Mathematic Slovaca

Ján Jakubík

On a cancellation rule for subdirect products of lattice ordered groups and of GMV-algebras

Mathematica Slovaca, Vol. 57 (2007), No. 3, [201]--210

Persistent URL: http://dml.cz/dmlcz/136948

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON A CANCELLATION RULE FOR SUBDIRECT PRODUCTS OF LATTICE ORDERED GROUPS AND OF GMV-ALGEBRAS

JÁn Jakubík
(Communicated by Anatolij Dvurec̆enskij)

Abstract

The notion of internal subdirect decomposition can be defined in each variety of algebras. In the present note we prove the validity of a cancellation rule concerning such decompositions for lattice ordered groups and for $G M V$-algebras. For the case of groups, this cancellation rule fails to be valid.

Mathematical Institute
Slovak Academy of Sciences

1. Introduction

Cancellation rules concerning direct product decompositions of some types of algebraic structures have been investigated in several papers; cf. e.g., [1], [9], [11]-[18].

In the present note we deal with a cancellation rule (denoted by (c_{2})) concerning subdirect decompositions of lattice ordered groups and of $G M V$-algebras.

The basic definitions on subdirect products of algebraic structures are recalled in Section 2 below.

Suppose that \mathcal{V} is a variety of algebras and $A, X, Y \in \mathcal{V}$. If A is a subdirect product of X and Y, then we write $A=(\mathrm{sub}) X \times Y$.

[^0]We say that the cancellation rule $\left(\mathrm{c}_{1}\right)$ is valid in \mathcal{V} if, whenever A, X, X_{1}, $Y, Y_{1} \in \mathcal{V}$ and $A \simeq(\operatorname{sub}) X \quad Y, A \simeq(\operatorname{sub}) X_{1} \times Y_{1}$, and $Y \simeq Y_{1}$, then $X \simeq X_{1}$.

In view of a well-known Birkhoff's theorem, each subdirect product decomposition of an algebra A is determined, up to isomorphisms, by a system $\left\{\rho_{i}\right\}_{2} \in I$ of congruence relations on A such that $\bigwedge_{i \in I} \rho_{i} \quad \rho_{0}$, where ρ_{0} is the least element of the set con A of all congruence relations on A. (Cf. [2].)

We are interested in two-factor subdirect decompositions. Let $\rho_{1}, \rho_{2} \in \operatorname{con} A$, $\rho_{\mathrm{l}} \wedge \rho_{2}-\rho_{0}$. For $\rho \in$ con A and $a \in A$ we put $a(\rho)=\left\{a^{\prime} \in A: a^{\prime} \rho a\right\}$. Consideı the mapping $\varphi: A \rightarrow A / \rho_{1} \times A / \rho_{2}$ defined by $\varphi(a)=\left(a\left(\rho_{1}\right), a\left(\rho_{2}\right)\right)$ for each $a \in A$. Then φ determines an isomorphism of A into a subdirect product of A / ρ_{1} and A / ρ_{2}. We express this fact by writing

$$
A-(\text { int sub }) X_{1} \times X_{2}
$$

where $X_{1}=A / \rho_{1}$ and $X_{2}-A / \rho_{2}$. We say that (1) is an internal subdirect decomposition of A (determined by the congıuence relations ρ_{1} and ρ_{2}).

The internal subdirect decompo ition (1) is said to sati fy the condition
(m) (or the maximality condition) if, whenever $\rho_{11} \in \operatorname{con} A, \rho_{11}>\rho_{1}$ and

$$
\begin{equation*}
A \quad(\operatorname{int} \operatorname{sub})\left(A / \rho_{11}\right) \times\left(A / \rho_{2}\right) \tag{2}
\end{equation*}
$$

then $\rho_{1}=\rho_{11}$. In such a case, (1) is called an m-subdirect decomposit on.
We say that the cancellation rule $\left(c_{2}\right)$ is valid for the variety \mathcal{V} if, whenever (1 and

$$
A-\left(\text { int sub) } X_{1}^{\prime} \times X_{2}\right.
$$

are m-subdirect decompositions, then $X_{1} \simeq X_{1}^{\prime}$.
We remark that if $\rho_{1}, \rho_{2}, \rho_{3} \in \operatorname{con} A$ such that $\rho_{1} \wedge \rho_{2}=\rho_{0}$ and $\rho_{1}>\rho_{3}$, then we have

