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OSCILLATION AND STABILITY 
OF NONLINEAR DISCRETE MODELS 

EXHIBITING THE ALLEE EFFECT 

E. M. ELABBASY — S. H. SAKER — H. E L - M E T W A L L Y 

(Communicated by Michal Feckan) 

A B S T R A C T . In this paper, we consider the discrete nonlinear delay popula t ion 
model exhibiting the Allee effect 

æ n +i = Xn exp (a + b<_т - c x n _ т ) , (*) 

where a, b and c are cons tan ts and p, q and r are positive integers. First, we 

s tudy the local stability of the equilibrium poin ts. Next, we establish some oscil­
lation results of nonlinear delay difference equations with positive and negative 

coefficients and apply them to investigate the oscillatory charac ter of all positive 

solutions of equation (*) abou t the positive s teady s ta te x* and prove that every 

nonoscillatory solution tends to x*. 

©2007 
Mathematical Insti tute 

Slovak Academy of Sciences 

1. Introduction 

The so-called Allee effect refers to a population which has a maximal per 
capita growth rate at intermediate density. This occurs when the per capita 
growth rate increases as density increases and decreases after the density passes 
a certain value. This is certainly not the case in the delayed logistic equation, 

N(t-r 
N'(t) = rN{t) 1 -

K 
where the per capita growth rate is a decreasing function of the density. For an 
important case, aggregation and associated cooperative and social characteristics 
among members of species had been extensively studied in animal population by 
A l l e e [3], [4]. When the density of population becomes too large, the positive 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 39A10; Secondary 92D25. 
K e y w o r d s : oscillation, stability, discrete population model. 
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feedback effect of aggregation and cooperation may be dominated by density 
dependent stabilizing negative feedback effect due to interspecific competition 
due to excessive crowding and the ensuing shortage of resources. G o p a l s a m y 
and L a d a s [6] studied the following delay Lotka-Volterra type single species 
population growth model, 

x(t) x(t)[a-\-bx(t-T)-cx2(t-T)} (1 

where 

a, b, c , r G (0, oo) with c > b. (2 

When T — 0, the per capita growth is g(x) — a + bx — ex2. Then g(0) b > 0 
and g(x) achieves its maximum at x — -£-, thus exhibiting the Allee effect. 
When b < 0, g(x) is decrea ing function and therefore there is no Allee effect. 
E l a b b a s y , S a k e r and S a i f [9] proved that if (2) holds, and 

(2ck2 -bk)T - , 
e 

then every positive solution of equation (1) o dilates about the unique positi\e 
equilibrium point k ^ [b + \f\P + 4ac ]. They also proved that every nonoscil-
latory solution of equation (1) tends to k when t tends to infinity. They extended 
these results to the more general equation 

xf(t) = x(t)[a + bxp(t - T) - cxq(t - r)] , (3 

where 

a, b,c,T £ (0, oo) with c > b q > p 

gnd some additional conditions on p and q. For a given differential equation, a 
difference equation approximation would be most acceptable if the solution of the 
difference equation is the same as the differential equation at the discrete points. 
But unless we can explicitly solve both equations, it is impos ible to satisfy this 
requirement. Most of the time, it is desirable that a difference equation, when 
derived from a differential equation, preserves the dynamical features of the 
corresponding continuous time model such as equilibria, o dilation, their local 
and global stability characteristics and bifurcation behaviors. If such discrete 
models can be derived from continuous models, then the discrete time models 
can be used without loss of any functional similarity to the continuous-time 
models and it will preserve the considered realities; such di Crete time models 
can be called "Dynamically consistent" with the continuous time models. 
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There is no unique way of deriving discrete time version of dynamical sys­
tems corresponding to continuous time formulations. One of the ways of deriving 
difference equations modeling the dynamic of populations with nonoverlapping 
generations is based on appropriate modifications of models with overlapping 
generations. In this approach, differential equations with piecewise constant ar­
guments have been useful, see for example the paper by L i u and G o p a l s a m y 
[13]. Recently the method that has been established by L i u and G o p a l s a m y 
has been used by some authors to find the discrete analogy of some mathemat­
ical models. Using the technique that has been used in [13], we will derive the 
discrete analogy of equation (3). Thinking of differential equations with piece-
wise constant arguments, we can go on with the discrete analogy of equation (3). 
Let us assume that the average growth rate in (3) changes at regular intervals 
of time, then we can incorporate this aspect in (3) and obtain the following 
modified equation 

-^rx'(t) = a + bxp[t - r] - cxq[t - r ] , 
x(t) 

where [t] denotes the integer part of t, t G (0,co). Equation of this type is 
known as differential equation with piecewise with constant argument and this 
equation occupy a position midway between differential and difference equation. 
By a solution of this equation, we mean a function x(t) which is defined for 
t G (0, oo) and satisfy the properties: 

(a) x is continuous on [0, oo). 

