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ISOMETRIES AND DIRECT DECOMPOSITIONS 
OF PSEUDO MV-ALGEBRAS 

MILAN JASEM 

(Communicated by Anatolij Dvurecenskij) 

A B S T R A C T . In the paper isometries in pseudo MV-algebras are investigated. It 
is shown tha t for every isometry / in a pseudo MV-algebra A = (A, 0 , _ , ~ , 0,1) 
there exists an internal direct decomposition A = B° X C° of A with C° commuta
tive such tha t / ( 0 ) = l c o and f(x) = xBo ® ( l c o 0 ( x c o ) " ) = x^o 0 ( l c o —xco) 
for each x £ A. 

On the other hand, if A = V° X Q° is an internal direct decomposition of a 
pseudo MV-algebra A = (A ,© , ~ , ~ , 0 , 1) with Q° commutative , then the map
ping g: A —> A defined by g(x) = xPo 0 ( I Q O - xgo) is an isometry in A and 
- ( 0 ) = 1QO. 
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Isometries in abelian lattice ordered groups were introduced and investigated 
by S w a m y in [27]. J a k u b 1 k [7], [8] studied isometries in non-abelian lattice 
ordered groups and proved that for every isometry g in a lattice ordered group 
G there exists a uniquely determined direct decomposition G = A x B of G 
with B abelian such that g(x) = XA — %B + g(0) for each x £ G. Further, he 
showed that if G = A x B is a direct decomposition of a lattice ordered group 
G with B abelian and b is an element of G, then the mapping g defined by 
g(x) = XA — XB + b is an isometry in G and b = g(0). Isometries in some types 
of partially ordered groups have been investigated in [14], [15], [16], [23]. 

The notion of an MV-algebra was introduced by C h a n g [1] as an algebraic 
model of infinite valued logic. In [22] M u n d i c i showed that any MV-algebra 
is an interval of an abelian lattice ordered group with a strong unit. Isometries 
in MV-algebras were dealt with by J a k u b i k [11], [12]. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F35. 
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MILAN JASEM 

G e o r g e s c u and I o r g u l e s c u [4] introduced pseudo MV-algebras as a 
non-commutative generalization of MV-algebras. D v u r e c e n s k i j [2] proved 
that any pseudo MV-algebra is an interval of a lattice ordered group with a 
strong unit. A completely different proof of this important result was given by 
D v u r e c e n s k i j and V e t t e r l e i n in [3]. Non-commutative MV-algebras 
were also introduced independently by R a c h u n e k [26]. His notion of a non-
commutative MV-algebra is equivalent to the notion of a pseudo MV-algebra. 
Further, R a c h u n e k showed that non-commutative MV-algebras and hence 
also pseudo MV-algebras are a special kind of bounded DRl-monoids. 

DRl-monoids were studied in [17], [19], [20], [21], [24], [25], [29] and isometries 
in commutative DRl-monoids (called DRl-semigroups) have been investigated in 
[13], [18], [28], 

We recall the definition and some basic properties of a pseudo MV-algebra 
from [4], 

A pseudo MV-algebra is an algebra A = (A, 0 , ~, ~, 0,1) of type (2,1 ,1 , 0, 0) 
with an additional binary operation © defined by yOx = (x~ 0 2/~~)~ such that 
following axioms hold for all .r, y, z E A: 

(Al) x 0 (y 0 z) = (x 0 y) 0 z; 

(A2) x 0 O = O 0 x = x; 

(A3) X 0 1 = 1 0 X = 1; 

(A4) 1~ = 0, 1" = 0; 

(A5) (x~®y~)~ = (x~®y~)~; 

(A6) x 0 (x~ 0 y) = y 0 (y~ © x) = (x © y~) 0 y = (y © x~) 0 x\ 

(A7) x 0 (x~ 0 y) = (x 0 y~) 0 y\ 

(A8) (x~Y = x. 

(In [4] instead of 0 the symbol • is used.) 
Any pseudo MV-algebra A can be ordered by the relation < defined by x < y 

iff x~ 0 2/ = 1. Then (A, <) is a distributive lattice with the least element 0 and 
the greatest element 1. For the join x V y and the meet x A y of two elements x 
and y the following statements are valid: 
x V 2/ = x 0 (x~ © 2/), x A y = x © (x~ 0 y). 