$$
\begin{aligned}
& A-(\operatorname{int} \operatorname{sub})\left(A / \rho_{1}\right) \quad\left(A / \rho_{2}\right) \\
& A=(\operatorname{intsub})\left(A / \rho_{3}\right) \times\left(A / \rho_{2}\right)
\end{aligned}
$$

and $G / \rho_{1} \neq G / \rho_{3}$; thus the maximality condition cannot be omitted in our consideration.

It is easy to verify (cf. Section 2 below) that a variety \mathcal{V} satisfies the cancellation rule $\left(c_{1}\right)$ if and only if each algebra of \mathcal{V} has exactly one element.

We prove that the cancellation rule $\left(\mathrm{c}_{2}\right)$ is valid for each var ety of lattice ordered groups and each variety of $G M V$-algebras. On the other hand, (c_{2}) fails to be valid for the variety of all groups.

We also show that if \mathcal{V} is a variety of lattice ordered groups or a variety of $G M V$-algebras and if for some $A \in \mathcal{V}$ the relation (1) is valid, then there exists $\rho_{11} \in \operatorname{con} A$ with $\rho_{11} \geqq \rho_{1}$ such that A has an m-subdirect decomposition

$$
A=(\text { int sub }) X_{11} \times X_{2}
$$

where $X_{11}=A / \rho_{11}$.

2. Preliminaries

For fixing the notation, we recall the basic definitions concerning subdirect products of algebras.

Assume that $\left(X_{i}\right)_{i \in I}$ is an indexed system of algebras belonging to a variety \mathcal{V}. The direct product

$$
X=\prod_{i \in I} X_{i}
$$

is defined in the usual way. If $I=\{1,2, \ldots, n\}$, then we apply the notation $X=X_{1} \times \cdots \times X_{n}$.

The elements of X are written in the form $x=\left(x_{i}\right)_{i \in I}$; we say that x_{i} is the component of x in X_{i} and we denote it also by $x\left(X_{i}\right)$. For $Z \subseteq X$ and $i \in I$ we put $Z\left(X_{i}\right)=\left\{z\left(X_{i}\right): z \in Z\right\}$.

Let A be a subalgebra of X such that for each $i \in I$ the relation $A\left(X_{i}\right)=X_{i}$ is valid. Then A is said to be a subdirect product of the indexed system $\left(X_{i}\right)_{i \in I}$; we express this fact by writing

$$
A=(\mathrm{sub}) \prod_{i \in I} X_{i}
$$

In the case $I=\{1,2, \ldots, n\}$ we write $A=($ sub $) X_{1} \times \cdots \times X_{n}$.
For $B \in \mathcal{V}$ and $\rho \in \operatorname{con} B$, the quotient algebra B / ρ is defined in the standard way. For ρ and ρ_{1} in con B we write $\rho \leqq \rho_{1}$ if $b(\rho) \subseteq b\left(\rho_{1}\right)$ for each $b \in B$.

Now let us consider the cancellation rule (c_{1}). If \mathcal{V} is a variety such that each algebra belonging to \mathcal{V} has exactly one element, then the cancellation rule (c_{1}) obviously holds.

Assume that \mathcal{V} is a variety containing an algebra X_{0} such that X_{0} has more than one element. There exists a set I such that I is infinite and card $I>$ card X_{0}. For each $i \in I$ we put $X_{i}=X_{0}$. Further, we set

$$
X=\prod_{i \in I} X_{i}, \quad Y=X=Y_{1}, \quad X_{1}=X_{0}
$$

Then for $A=X \times Y$ we have

$$
A \simeq(\mathrm{sub}) X \times Y, \quad A \simeq(\mathrm{sub}) X_{1} \times Y_{1}, \quad Y \simeq Y_{1}
$$

but X fails to be isomorphic to X_{1}. Therefore the cancellation rule (c_{1}) is not valid for the variety \mathcal{V}.

We denote by \mathcal{V}_{g} the variety of all groups. The following example shows that the cancellation rule (c_{2}) does not hold for the variety \mathcal{V}_{g}.

