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MULTIVARIATE REGRESSION MODEL
WITH CONSTRAINTS

LuBoMirR KUBAGEK

(Communicated by Gejza Wimmer)

ABSTRACT. The aim of the paper is to present explicit formulae for parameter
estimators and confidence regions in multivariate regression model with different
kind of constraints and to give some comments to it. The covariance matrix of

observation is either totally known, or some unknown parameters of it must be
estimated, or the covariance matrix is totally unknown.
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Mathematical Institute
Slovak Academy of Sciences

1. Introduction

A multivariate regression model is considered in the form ([1])
Y ~om (XB,E@ l)’ (1)

where Y is n x m random matrix (observation matrix), Y = (Yi,..., Yn),
Yi ~n (XBy,05ilnn), i=1,...,m, B=(B4,...,8,,), cov(Yi, Y;) = 0ijlnn,

01,1, 01,2, -y O1m
= 02,1, 022, cey O2m ’
Om,1, Om,2, s Omm

XB is the mean value of the observation matrix E(Y) = XB, X is an n X k given
matrix and B is a k x m matrix of unknown parameters. ¥ ® | is the covariance
matrix of the observation vector vec(Y) = (Y7, Y3,..., Y/ )" and the constraints
can be given in different forms, e.g. GBH+Gy =0, GB+ Gy =0, BH+ Gy = 0,
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LUBOMIR KUBACEK

Tr(G;B) +¢; = 0,4 =1,...,q, etc. Here the matrices G, H, Go, G; are known
and also the vector g = (g1, 92,.-.,9,)" is known.

The constraints of the type GB+ Gy = 0 is considered mainly in the litcratwe
(e.g. cf. [18]). In the case of modelling deformation measurement this kind of
constraints is typical. Let a triangle network covering a part of the Earth surface
characterize a state of the investigated area at some time. Measurement of
distances and angles in his network is realized at the times t; < --- < t,,. From
the obtained results a geophysical research of the area (recent cru tal movement
can be made. However measured distances 1, 82, 83 and angles (4, 85, G in 1
plane triangle must satisfy constraints

Bs+ Ps + Bs =7/2, Pisinfe = P3sinfs, [asinPy [Bpsinfs.

After a linearization of the constraints and some technical adaptation we obtain
constraints of the type GB+ Gy = 0. Constraints GBH+ Gy — 0 are a modcrate
generalization useful in other structures of multivariate models, e.g. in giowth
curve models.

The model considered in the paper is regular if (X, x) — k < n, and 3 is
positive definite (p.d.). The constraints GBH + Gy = 0 are regular if (G, ;)
g <k & r(Hp,) =r <m. The constraints Tr(G;B) +¢; =0, ! 1,....q are
regular if 7(Gg mi) = g < km, where

G= <[ve('(G’1)], ey [Vec(G;)])/.

The covariance matrix 3 can be either totally known, or it is of the form X
a*V, where 0% € (0, 00) is an unknown pardmeter and the m xm positive definite

matrix V is known, or X is of the form ¥ = Z VU;V;, where 9 (91,....9,

is an unknown vector, ¥ € ¥ C RP, ¢ is an open set and the m  m symmetric
matrices Vy,...,V, are known, or X is totally unknown.

The aim of the paper is to find explicit formulae for parameter estimator
and confidence regions for the parameters, respectively.

2. Parameter estimators

2.1. The matrix X is known
LEMMA 2.1.1. Let the model and the constraints
Y ~nm (XB, 2 ® 1), Gy kBimHm,r +Go — 04,
be regular. Then the best linear unbiased estimator (BLUE) of the matriz B is

B =B - (XX)"'G'[G(X'X)"'G'|"1(GBH + G¢)(H'SH) 'H'S
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and
Var[vec (ﬁ)] e (X'X)™!
— [EHH'EZH)T'H'E] @ {(X'X)'G'[G(X'X)"'G|'G(X'X) ™" }.
Here B = (X'X)"1X'Y.