Let (G, + , V, A) be a lattice ordered group, u a positive element of G and A 
the interval [0, u] of G. Then (A, 0 , ~, ~, 0, u) where 

x 0 y = (x + y) A u, x~ = u — x, x~ = — x + u 

is a pseudo MV-algebra which will be denoted by T(G, u). Moreover, x © y = 
(x-u + y)V0. 
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D v u r e c e n s k i j [2] defined a partial binary operation + on a pseudo MV-al-
gebra A = (A, 0 , _ , ~ ,0 ,1) by putting x + y = x0y iff x < y~. Having used this 
partial operation + he proved that for each pseudo MV-algebra A there exists a 
lattice ordered group G with a strong unit u such that A = T(G, u). The partial 
operation + on A coincides with the operation + as defined in G. Further, the 
partial order < on A is that induced from the partial order in G. 

The direct product of pseudo MV-algebras is defined in the usual way, 
see e.g. [5]. 

The internal direct decomposition of an MV-algebra was defined and studied 
by J a k u b f k in [9]. Analogously, we can define the two-factor internal direct 
decomposition of a pseudo MV-algebra. 

Let 

. 4 = 0 4 , 0 , - , - , 0 , 1 ) , £ = ( B , 0 B , - B , ~ B , O B , 1 B ) , C = ( C , 0 C , - C , ~ C , O C , 1 C ) 

be pseudo MV-algebras. 

An isomorphism cp of A onto the direct product B x C is called a direct de
composition of A. 

For x £ A we denote by XB ("C) the component of x in B (C, respectively) 
with respect to the isomorphism ip. 

We denote B° = {x G A : xc = 0 C } , C° = {x e A : xB = 0B}. Then B° 
and C° are subsets of A containing 0. Since ip is an isomorphism, for x,y G B° 
we have (x 0 y)c = 0C- Thus x ®y G B°. Analogously, z 0 t G C° for each 
z,t G C°. Hence the sets B° and C° are closed under the operation 0 . 

In a natural way, we introduce the following operations ~B° , ~e° , lBo on the 
set B°. Let b G B° and let d G A be such that dB = (b~)- and dc = 0c- Then 
d G B° and we put b_s° = d. Analogously, for c G 5 ° we put c~s° = e, where 
e is an element of A such that eB = (c~)B, eC = 0C. Clearly, e G 5 ° . Further, 
l#o is an element of A such that (1BO)B = IB , ( lB°)c = 0c-

Similarly we define the operations ~c°, ~ c ° , lc° on C°. 

Then B° = (B°, 0 , " B ° , ~ * ° , 0, lBo) and C° = (C°, 0 , " c ° , ~c° , 0, l c o) are 
pseudo MV-algebras. 

In general, B° and C° need not be subalgebras of A. 

Now, we define a mapping <^s: B -^ B°. For t £ B there exists an element 
z £ A such that zB = t and ^c = 0c- Thus z E B° and we put pB(t) = z. Then 
(^B is an isomorphism of S onto /3°. Analogously defined mapping <pc of C into 
C° is an isomorphism of C onto C°. 
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Then the mapping (p° of A into B° x C° given by (p°(x) = (pB(xB), <pc(xc) 
is an isomorphism of A onto B° x C°. This isomorphism (/?° is called an internal 
direct decomposition of A and we write A = B° x C° in this case. /3° and C° 
are called internal direct factors of A. 

For x E Awe denote by xBo (xCo) the component of x in B° (C°, respectively) 
with the respect to the isomorphism p°. Hence xBo = <pB(xB), xCo = pc(xc), 
p)(xBo) = (xB,0C), p(xCo) = (0/3, XC). 

If x G B° and y G C°, then x®y = y®x. 

For each x ' A, x = xBo ©x^o and if x = xi ©x2 where Xi G B° and x2 G C°, 
then xi = X/30 and x2 = xco. 

Further, if x,y G A, then x < y iff X/30 < y^o and xco < yco. B° and C° 
are convex subsets of A. For each x,y e. A, (x A y)#o -= x#o A y#o, (x A y)c 

xCo A yco, (xVy)Bo = xBo V yBo, (x V y)co = xco V yco. 

Throughout the paper A = (A, ©, ~, ~, 0,1) will be a pseudo MV-algebra. 
Further, we suppose that (G,+,V,A) is a lattice ordered group with a strong 
unit u such that A = T(G, u) (it is clear that u = 1). Then the above mentioned 
operations V and A on A coincide with the lattice operations in G (reduced to 
the interval [0, u]) and for all x, y G A we have: 

x © y = (x + y) A u, x~ = u — x, x~ = —x + u. 