Let \mathbb{R} be the additive group of all reals. Put $X \quad Y-\mathbb{R}, G \quad X \times Y$. The elements of G will be denoted by (x, y) with $x \in X, y \in Y$. We put $Z=\{(x, y) \in G: x=y\}$. Then Z is a subgroup of G and $Z \sim X$. Since A i abelian, Z is a normal subgroup of G.

For $g_{i}=\left(x_{i}, y_{i}\right)(i=1,2)$ we put $g_{1} \rho_{1} g_{2}$ if $x_{1}=x_{2}$, and $g_{1} \rho_{2} g_{2}$ if $y_{1}-y_{2}$. Further, we set $g_{1} \rho_{3} g_{2}$ if $g_{1}-g_{2} \in Z$. We get $\rho_{3} \in \operatorname{con} A$. Then we clearly have

$$
A-(\text { int sub })\left(A / \rho_{1}\right) \times\left(A / \rho_{2}\right)
$$

If $g_{1}, g_{2} \in A$ and $g_{1} \rho_{2} g_{2}, g_{1} \rho_{3} g_{2}$, then $g_{1}-g_{2}$. Hence $\rho_{2} \wedge \rho_{3} \quad \rho_{0}$. This yields

$$
A=(\operatorname{intsub})\left(A / \rho_{3}\right) \times\left(A / \rho_{2}\right)
$$

The following steps show that both (α) and (β) are m-subdirect decompo i 1 ions of A.
a) Suppose that $\rho_{4} \in \operatorname{con} A, \rho_{4} \geqq \rho_{1}, \rho_{4} \wedge \rho_{2}=\rho_{0}$. By way of contradiction, assume that $\rho_{4}>\rho_{1}$. Hence there exists $g=(x, y) \in A$ such that $0 \rho_{4} g$ and $x \neq 0$. Put $g_{1}=(0, y)$. We have $0 \rho_{1} g_{1}$, whence $0 \rho_{4} g_{1}$, and thus $0 \rho_{4}\left(g-g_{1}\right.$. But $g-g_{1}=(x, 0)$ and thus $0 \rho_{2}\left(g-g_{1}\right)$. This yields $\rho_{4} \wedge \rho_{2} \neq \rho_{0}$, which is a rontradiction. Hence (α) is an m-subdirect decomposition.
b) Suppose that $\rho_{5} \in \operatorname{con} A, \rho_{5} \geqq \rho_{1}, \rho_{5} \wedge \rho_{2}=\rho_{0}$. Further, assume that $\rho_{5}>\rho_{3}$. Hence there exists $g \in A$ such that $0 \rho_{5} g, g=(x, y)$ and $x \neq y$. Put $g_{1}=(y, y)$. Then $0 \rho_{3} \rho_{1}$, thus $0 \rho_{5} g_{1}$ and so $0 \rho_{5}\left(g-g_{1}\right)$. We obtain $g-g_{1}$ $(x-y, 0)$, whence $0 \rho_{2}\left(g-g_{1}\right)$ and $g-g_{1} \neq 0$. Thus $\rho_{5} \wedge \rho_{2} \neq \rho_{0}$, and we arrived at a contradiction. Therefore (β) is an m-subdirect decomposition.

We obviously have $A / \rho_{1} \neq A / \rho_{3}$. In view of (α) and (β) we conclude that the variety \mathcal{V}_{g} does not satisfy the cancellation rule $\left(\mathrm{c}_{2}\right)$.

3. The condition (c_{2}) for lattice ordered groups

For lattice ordered groups we apply the terminology and the notation as in 2] Thus the group operation in a lattice ordered group is denoted by the symbol + ; the commutativity of this is not assumed to be valid. Let \mathcal{G} be the class of all lattice ordered groups.

Assume that $G \in \mathcal{G}$; consider an internal subdirect decomposition

$$
\begin{equation*}
G=(\text { int sub }) A \times B \tag{1}
\end{equation*}
$$

Hence there are $\rho_{1}, \rho_{2} \in \operatorname{con} G$ such that $A=G / \rho_{1}$ and $B=G / \rho_{2}$. The mapping $\varphi: G \rightarrow A \times B$ corresponding to (1) is defined by $\varphi(g)=\left(g\left(\rho_{1}\right), g\left(\rho_{2}\right)\right)$ for each $g \in G$.