(b) The derivative -^p- exists at each point t G (0, oo) with the possible ex­
ception of the points t G {0,1, 2 , . . . } , where left side derivative exists. 

(c) The equation (3) is satisfied on each interval [n, n + 1 ) with n = 0 ,1 , 2, 

By integrating the last equation on any interval of the form [n^n + 1), 
n = 0 , 1 , 2 , . . . we obtain 

x(t) = x(n) exp([a + bxp(n — r ) — cxq(n — r)] (t — n)). 

Letting t \—> n + 1, we obtain that 

x(n + 1) = x(n) exp [a + bxp(n — r ) — cxq(n — r)] (4) 

where 
a,b,c€ (0, oo) with c > b, and 

p, g, r are positive integers with q > p, (5) 

which is a discrete time analogy of (3). We note that the equilibrium points of 
(4) are the same as of system (3). So the derived discrete analogy preserves on 
the equilibria. 
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In recent years, the investigation of the theory of difference equations has 
assumed a greater importance as well deserved discipline. Many results in the 
theory of difference equations have been obtained as more or less natural discrete 
analogous of corresponding results of differential equations ([1], [2]). Neverthe­
less, the theory of difference equations is richer than the corresponding theory 
of differential equations. For example, a simple difference equation resulting 
from the first order differential equation exhibits the chaotic beha\ ior which can 
only happen in higher order differential equations. We remark that in recent 
years oscillation and global attractivity of nonlinear delay discrete models ha\e 
become a very popular subject. In fact, different models have been studied in 
[7], [11] and the references cited therein. 

By a solution of equation (4), we mean a sequence {xn} which is defined for 
n > —T and satisfies equation (4) for n > 0. Association with equation (4), we 
consider the initial condition 

x(i) — ai > 0 for i — —r, . . . , 0. (6 

The exponential form of equation (4) assures that the solution {xn} with respect 
to any initial condition (6) remains positive. 

Now we mention some definitions that will be useful in our investigation of 
equation (4). 

DEF IN ITION 1.1. A solution {xn} of equation (4) is said to be oscillatory about 
x* if the terms xn — x* of the sequence {xn — x*} are neither all eventually 
positive nor all eventually negative. 

Consider the more general difference equation 

xn+1- F(xn,xn i , . . . , x n fc), n - 0 , 1 , . . . (7) 

DEF IN ITION 1.2. Let I be an interval of real positive numbers. 

(i) The equilibrium point x of equation (7) is locally stable if for every e > 0 
there exists 5 > 0 such that for all 

X - f c j X - f c + i , . . . , x _ i , x 0 G i", 

\x k — x\ + x k+i — x\ + • • • -f |#n — x\ < (5, 

\xn x\ < for all n > —k. 

with 

we have 
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(ii) The equilibrium point x of equation (7) is locally asymptotically stable if 
x is locally stable solution of equation (7) and there exists 7 > 0, such that for 
all 

X-k,X-k+l,...,X-i,X0 e J, 

with 

\x-k —x\ + \x-k+i -x\-\ \-\x0 -x\ < 7, 

we have 

lim xn = x. 
n-^00 

(iii) The equilibrium point x of equation (7) is global attractor if for all 

X-k,X-k+l,...,X-i,X0 e J, 

we have 

lim xn = x. 
n—>oo 

(iv) The equilibrium point x of equation (7) is globally asymptotically stable 
if x is locally stable, and x is also a global attractor of equation (7). 

(v) The equilibrium point x of equation (7) is unstable if x is not locally 
stable. 

The linearized equation of equation (7) about the equilibrium x is the linear 
difference equation 

E dF(x,x,...,x) 
*Z Vn-i' (8) 

2=0 n _ l 

The following well known theorem, called the Linearized Stability Theorem, is 
very useful in determining the local stability character of the equilibrium solution 
x, of equation (7). 