Further, if x, y G A and x < y, then y — x, —x + y G A. 

We shall apply these assertions without special references. 

For basic properties of lattice ordered groups, see e.g. [6]. 

LEMMA 1. Let x, y G A, x < y. Then the following statements are valid. 

(i) (y - x) © x = y, x © ( - x + y) = y. 

(ii) Let py = {z G A : z © x = y}, Ql = {t G A : x © t = y}. Then 
y © x~ = y - x is the least element of P% and x~ 0 y — - x + y is the least 
element of Qv

x. 

(hi) If y - x = 1. then y = 1. x = 0. 

(iv) If -x + y = I, then y = 1, x = 0. 

P r o o f . Let x, y 6 A and x < y. 

(i) Clearly, (y - x) © x = [(y - x) + x] A 1 = y A 1 - y. Analogously. 
x© (-x + y) = y. 

(ii) Since (y © x~) © x = y v x = y and x © (x~ © y) = x V y = y, we obtain 
y - x - G P | and x~ © y G QJ!. Let ^, t G A, z © x = y, x © £ = y. By [4, 
Proposition 1.12(d)], z > y®x~,t > x^©y. Therefore y©x~ = ( y - l © i _ x ) V 0 
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= y — x is the least element of P% and x~ 0 y = (—x + 1 — 1 + y) V 0 = — x + y 
is the least element of Q%. 

(iii) If y —x = y 0 x " = 1, then y = y\/x = ( y 0 x ~ ) 0 x = l 0 x = l whence 
x~ = 1 and so x = 0. 

(iv) Let - x + y = x~ 0 y = 1. Then y = x V y = x 0 ( x ~ © y ) = x 0 l = l. 
This yields x~ = 1. Hence x = 0. • 

G e o r g e s c u and I o r g u l e s c u [4] defined the distance function 
d: Ax .A—> A for a pseudo MV-algebra A by d(x, y) = (x 0 y~) 0 (y 0 x " ) . 

Further, it was shown that this distance function has the following properties 
[4, Proposition 1.35]. 

(P0) d(x,y) = ( x 0 y - ) V ( y 0 x - ) , 

(Pi) d ( x , y ) = 0 i f f x = y, 

(P2) d ( x , 0 ) = x , 

(P3) d ( x , l ) = x " , 

(P4) d(x,y) = d(y,x), 

(P5) d(x, 2:) < d(x, y) 0 d(y, 2;) 0 d(x, y), 

(P6) d(x, z) < d(y, z) 0 d(x, y) 0 d(y, *). 

J a k u b 1 k [11] defined an autometrization of an MV-algebra V with the under
lying set D as a mapping p: D x D -+ D such that p(x,y) = (x V y) — (x A y) 
for each x,y € D. 

The following lemma shows that J a k u b 1 k 's autometrization p(x, y) coicides 
with the distance function d(x,y) of G e o r g e s c u and I o r g u l e s c u in any 
pseudo MV-algebra. 

LEMMA 2. For eac/i x , | / G . 4 , (x Vy) - (x Ay) = ( x 0 y " ) 0 (y 0 x " ) . 

P r o o f . Let x,y G A In view of Lemma 1, (Pn) and [4, Propositions 1.23, 1.16, 
1.7(7)] we have (x V y) - (x A y) = (x V y) 0 (x A y)~ = (x V y) 0 (x" V y~) = 
(x 0 (x" V y")) V (y 0 (x" V y")) = (x 0 x" ) V (x 0 y~) V (y 0 x~) V (y 0 y") = 
0 V (x 0 y") V (y 0 x" ) V 0 = (x 0 y" ) V (y 0 x~) = (x 0 y~) 0 (y 0 x " ) . • 

We can use J a k u b i k ' s definition of an isometry in an MV-algebra from [11] 
also for a pseudo MV-algebra A. 

A bijection / : A-* A is said to be an isometry in A if the relation d(f(x)) f(y)) 
= d(x, y) identically holds. 

An isometry / is called 2-periodic if f(f(x)) = x for each x G A. 

We shall write f2(x) instead of f(f(x)). 
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LEMMA 3 . Let x, y E A, x < y. Then d(x, y) = y — x. 

P r o o f . The proof is obvious. • 

Throughout the rest of the paper let / be an isometry in A. 