There is a one-to-one correspondence between ℓ-ideals of G and congruence relations on G. If ρ is a congruence relation corresponding to an ℓ-ideal X, then for $g_{1}, g_{2} \in G$ we have $g_{1} \rho g_{2}$ iff $g_{1}-g_{2} \in X$.

Let X_{1} and X_{2} be ℓ-ideals of G and ρ_{1}, ρ_{2} be the corresponding congruence relations. Then $\rho_{1} \leqq \rho_{2}$ iff $X_{1} \subseteq X_{2}$. This yields

$$
X_{1} \cap X_{2}=\{0\} \Longleftrightarrow \rho_{1} \wedge \rho_{2}=\rho_{0}
$$

Let $Z \subseteq G$. The polar Z^{\perp} of Z is defined by

$$
Z^{\perp}=\{g \in G:|g| \wedge|z|=0 \text { for each } z \in Z\}
$$

Each polar is a convex ℓ-subgroup of G.
Lemma 3.1. Let Z be an ℓ-ideal of G. Then Z^{\perp} is an ℓ-ideal of G as well.
Proof. It suffices to verify that Z^{\perp} is normal, i.e., that for each $x \in G$ and $z \in Z^{\perp}$ the relation $-x+z+x \in Z^{\perp}$ is valid. There exist $x_{1}, x_{2} \in G^{+}$with $x \quad x_{1}-x_{2}$. Similarly, there exist $z_{1}, z_{2} \in\left(Z^{\perp}\right)^{+}$such that $z=z_{1}-z_{2}$. From this we easily obtain that if suffices to prove that $-x+z+x \in Z^{\perp}$ is valid for each $x \in G^{+}$and each $z \in\left(Z^{\perp}\right)^{+}$.

By way of contradiction, assume that there exist $x \in G^{+}$and $z^{\prime} \in\left(Z^{\perp}\right)^{+}$ such that $-x+z^{\prime}+x \notin Z^{\perp}$. Then we must have $z^{\prime}>0$, whence $-x+z^{\prime}+x>0$. Further, there exists $z \in Z$ with $z \wedge\left(-x+z^{\prime}+x\right)>0$. From this we obtain

$$
(x+z-x) \wedge z^{\prime}>0
$$

Put $z_{1}=x+z-x$. Since Z is an ℓ-ideal, we get $z_{1} \in Z$. Therefore $z_{1} \wedge z^{\prime}>0$; we arrived at a contradiction.

Consider the relation (1). There are ℓ-ideals A_{1} and B_{1} in G such that ρ_{1} corresponds to A_{1} and ρ_{2} corresponds to B_{1}. Put $C=B_{1}^{\perp}$. In view of 3.1, C is an ℓ-ideal; let ρ_{3} be the congruence relation which corresponds to C. Denote $\bar{A} \quad G / \rho_{3}$.

We have $C \cap B_{1}=\{0\}$, whence $\rho_{3} \wedge \rho_{2}=\rho_{0}$. Thus the relation

$$
\begin{equation*}
G=(\text { int sub }) \bar{A} \times B \tag{2}
\end{equation*}
$$

is valid.

Lemma 3.2. The relation (2) is an m-subdirect decomposition of G.

Proof. Assume that we have a subdirect decomposition

$$
\begin{equation*}
G=(\text { int sub }) A^{\prime} \times B, \tag{3}
\end{equation*}
$$

where B is as above and $A^{\prime}=G / \rho_{4}$ with $\rho_{4} \in \operatorname{con} G$ such that $\rho_{4}>\rho_{3}$. Let c^{\prime} be an ℓ-ideal of G having the property that ρ_{4} corresponds to C^{\prime}. In view of (3) we have $\rho_{4} \wedge \rho_{2}=\rho_{0}$, whence $C^{\prime} \cap B_{1}=\{0\}$. Thus $\left|c^{\prime}\right| \wedge\left|b_{1}\right|=0$ for each $c^{\prime} \in C^{\prime}$ and $b_{1} \in B_{1}$. Hence $C^{\prime} \subseteq B_{1}^{\perp}=C$. This yields $\rho_{4} \leqq \rho_{3}$. Summarizing, we get $\rho_{4}=\rho_{3}$ and therefore (2) is an m-subdirect decomposition.