THEOREM A. Assume that pi e K and k G {1 ,2 , . . . }. Then 

k 

Y,\pi\<i 
2 = 1 

is a sufficient condition for the asymptotic stability of the difference equation 

Xn+k + pixn+k-i H h Pk%n = 0 , n = 0, 1, . . . . 
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THEOREM B . Assume p G 1 and k £ N. Then all roots of the equati 
mk+i _ mk _^ p _ Q ^ e inside the unit ball, \m\ < 1. if and only if 

0 < p < 2 cos 
2/c + l j ' 

The paper is organized as follows: 
In Section 2, we study the local stability of the equilibrium points of equation (4 . 
In Section 3, we study the oscillation of nonlinear delay difference equations 
with positive and negative coefficients, and apply our results to the equation (4) 
to give a sufficient condition for oscillation of all positive solutions about the 
positive steady state x*. Also we prove that every nonoscillatory solution of 
equation (4) tends to x*. 

2. Local stability of equation (4) 

In this section we study the local asymptotic stability of the equilibrium points 
of equation (4). 

First we show that equation (4) has a unique positive equilibrium point. 
Observe that the equilibrium points of equation (4) are the solutions of the 
equation 

x* = x* exp (a + bx*p - ex*9). 

So 

Set 

Now, 

and 

x* = 0, or a + bx*p - cx*q = 0. (I) 

f(x) - a + bxp - cxq for x + 0. 

/(O) = a, lim f(x) = - o o 
x—>-oo 

f'{x)-bpxp-1 qcx11 1. 

It follows from (I) that 

/ ' ( * * ) - - [ qa-bx*p(q-p)]<0. 

This means that for every rr* satisfying the relation (I), we have f'(x*) is always 
negative, therefore equation (4) has exactly one positive solution x*. 
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THEOREM 2.1. The following statements are true: 

(i) The zero equilibrium of equation (4) is unstable. 

(ii) The positive equilibrium point of equation (4) is locally stable if 

ap+(q- p)cx*q < 2 cos ŕ 2 f c J 

P r o o f . 
(i) The linearized equation of equation (4) about the zero equilibrium point 

is 

yn+1 - eayn = 0. 

Then its characteristic root is ea > 1. Hence by Theorem A the zero equilib­
rium point of equation (4) is unstable. 

(ii) The linearized equation of equation (4) about the positive equilibrium 
point x* is 

zn+1 - zn + [ap +(q- p)cx*q] zn_r = 0. 

The result follows by Theorem B. • 

3. Oscillation of nonlinear difference equations 
with positive and negative coefficients 

and application to equation (4) 

In this section, we establish some new sufficient conditions for oscillation of 
nonlinear delay difference equations with positive and negative coefficients. 

Consider the nonlinear delay difference equation, 

Ax(n) + P(n)Hx(x(n - a)) - Q(n)H2(x(n - r ) ) = 0, n > n0, (9) 

where the following hypotheses are satisfied: 

(hi) {P(n)}, {Q(n)} are real positive sequences, H\,H2 e C[R,R], 
T and a, are positive integers with a > T. 

(h 2) uHi(u) >0loru^0,i = 1, 2, lim ^M = l, ^ > H2 and 

there exists a positive constant 5 such that, either 

Hi(u) <u for u <E [0,6], 

or 
H!(u)>u for ue[-5,0]. 
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(h3) lim P(n) = p, Q(n) <q,P> q, 
n—• c o 

P(n) - Q(n + T - o) > e > 0 for n > n0 - r + cr, and 
n—T—1 

^2 Q(n + r ) < 1 for n > no + cr. 
n—a 

(I14) There exists a positive constant M such that 

Z*£L < M and 1 - Mg(rj - r ) > 0. 

THEOREM 3 .1 . Assume that (hi)-(h4) are satisfied. Then every nonosdilatory 
solution of equation (9) tends to zero as n —> oo. 

P r o o f . Let x(n) be a nonoscillatory solution of equation (9). We will assume 
that x(n) is eventually positive (the case where x(n) is eventually negative is 
similar and will be omitted). Assume that n\ > no + cr is such that x(n) > 0 for 
n > n\ — cr. Set 

n—T —1 

z(n)=x(n)- ^2 Q(s + T)H2((x(s)), n > n0 + cr - r. (10) 

First, we show that z(n) is nonincreasing. We see from equation (10) that 

Az(n) = Ax(n) - Q(n)H2((x(n - r ) ) + Q(n + T- o)H2(x(n - o)). (11) 

From equations (9) and (11) we get 

Az(n) = -P(n)H\((x(n - o)) + Q(n + r - cr)H2(x(n - o)). 