LEMMA 4. Let x e A. Then 

(i) f2(x)=x. 

(ii) f(x) = (f(0)\/x)-(f(0)Ax). 

P r o o f . 
(i) First we prove that / 2 (0) = 0. Since / is a bijection, there exists z G A 

such that f(z) = 0. In view of (P2) and (P4) we get z = d(z, 0) - d(f(z),f(0)) 
d(0, f(0)) = / (0 ) . From this we obtain / 2 (0) = / ( - ) = 0. 

Let x e A. According to (P2), x = d(x,0) = d(f2(x), f2(0)) = d(f2(x),0) 

f2(x)-
(ii) Let x e A. From (i) and (P2) it follows that f(x) - d(f(x),0)) 

4f2(x), f(0)) = d(x, f(0)) = (f(0) V x) - (f(0) Ax). O 

From Lemma 4 it follows that any isometry in a pseudo MV-algebra ib 
2-periodic and uniquely determined by the element / (0) . Lemma 4(i) gener
alizes assertion (/?) from [12]. 

Further, from Lemma 4 we immediately obtain the following corollary. 

COROLLARY 1. / ( I ) = 1 - / (0 ) . 

LEMMA 5. 

(i) / ( 0 ) V / ( 1 ) = 1 , / ( 0 ) A / ( 1 ) = 0 . 

(ii) For each x £ A, x A / ( I ) = (xV /(0)) - / (0 ) . 

(hi) For each x e A, f(x) = (x A / ( l ) ) + / (0) - ( x A / (0) ) . 

P r o o f . 

(i) By (P2) and (P4) , 1 = d(0,1) = d(/(0) , f(l)) = ( / ( 0 ) V / ( l ) ) - ( / ( 0 ) A / ( l ) ) . 
Then Lemma l(iii) yields / (0) V 1 = 1, / (0) A 1 = 0. 

(ii) Let i e A B y ( i ) , ( i A / ( l ) ) A /(0) = x A ( / ( l ) A /(0)) = a; A 0 = 0. Then 
(i) and [2, Proposition 2.1(X)] yield (x A / ( l ) ) + /(0) = (x A / ( l ) ) V / (0) - (x 
/ (0 ) )A( / ( l )V/ (0 ) ) = (xVf(0))Al = xV/(0) . Hence x A / ( l ) = ( x V / ( 0 ) ) - / ( 0 ) . 

(iii) Let x G A. In view of (ii) and Lemma 4 we have f(x) = ( i v /(0)) — 
/ (0) + / (0) - (a; A /(0)) = (x A / ( ! ) ) + / (0) - (x A f(0)). D 
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Since the lattice (A, <) is distributive, from Lemma 5 we obtain the following 
corollary. 

COROLLARY 2. / ( I ) is the uniquely determined complement of f(0) in the lattice 

(A,<). 

LEMMA 6. Let x e A. 

(i) Ifx< f(0), then f(x) = f(0)-x, f(x)®x = / ( 0 ) . 

(ii) I / / ( 0 ) < x, then f(x) =x- f(0), f(x) 0 / (0) = x. 

(hi) If f(x) < f(0), then x = / (0) - f(x), x 0 f(x) = f(0). 

(iv) 17/(0) < f(x), then x = f(x) - f(0), f(x) = x 0 f(0). 

P r o o f . 

(i) Let x e A, x < / (0 ) . By (P2) , Lemmas 3 and 4, / (0) - x = d(x, f(0)) = 
d(f(x), / 2 (0)) = d(f(x), 0) = f(x). Then clearly, / (0) = f(x) +x = f(x) 0 x. 

Proofs of (ii), (iii) and (iv) are analogous. • 

Let B = {x E A : x < / ( l ) } , C = {x e A : x < f(0)}. 

LEMMA 7. Let x e B and y e C. Then x Ay = 0, x + y = x§y = x\/y = 
y®x = y + x. 

P r o o f . Let x e 15, y G C. Then from Lemma 5 we get 0 = / ( l ) A / (0) > 
x Ay > 0. Hence x A y = 0. Then [4, Proposition 1.26(h)] implies x 0 y — 
x v V = V © x. According to [2, Proposition 2.1(X)] ,x + y = x\/y = y + x. • 

LEMMA 8. For each x <G B, f(x) = x + f(0) = x 0 / (0 ) . 