Under the notation as above, we also have $\rho_{1} \wedge \rho_{2}=\rho_{0}$, hence $A_{1} \cap B_{1}=\{0\}$ and thus $A_{1} \subseteq B_{1}^{\perp}=C$; therefore $\rho_{1} \subseteq \rho_{3}$.

From this and from 3.2 we conclude that the assertion concerning subdirect decompositions of ℓ-groups formulated at the end of Section 1 is valid.

Lemma 3.3. Assume that (1) is valid and let us apply the notation as above. Then the following conditions are equivalent:
(i) (1) is an m-subdirect decomposition;
(ii) $A_{1}=B_{1}^{\perp}$.

Proof. Suppose that (i) is valid. Consider the relation (2). Since $\rho_{3} \geqq \rho_{1}$, in view of the maximality condition we obtain $\rho_{3}=\rho_{1}$, whence $A_{1}=C$. Thus $A_{1}=A_{2}^{\perp}$.

Conversely, suppose that (ii) holds. Then $A_{1}=C$, thus $A-\bar{A}$. According to 3.2 , (i) is valid.

Corollary 3.4. If (1) and

$$
G=(\text { int sub }) A^{\prime} \times B
$$

are m-subdirect decompositions, then $A=A^{\prime}$.
Therefore we have:
Theorem 3.5. The variety of \mathcal{G} of all lattice ordered groups satisfies the cancellation rule $\left(\mathrm{c}_{2}\right)$.

As a consequence we obtain that each subvariety of \mathcal{G} satisfies $\left(c_{2}\right)$ as well.
In the following Section we will apply Theorem 3.5 for proving an analogous result on $G M V$-algebras.

4. The cancellation rule (c_{2}) for $G M V$-algebras

The non-commutative generalization of the notion of $M V$-algebra was introduced in [6] and [7] (under the name of pseudo $M V$-algebra) and, independently, in [19] (under the name of generalized $M V$-algebra or, shortly, $G M V$-algebra).

A $G M V$-algebra can be defined as an algebraic structure $\mathcal{A}=\left(A ; \oplus,{ }^{-}, \sim, 0,1\right)$ of type $(2,1,1,0,0)$ such that the axioms (A1)-(A8) from [6] are satisfied.

If the operation \oplus is commutative, then the unary operations ${ }^{-}$and \sim coincide; in this case \mathcal{A} turns out to be an $M V$-algebra; for $M V$-algebras, cf. [3].

Let $x, y \in A$; we put $x \leqq y$ if $x^{-} \oplus y=1$. Then $(A ; \leqq)$ is a distributive lattice with the least element 0 and the greatest element 1.

An element u of a lattice ordered group G is a strong unit if for each $g \in G$ there exists $n \in \mathbb{N}$ such that $g \leqq n u$. In such a case, (G, u) is called a unital lattice ordered group.

For a unital lattice ordered group (G, u) consider the interval $A=[0, u]$ and for each $x, y \in A$ put

$$
\begin{gather*}
x \oplus y=(x+y) \wedge u \tag{1}\\
x^{-}=u-x, \quad x^{\sim}=-x+u, \quad 1=u . \tag{2}
\end{gather*}
$$

Then $\left(A ; \oplus,,^{-} \sim, 0,1\right)$ is a $G M V$-algebra which will be denoted by $\Gamma(G, u)$.
In [4] it was proved that for each $G M V$-algebra \mathcal{A} there exists a unital lattice ordered group (G, u) such that $\mathcal{A}=\Gamma(G ; u)$; the relation \leqq in \mathcal{A} coincides with the partial order defined in G.

In what follows, we assume that \mathcal{A} is a $G M V$-algebra and that (G, u) is a unital lattice ordered group with $\mathcal{A}=\Gamma(G, u)$.