Hence from (h2) and (hs) we find 

Az(n) < -(P(n) -Q(n + T- o))H\(x(n - o)) < 0. (12) 

This yields that z(n) is nonincreasing. Next, we prove that z(n) is positive. If it 
is not the case, then eventually z(n) < 0, and so there exist n2 > n\ and a > 0 
such that z(n) < —a < 0 for n > n2 , that is 

n—1—T 

x(n)<-a+ Y; Q(i + T)H2(x(i))<0, n>n2. (13) 
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We consider the following two possible cases. 

(i) If {xn} is unbounded, that is l imsupx(n) = oo, then there exists a 
n—>oo 

sequence of points {si}i=1 such that Si > n% + <r, i = 1,2,3, . . , , Si —> oo, 
x(si) —> oo as i —> oo, and x(si) = max{xn : n3 < n < Si}. Prom (h2), Q13) 
and (13), we find that 

n—1—r 

x(si) <-a+ Y2 Q(l + r)H^xiJ)) ^ ~a + x(si) 
i=n—cr 

which is a contradiction. 

(ii) if {x(n)} is bounded that is l imsupx(n) = a < oo. Let { s i } ^ be a 
n—>oo 

sequence of points such that Si —> oo, as i —> oo and x(si) —•> a as i —> oo. Let 
& be such that x(£i) = max{x(s) : ŝ  — a < s < Si — T } , Si — a < £* < Si — T, 
i = 1,2, . . . . Then & —> oo, as 2 —> oo. From (I12), Q13) and (13), we get 

Si — 1— r 

£ ( s i ) < - a + ^2 Q(S + T)H2(X(S)) < -a + xfa). 
S = Si—(T 

Taking the superior limit as i —•> oo, we obtain 

a < —a + a, 

which is also a contradiction. Combining (i) and (ii) we have z(n) is positive 
and x(n) > z(n) for n > n2. 

Now we show that x(n) is bounded. Otherwise there exists a sequence of 
points {ni} such that, lim n\ = oo, lim x(ni) = oo and x(ni) = maxx(s) . 

I—• o o / — • o o s<n« 

From equation (10) we have 

ni—T — l ni—T — 1 J, 

x(s) 

Then, from (I13) and (h4) we find that 

z(ni) > x(ni)[l — qM(a — T)] —> oo as I —> oo, 

which contradicts (12). Then from (10) and (12) we see that z(n) is also bounded, 
and lim z(n) = k G M. By summing both sides of (12) from n2 to oo we obtain 

n — • ©© 

0 0 

k - z(n2) <~Y, « P W -QV + T- <r))}JTi(x(t - a)) . (14) 
i= r i2 
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We claim that liminf x(n) = 0. Otherwise there exists a positive constant j3 and 
n—>-oo 

I^3 > n2 such that x(n) > (3 for n > n^. Since x(n) > 0 and x(n) is bounded 
from above, (h3) implies that H\(x(n — a)) > j3' for some constant 6'. Also, 
(h3) implies that 

(P(n) - Q(n + T — a)) > (P(n) — q)-*p — q as n —> oo. 

Then for n sufficiently large, (P(n) — Q(n + r — a))H\(x(n — a)) is bounded 
below by a positive constant. This contradicts (14). Hence liminf x(n) — 0. We 

n—>oo 

prove that lim x(n) = 0. Otherwise, let l imsupx(n) = a. From equation (10 , 
n >-oo n—>OQ 

since z(ni) < x(n/), we get 

fc<0. 

Now from equation (10) and by using (h3) and (I14) we find that 
ni—T — l 

z(nt) > x(ni) - qM ^ x(s). 
s—ni —a 

Choose eo > 0 and sufficiently small, we get from the last inequality that 

z(nt) > x(ni) - qM(a - T)(H + e0). 

By taking the limit as n —> 00 we obtain 

k >u-qM(a-T)(fi + e0). 

As EQ is arbitrary, we conclude 

0 > k> u[l-qM(a-T)] > n. 