P r o o f . Let x G B. By Lemmas 3, 4 and Corollary 1, 1 — (x + f(0)) = 
(1 - / (0)) -x = / ( l ) - x = d(x, / ( l ) ) = rf(/(x), / 2 (1) ) = rf(/(x), 1) = 1 - / ( x ) . 
This yields / (x ) = x + / (0) = x 0 / (0 ) . D 

LEMMA 9. Let x e A. Then x eC iff f(x) < / (0 ) . 

P r o o f . Let x E C. According to Lemma 6(i), f(x) = f(0) — x < f(0). 
Let x e A, f(x) < f(0). By Lemma 6(iii), x = f(0) - f(x) < f(0). Hence 

xeC. D 

In [10] J a k u b f k showed that if e is an element of a pseudo MV-algebra 
A which has a complement e' in the lattice (̂ 4, <) , then there exists a direct 
decomposition of A. Since the lattice (A, <) is distributive, e' is uniquely deter
mined. 
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From Lemma 5 it follows that / (0) is a complement of / ( l ) in the lattice 
(A, < ) . Hence we have e = / ( l ) , e' = / (0) in our case. 

LEMMA 10. The sets B and C are closed with respect to the operation 0 . 

P r o o f . Prom [10, Lemma 3.6] it follows that the set B is closed under the 
operation 0 . Similarly we can show that C is closed. • 

LEMMA 11. For each xeC, f(x) = / (0) -x,x + / (0) = / (0) + x, x 0 / (0) = 
/ ( O ) 0 x . 

P r o o f . Let x G C. Hence x < / (0) . By Lemma 9, f(x) < f(0). Then from 
Lemma 6(i) and (hi) it follows that f(x) = / (0) — x, x = / (0) — f(x). Thus 
we get x = /(0) + x — /(0) and hence x + / (0) = / (0) + x. Then clearly 
x 0 / ( O ) = / ( O ) 0 x . • 

LEMMA 12. 

(i) For each x G C , x + l = l + x. 

(ii) If x,y e C, then x 0 y = y 0 x. 

P r o o f . 

(i) Let x G C. By Lemmas 7, 11 and Corollary 1, x + 1 - / (0) = x + / ( l ) = 
/ ( l ) + x = 1 - / (0) + x = 1 + x - / (0 ) . This implies x + 1 = 1 + x. 

(ii) Let x,y e C. Since x 0 y > y, / (0) — y > / (0) — (x 0 y), in view of 
Lemmas 3, 10 and 11 we have (x 0 y) — y = d(x ® y,y) = d(f(x 0 H), /(H)) = 
d(f(0)-(x(By)J(0)-y) = f(0)-y-[f(0)-(x(By)} = -y + (x®y). From this 
and (i) we get x 0 y = y + (x®y)-y = y+[(x + y) Al] -y = (y + x) A(y + l - y ) = 
(y + x) A 1 = y 0 x . • 

LEMMA 13. 

(i) (Cf. [10, Lemmas 3.3 and 3.4]) For each element x G A there exist uniquely 
determined elements xi G B and x2 G C such that x = x\ 0 X2- Moreover, 
Xi = x A / ( l ) and x2 = x A / (0 ) . 

(ii) LetxeB,ye C. Then f(x 0 y) = x 0 (/(0) - H) = x 0 (/(0) 0 y " ) . 

P r o o f . 
(ii) Let xeB,y eC. By (i), x = ( x 0 H ) i = ( x 0 j / ) A / ( l ) , y= (x 0 y)2 = 

(x 0 ?/) A / (0) . Then Lemmas 1, 5, 7, 9 and 11 yield f(x 0 H) = (x 0 y) A / ( l ) + 
/ (0) - ((x 0 H) A /(0)) = x + (/(0) - H) = x 0 (/(0) - y) = x 0 (/(0) Qy~). D 
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THEOREM 1 . For each x £ A, f(x) = [ / ( 0 ) - (x A / ( 0 ) ) ] V ( / ( l ) A x ) . 

P r o o f . L e t x G A Then xx = / ( l ) A x G 5 , x2 = / (0) A x G C. From 
Lemmas 9 and 11 it follows that / (0) — x2 G C. Then Lemmas 5 and 7 yield 
/Or) = X! + (/(0) - x 2 ) = an V (/(0) - x 2 ) = [/(0) - (/(0) Ax)} V ( / ( l ) Ax). • 

In [12] it was shown that the assumption of 2-periodicity of isometry in [11, 
Proposition 4.4] can be omitted. Theorem 1 with Corollary 2 generalize [11, 
Proposition 4.4] without the assumption of 2-periodicity of isometry. 