Let $\mathcal{J}(G)$ be the system of all ℓ-ideals of G; this system is partially ordered by the set-theoretical inclusion. It is well known that the mapping con $G \rightarrow \mathcal{J}(G)$ defined by $\rho \mapsto 0(\rho)$ is an isomorphism of con G onto $\mathcal{J}(G)$.

A normal ideal of \mathcal{A} is defined to be a nonempty subset X of A such that
(i) X is closed with respect to the operation \oplus,
(ii) if $x \in X, x_{1} \in A$ and $x_{1} \leqq x$, then $x_{1} \in X$;
(iii) $a \oplus X=X \oplus a$ for each $a \in A$.

Let $\mathcal{N} \mathcal{J}(\mathcal{A})$ be the system of all normal ideals of \mathcal{A}; we suppose that it is partially ordered by the set-theoretical inclusion. The mapping con $\mathcal{A} \rightarrow \mathcal{N} \mathcal{J}(\mathcal{A})$ defined by $\rho \mapsto 0(\rho)$ is an isomorphism of $\operatorname{con} \mathcal{A}$ onto $\mathcal{N} \mathcal{J}(\mathcal{A})$ (cf. [6], [19]).

Lemma 4.1. (Cf. [5].) For each $Y \in \mathcal{J}(G)$ we put $\psi(Y)=Y \cap A$. Then ψ is an isomorphism of $\mathcal{J}(G)$ onto $\mathcal{N} \mathcal{J}(A)$.

Let $\rho^{1} \in \operatorname{con} G$. Put $0\left(\rho^{1}\right)=Y$. There exists a uniquely determined $\rho \in \operatorname{con} \mathcal{A}$ with $0(\rho)=\psi(Y)$.

Lemma 4.2. (Cf. [1].) The mapping $\chi: \operatorname{con} G \rightarrow \operatorname{con} \mathcal{A}$ defined by $\chi\left(\rho^{1}\right)=\rho$ for each $\rho^{1} \in \operatorname{con} G$ is an isomorphism of $\operatorname{con} G$ onto $\operatorname{con} \mathcal{A}$.

Subdirect product decompositions of $M V$-algebras have been investigated in [8]. In [10] it was remarked that the main result of [8] can be generalized for $G M V$-algebras. The notation applied in [8] and [10] was different from that used in the present paper; in our present notation [10, Proposition 3.4, Lemma 3.5 can be formulated as follows:

Lemma 4.3. (Cf. [10].) Assume that

$$
G=(\text { int sub }) \prod_{i \in I}\left(G / \rho^{i}\right)
$$

Then

$$
\mathcal{A}=(\text { int sub }) \prod_{i \in I}\left(\mathcal{A} / \chi\left(\rho^{i}\right)\right.
$$

and for each $i \in I, \mathcal{A} / \chi\left(\rho^{i}\right)$ is isomorphic to $\Gamma\left(G / \rho^{0}, u\left(\rho^{i}\right)\right)$.
Lemma 4.4. (Cf. [10].) Assume that

$$
\mathcal{A}=(\text { int sub }) \prod_{i \in I}\left(\mathcal{A} / \rho_{0}^{i}\right)
$$

Put $\rho^{i}=\chi^{-1}\left(\rho_{0}^{i}\right)$ for each $i \in I$. Then

$$
G=(\text { int sub }) \prod_{\imath \in I}\left(G / \rho^{i}\right)
$$

In view of 4.2 and 4.3 we obtain:
PROPOSITION 4.5. Let $G=(\operatorname{intsub})\left(G / \rho_{1}\right) \times\left(G / \rho_{2}\right)$ be an m-subdirect decomposition. Put $\rho_{i}^{\prime}=\chi\left(\rho_{i}\right)(i=1,2)$. Then $\mathcal{A}=($ intsub $)\left(\mathcal{A} / \rho_{1}^{\prime}\right) \times\left(\mathcal{A} / \rho_{2}^{\prime}\right)$ is an m-subdirect decomposition.

Similarly, in view of 4.2 and 4.4 we have:
Proposition 4.6. Let $\mathcal{A}=(\operatorname{intsub})\left(G / \rho_{1}^{1}\right) \times\left(G / \rho_{2}^{1}\right)$ be an m-subdirect decomposition. Put $\rho_{i}=\chi^{-1}\left(\rho_{i}^{1}\right)(i=1,2)$. Then $G=($ int sub $)\left(G / \rho_{1}\right) \times\left(G / \rho_{2}\right)$ is an m-subdirect decomposition.