This implies that k — a = 0. Hence lim x(n) = 0 and then lim z(n) = 0. The 
n—>-oo n—>-oo 

proof is complete. 

THEOREM 3.2. Assume that (hi) (I14) hold. If every solution of the delay dif­
ference equation 

Az(n) + (P(n) -Q(n + T- a))(l - e)z(n -a) 0 (15 

oscillates, where e > 0 is arbitrarily small, then every solution of equahon (9) 
oscillates. 

P r o o f . Assume that (h2) holds, with 

H\(u)<u for 0<u<5. 

The case where 
# i ( u ) > u for -5<u<0, 

is similar and will be omitted. Now assume, for the sake of contradiction that 
equation (9) has a nonoscillatory solution. We will assume that x(n) is eventual!} 
positive solution of equation (9) (the case where x(n) is eventually negative is 
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similar and will be omitted), i.e., there exists n\ sufficiently large such that 
x(n) > 0, x(n — T) > 0, and x(n — a) > 0 for n > n\. Set 

n—T — l 

z(n) = x(n) - ^^ Q(s + T)H2((x(s)), n>n\. 
s=ri — a 

Then as in the proof of Theorem 3.1 we have 

Az(n) + (P(n) -Q(n + T- a))Hx(x(n - a)) < 0. (16) 

Since lim x(n) = 0, it follows by Theorem 3.1 and (I12) that 
n—»oo 

lim *-(*("-*» = 1. 

n-+oo x(n — a) 

Then there exist e £ (0,1) and n£ such that for n > n£, x(n — a) > 0 and 

Hi(x(n — a)) > (1 — e)x(n — a). 
We obtain from (16) that 

Az(n) + (P(n) - Q(n + r - a))(l - e)x(n - a) < 0. 

It follows by Theorem 3.1, since x(n) > z(n) for n > no + a — T, that z(n) is 
positive and satisfies 

Az(n) + (P(n) -Q(n + T- a))(l - e)z(n - a) < 0. (17) 

Then by [16, Lemma 1], the delay difference equation (15) has an eventually 
positive solution also, which contradicts the assumption that every solution of 
equation (15) oscillates. Then every solution of equation (9) oscillates. The 
proof is complete. • 

The oscillation of the linear delay difference equation (15) has been studied 
by many authors. By using the oscillation results in [5], [8], [10], [15], we get 
the following results. 

THEOREM 3.3. Assume that one of the following statements is true: 

(i) 
<7 

limsup^G(n-i) > 1, (18) 
n — • o o . „ 

2 = 0 

(") 
0° 

l i m i n f 9 ( n ) > T T , (19) 
«-<*> (a + l)a+1 
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(hi) 

1 a CTa 

liminf -Ye(n-i)> -p-, (20) 
*-+ °° aH (<J + l)a+1 

where 

9(n) = (P(n) -Q(n + T- a))(l - e). 

Then every solution of equation (15) is oscillatory. 

Remark 3.1. Clearly, if the strict inequalities hold in (18), (19) and (20) for 
e = 0, then the same result is also true for all sufficiently small e > 0. Thus, we 
can restate Theorem 3.3 as follows: 

COROLLARY 1. Assume that one of the following statements is true 

(i) 

l i m s u p ^ A ( n - i ) > 1, (21) 

(ii) 

(iii) 

where 

l iminfA(n)>- —---, (22) 
n- °̂° (a + 1) + 

1 " a" 
liminf — У^ Л(n — г) > тг. 
»-~ стéí (a + l)ст+1' 

(23) 

A(n) = P(n)-Q(n + T-a), 

then every solution of equation (15) is oscillatory. 

THEOREM 3.4. Assume that (hi) - (h4) hold. If 

liminf У^ ( n - i ) > L > 0, 
Гł ../-Vì ' -^ 

and 

n—>oo 
i=l 

L2 

limsup6(n) > 1 - — , (24) 
n—*oo 4 

then every solution of equation (15) is oscillatory. 
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THEOREM 3.5. Assume that one of the following is true 

(i) 
T c r + 1 

0 < a = l i m i n f y 9 ( n - i ) < — — ., , 
г=l (* + -Г 

and 
6 7 2 

l i m s u p ] Г ( n - i ) > 1--J-- (25) 
4 

T/zen every solution of equation (15) is oscillatory. 