We define the unary operations _ e , ~e on B by putting x~e = / ( l ) — ~, 
x~e = ~x + / ( l ) for each x e B. 

Analogously we define the unary operations ~e / , ~e ' on C. For each x £ C 
we put x~e/ = / (0) — x, x~e/ = — x + / (0 ) . 

From Lemma 1 it follows that these operations are defined as in [10, p. 135] 
(Xi = B, X2 = C in our case). 

THEOREM 2. B = ( £ , 0 , ~ e , ~ e , O , / ( l ) ) is a pseudo MV-algebra, 
C = (C, 0 , ~~e/, ~ e / , 0, / (0)) zs a commutative pseudo MV-algebra. 

P r o o f . By [10, Corollary 4.2], B is a pseudo MV-algebra. Analogously it can 
be shown that C is also a pseudo MV-algebra. The commutativity of C follows 
from Lemma 12. • 

THEOREM 3. If for each x G A we put (p(x) = (x A f(l),x A / (0) ) , then (p is an 
isomorphism of A onto the direct product B x C. 

P r o o f . It follows from [10, Proposition 4.3]. • 

Hence (p is a direct decomposition of A. In view of the definition of an internal 
direct decomposition we conclude that tp is also an internal direct decomposition 
of A. (Clearly, B° = B, C° = C.) Hence, xBo = xB = x A / ( l ) , xco = xc = 
x A / (0) , x = xB 0 xc for each x E A. 

THEOREM 4. Let A = (A, 0 , ~, ~, 0,1) be a pseudo MV-algebra and f an isom
etry in A. Let B and C be as in Theorem 2. Then A = BxC, \c — / (0) and 
f(x) =xBe (/(0) - xc) =xB® (/(0) 0 (xc)~) for each x G A. 

P r o o f . It follows from Theorems 3 and Lemma 13. • 
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THEOREM 5. Let A = (A, ©, ~,~,0,1) be a pseudo MV-algebra, cp: A^ P xQ 
a direct decomposition of A with Q commutative and <p°: A —> V° x Q° an 
internal direct decomposition of A. Let P° (Q°) be the underlying set of V° 
(Q°, respectively). Then 

(i) Q° is a commutative pseudo MV-algebra, 

(ii) for every x E P° and y E Q°, x + y is defined in A, 

(hi) for each x,y E A, d(x,y) = d(xPo, yPo) © d(xQo, yQo). 

(iv) if we put g(x) = xPo 0 (IQO — XQO) for each x E A, then g is an isometry 
in A and /(0) = IQO. 

P r o o f . 

(i) It is obvious. 

(ii) Let x E P° and y E Q°. Since x A y = 0, from [2, Proposition 2.1 (X)] it 

follows that x + y is defined in A. 

(iii) Let x,yE A. Then d(x,y) = (xVy)-(xAy) = (xPo\ZyPo) + (xQoVyQo)-
[(xPo AyPo) + (xQo AyQo)] = (xPoVyPo)-(xPoAyPo)-\-(xQo\/yQo)-(xQoAyQo) = 
d(xPo, yp0) © d(xQo, yQo). 

(iv) Letx,yE A. Thend(g(x),g(y)) = d(xPo®(lQo-xQo),yPo®(lQo - yQo)) 
= d(xPo,yPo)®d(lQo-XQO,lQO-yQo) = d(xPo,yPo)®[((lQo-XQo)\j(lQo -yQo)) 
- ( ( I Q O - XQO) A ( I Q O - yQo))] = d(xPo,yPo) © [(IQO - (XQO A yQo)) - (IQO -
(xQo VJ/QO)) ] = d(xPo,yPo) © [(XQO V yQo) - (xQo A yQo)\ = d(xPo,yPo) © 
d(xQO,yQo) = d(x,y). Therefore g is an isometry. Clearly, g(0) = IQO. • 

Theorems 4 and 5 show that there exists a one-to-one correspondence between 
isometries in A and internal direct decompositions of A with commutative second 
factor and that isometries in pseudo MV-algebras can be described similarly as 
isometries in lattice ordered groups. 

Unlike isometries in pseudo MV-algebras, those in lattice ordered groups need 
not be 2-periodic An isometry g in a lattice ordered group is 2-periodic iff 

g(g(o)) = o. 
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