Theorem 4.7. The variety $\mathcal{G}_{m v}$ of all $G M V$-algebras satisfies the cancellation rule (c_{2}).

Proof. This is a consequence of 3.5 and of 4.2-4.6.
In view of 4.7 , each variety of $G M V$-algebras satisfies (c_{2}).
Also, the assertion concerning subdirect decompositions of $G M V$-algebras formulated at the end of Section 1 is valid.

REFERENCES

[1] APPLESON, R. R. LOVÁSZ, L.: A characterization of cancellable k-ary structures, Period. Math. Hungar. 6 (1975), 1719.
[2] BIRKHOFF, G.: Lattice Theory (3rd ed.) Amer. Math. Soc., Providence, RI, 1967.
[3] CIGNOLI, R. L. O.-D'OTTAVIANO, I. M. L. MUNDICI, D.: Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht, 2000.
[4] DVUREČENSKIJ, A.: Pseudo MV-algebras are intervals of ℓ-groups, J. Austral. Math. Soc. 72 (2002), 427445.
[5] DVUREČENSKIJ, A.-PULMANNOVÁ, S.: New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, 2000.
[6] GEORGESCU, G.-IORGULESCU, A.: Pseudo MV-algebras: a noncommutative extension of $M V$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, INFOREC, Bucharest, 69 May, Romania, 1999, pp. 961968.
[7] GEORGESCU, G. IORGULESCU, A.: Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135.
[8] JAKUBÍK, J.: Subdirect product decompositions of MV-algebras, Czechoslovak Math. J. 49 (1999), 163173.
[9] JAKUBÍK, J.: Isomorphisms of direct products of lattice ordered groups, Discuss. Math. Gen. Algebra Appl. 24 (2004), 4352.
[10] JAKUBÍK, J.: Banaschewski's theorem for generalized MV-algebras (To appear).
[11] JAKUBÍK, J. CSONTÓOVÁ, M.: Convex isomorphism of directed multilattices, Math. Bohem. 118 (1993), 359379.
[12] JAKUBÍK, J.-CSONTÓOVÁ, M.: Cancellation rule for internal direct product decompositions of connected partially ordered sets, Math. Bohem. 125 (2000), 115122.
[13] JAKUBÍK, J. LIHOVÁ, J.: On the cancellation rule for disconnected partially ordered sets, Math. Slovaca 54 (2004), 215223.
[14] JAKUBÍKOVÁ-STUDENOVSKÁ, D.: On a cancellation law for monounary algebras, Math. Bohem. 128 (2003), 7990.
[15] MCKENZIE, R.: Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971), 59101.

JÁN JAKUBÍK

[16] McKENZIE, R.-McNULTY, G.-TAYLOR, W.: Algebras, Lattices, Varieties, Vol. 1. Wadsworth \& Brooks/Cole Math. Ser., Wadsworth \& Brooks/Cole Advance Books \& Software, Monterey, California, 1987.
[17] LOVÁSZ, L.: On the cancellation law among finite relational structures, Period. Math. Hungar. 1 (1979), 145-156.
[18] PLOŠČICA, M.-ZELINA, M.: Cancellation among finite unary algebras, Discrete Math. 159 (1996), 191-198.
[19] RACHŮNEK, J.: A non-commutative generalization of $M V$-algebras, Czechoslovak Math. J. 52 (2002), 255-273.

Received 28. 2. 2005
Revised 9. 5. 2005

Matematický ústav SAV
Grešákova 6
SK-040 01 Košice
SLOVAKIA
E-mail: kstefan@saske.sk

[^0]: 2000 Mathematics Subject Classification: Primary 06F15, 06D35.
 Keywords: lattice ordered group, $G M V$-algebra, subdirect product, internal subdirect decomposition, maximality condition.
 Supported by Grant VEGA 2/4134/24.
 This work was partially supported by the Slovak Academy of Sciences via the project Center of Excellence - Physics of Information, Grant I/2/2005.