Proof. In the univariate regular model Y ~, (X3,3X), b, 1 + B, x8 = 0, the
BLUE of 8 is

B=p-(XST'X) B/ B(X'S'X) !B (BB + b)
and
Var(8) = (X'S71X)~! — (X'S~1X)"'B/[B(X'S~1X) 1B/ UB(X'S"1X) !

where 8 = (X'S7IX)"IX'S7LY (of, eg. [4]). Now it suffices to write the
multivariate model in the form

vee(Y) ~pm [(1® X) vee(B), X ®1], (H' ® G) vec(B) + vec(Go) = 0
and to use the equality vec(ABC) = (C’ ® A) vec(B). O

COROLLARY 2.1.2. Let in the reqular model the reqular constraints are of the
form Gg kB m + G, (g,m) = 0. Then

~

B =B - (XX)"!G'[G(X'X)"'G'|"1(GB + Gy),
Var[vec(B)] = £ ® {(x X)~1 (X/X)_lG’[G(X’X)‘IG’]_1G(X’X)‘1}
+
—T® [MG/X’XMG/] ,
where Mg: = | — Pgr, Pgr = G'(GG')™'G. (The notation * means the Moore-
Penrose generalized inverse of the matriz (cf. in more detail [19]).

Remark 2.1.3. In Corollary 2.1.2 the BLUE of B does not require the knowl-
edge of 2.

COROLLARY 2.1.4. If the regular constraints are of the form By mHp »+Go, (k,r)
— O, then

~

B =B - (BH+Go)(H'SH) 'H'E,

Var[vec(ﬁ)] =[Z-ZHHZH)'H'Z]® (X'X)?
= (MgZ=" Myt @ (X'X)7?

Here the knowledge of X is essential.
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LEMMA 2.1.5. Let the constraints be of the form
T‘I‘(GIB) +g] - 0, ey ’I‘I’(GQB) +gq - 07
~ /
and the matriz G = (VCC(GS),...,VGC(G&)) is of the full rank in rows, 1.c.

r(G) = g < km. Then
1

vee(B) = vec(B) - [E ® (X'X)—l]é'{c[E ® (X'X)_l]é'} (G vee(B) + gl.
5 +
Var[vec(B)] = {Mé[z—l ® (X’X)]Mé}
Proof. Proof is analogous as in Lemma 2.1.1.

2.2. The matrix ¥ is of the form %V
LEMMA 2.2.1. Under the assumption of Lemma 2.1.1 the estimator of 0% 1s

67 Ta(vhy,V7h/[m(n — k) + g1,

where
v, = Y-XB=v+k;, v=MyY,
k;, = X(X'X)"'G'[G(X'X)"'G'|"1(GBH + Gy)(H'VH) 'H'V,
B = (XX)!XY.

The underlined symbols are used in order to emphasize that matrices (not ve -
tors) are under consideration.
If the observation matriz is normally distributed, then

57 ~ 0 X (nry4qr/ M0 — k) +qr].
Proof. It is a consequence of the analogous statement on the e timator in the
univariate regular regression model Y ~,, (X3,0%V), b+ BB = 0, where
o? —viV7lv;/(n+q—k),
V=Y -XB=Y - XB+XXVX)BBXX'V-'X) 'B] (BB +b),
B =XV IX)"IX'vly.
(]

LEMMA 2.2.2. Let v, v; and k; be matrices from Lemma 2.2.1. If Y is normally
distributed, then v and k; are stochastically independent and

Kiky ~ Woalg, >VHHVH) T HV], Vi, = ' 4 Kk,

where v'v ~ W,,[(n — k),02?V]. Here W,,(f,U) means the m-dimensional
Wishart distribution with f degrees of freedom and variance matriz U.
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Proof. Since v and B are stochastically independent, also the matrices v and
k; are stochastically independent. Further the implication

Ugr ~ Npr(0, T, ®S,,) = U'S™U ~ W,[r(S), T]
will be utilized. Since
(GBH + G) ~ qu{o, (H'ZH) ® [6(X'X)"'G/] }
we have
(GBH + Go)'[G(X'X) "' G'] " (GBH + Go) ~ W, [q, (H'ZH)]

and because of

k' k; = VH(H'VH)"}(GBH + Go)'[G'(X'X)"1G']"*(GBH + Go)H'VH)'H'V,

it is valid k}k; ~ Winlg, c2VH(H'VH)"1H'V].