THEOREM 3 .6 . Assume tfiai 

(i) 
G 

0 < a = liminf V e ( n - i ) < — -
n—•oo -——' t^T- _L n - > o o -—-* / - i i ^ + - : 

ż = l 

(7+1 

(^+î) 
(ü) 

<7 v2 v-^^/ .ч л \ — a — \J\ — 2a — a2 , . 
h m s u p \ ( n - г ) > 1 --— . (26) ___/ v 1 o 

n—>oo n — 
г = 0 

Tben even/ solution of equation (15) zs oscillatory. 

Remark 3.2. Theorem 3.2 shows that the oscillation of equation (9) is equiv­
alent to the oscillation of the delay difference equation (15). Now, by applying 
the above results we have the following oscillation criteria for oscillation of the 
nonlinear delay difference equation (9). 

THEOREM 3.7. Assume that (hi) — (I14) hold. Furthermore, assume that one 
of the conditions (21), (22) or (23) holds. Then every solution of equation (9) 
oscillates. 

THEOREM 3.8. Assume that (hi)-(hi4) hold. Furthermore, assume that the as­
sumptions of Theorem 3.2 hold. Then every solution of equation (9) oscillates. 

THEOREM 3.9. Assume that (hi)-(li4) hold. Furthermore, assume that the as­
sumptions of Theorem 3.5 hold. Then every solution of equation (9) oscillates. 

THEOREM 3.10. Assume that (hi) — (I14) hold. Furthermore, assume that the 
assumptions of Theorem 3.6 hold. Then every solution of equation (9) oscillates. 

Remark 3.3. In the above results some of the conditions (hi)-(ki4) may be 
weakened. In particular, from the proofs of Theorems 3.1 and 3.2 it is clear that 
if a = r, then condition (I14) in all the above results may be dropped. 
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In the following theorem, we apply our oscillation results to establish the suf­
ficient condition for oscillation of all positive solutions of equation (4) about x*. 

THEOREM 3 .11. Assume that (5) holds and 

qc(x*)q-bp(x*)p> T\ (27 
(r + 1) 

Then every positive solution of equation (4) oscillates about x*. 

P r o o f . Let x(n) be an arbitrary positive solution of equation (4) (we consider 
the case where xn > x* since the case where xn < x* is similar and will be 
omitted). Set 

xn = x*exp{zn}. (28 

Clearly, z(n) is positive, and satisfies the nonlinear difference equation 

Azn + qc(x^)qH1(z(n - r )) - bp(x*)pH2(z(n - r )) - 0, (29 

with 

equ — 1 epu — 1 
H\(u) = , and H2(u) = . 

q p 

Observe that 

qc(x*)q > bp(x*)p. 

Since a = r , in view of Remark 3.2 it is easy to see that all the hypotheses 
(hi) (ha) are satisfied for equation (29). Then by the condition (27) every solu­
tion of equation (29) oscillates about zero, and this implies that every solution 
of equation (4) oscillates about x*. The proof is complete. • 

We note that 

(qc(x*)q - bp(x*)v)(T + 1) > 1/(1 + ±)T -> 1/e as r -> oo. 

Therefore one may think of the condition (27) of Theorem 3.11 as being the 
discrete analogy of equation (4) with the delay r + 1 . So the derived discrete 
analogy preserves the oscillation condition. 

In the following we give an attractivity result of all nonoscillatory solutions 
of equation (4). 
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THEOREM 3.12. Assume that (5) holds. Then every positive nonosdilatory 
solution of equation (4) converges to the positive equilibrium point x*. 

P r o o f . Let x(n) be a positive solution of equation (4) which does not oscillate 
about x*. Without loss of generality we might assume that x(n) is eventually 
grater than or equal to x* (the case where the solution is less than x* is similar 
and is left to the reader). It is clear that 

(x — x*)f(x) < 0 for x from some neighborhood of x*, (30) 

where f(x) is defined as before by 

f(x) = a + bxp -cxq. 

Now let N be a nonnegative integer number and let 

Xn-T > %* for all n > N > r. 

It follows from equation (4) and (30) that 

xn+i = xn exp(a + bxn_r — cxn_r) < xn for all n > N. 

Thus the sequence x(n) is non-increasing and bounded from below by x* and 
since x* is the only equilibrium point of equation (4), 

lim x(n) = x*. 
n-^oo 

This completes the proof of the theorem. • 
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