ( G ) ~ L , 

because L is a normal lattice. 

Now, having [9; Theorem 2.2.4], it is sufficient to construct (see [9] for simple 
details of this construction) a partial unary algebra A such that G(A) ~ G . 
Of course, A is, in particular, normal. • 
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COROLLARY 2.2.4. Let K and L be lattices. Then the following conditions 
are equivalent: 

(a) There is a normal partial unary algebra A = (A, (kA)keK) such that 

(a.l) for any a, b G A, a 7-- b ==--> (a) A 7-- (b)A . 

(a.2) S J A ) ~ K and S 5 ( A ) ~ L . 
(b) K and L are lattices such that 

(b.l) K satisfies conditions (i)-(iv). 
(b.2) L 25 a normal lattice, 
(b.3) £be grapb G(K) ana7 the digraph D(L) satisfy (b) 0/ Corol­

lary 2.2.2. 

The proof is obtained in the same way as the proof of Theorem 2.2.3. It is 
sufficient to use Corollary 2.2.2 and the fact (see the end of the first part) that 
G(A) does not contain non-trivial cycles iff (a.l) holds. 
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