Further the equality k7v = 0 can be easily verified and therefore

viv, =v'v+ kik;.

Remark 2.2.3. The relationships
vec(v) ~ Npm[0,0%(V @ Mx)],
vec(ky) ~ Nom [0,02([VH(H’VH)‘1H’V] ®

® {X(X'X)—lc’[G(X’X)—lG’]—lc(x’X)—lx'})],

and
vee(v;) ~ Nom [0,02 (Ve Mx + [VHHVH) 'HV] @

® {X(x'X)—1G'[G(x'X)—lc'rlG(x'xrlx'})},

are implied by Lemma 2.2.1. It can be easily verified that the matrix
o2 (Viel)

is generalized inverse of all matrices Var[vec(v)], Var[vec(k;)] and Var[vec(v;)],
respectively.
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Since W ~ Wy, (f,02T) = Tr(WT™) = agxf(T)f, we have
52 = TH(Y'MxYV™)/[m(n— k),

Te(Kr ke, V) /(ar),

Tr(viv, V™) /[m(n — k) + gr],

A2
Ucorr

)
o7

Il

I

(cf. also Lemma 2.2.1).

Here 62 is the best estimator (i.e. it is unbiased and its dispersion is smallest
in the class of unbiased estimators of 02) in the model (without constraints)
Y ~ Nym(XB, 02V ® I). The symbol &% denotes the best estimator of o2 in the
model (with constraints) Y ~ Ny, (XB,02V ® 1), GB + Gy = 0. The symbol

&2, .. denotes a correction term (due to constraints) which must be used in order

to obtain the estimator 62 of 2.
Thus

o7 = [m(n — k)&% + qréZe]/Im(n — k) + qr]

and we can judge the influence of the constraints GBH+Gg = 0 on the estimator
of 2.

Remark 2.2.4. If the matrix X is of the form ¥ = o2V, there is no problem to
write directly expressions for the estimators considered, since they do not depend
on the parameter o2. The parameter o2 occurs in their covariance matrices only
and thus it must be estimated by the help of 62 from Lemma 2.2.1.

P
2.3. The matrix X is of the form ) 9;V;

=1

LEMMA 2.3.1. In the univariate reqular model
Y ~, <xg, iﬂivi) b+B3=0,
i=1
the function h(9) = W'Y, 9 € 9, can be estimated by MINQUE iff
heM (S(MXMB, ZOMXMB,)+> ,

where

M (S(MXMB, EOMXMB,)+) = {S(MXMB, EoMXMB,)+u tuc RP} ,

+

+
X(MXMBIZOMXMB' Vj], 1,7=1,...,p.
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If this condition is satisfied, then the 19(0)—MINQUE is

P
h9 = AviZg'V5g vy,

=1

where

p
Do =y 00V;, 9@ =@P,...,90Y,

=1
S(I\/IXMB'Ef’IVIXMB/)i'A =h, vi=Y-— XIB,
b= - (CZ7X) B BOCS;X) B (BA + b),
B=XZFX) X2ty

and 9 is an approximate value of the vector 9.

Proof. The considered model can be rewritten as

p
Y — XBy ~n | XKp*, Vi |, v € Rk_q, M(Kp) = Ker(B),
0

i=1

where b+ BB, = 0, i.e. B, is any solution of the equation b+ B3 = 0. Then
the 9o-MINQUE can be written in the form ([20])

p
B9 =" Ni(Y = XB,) (Mxk, ZoMx k) T Vi(Mx k, SoMx k) F(Y = XBy).

i=1

Since
(Mxx;ZoMxx,)* (Y — XB,)
= 55" - 5 XM/ (Mp X' E5 XMp:) *Mp X S5 (Y = X8y)
= 35! [Y - (8o + {l - (x’zglxrlB'[B(x’zglxrlB’]-lB} X
x (x’zglxrlx’zglv) +{XB, + X(X'=5'X) 1B’ x
x BX'ZF'X) 787 (-b) }| = =31 (Y - XB) = 55w,
we have the explicit expression for w9. O
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COROLLARY 2.3.2. In the reqular multivariate model
P
Y ~om (XB» Zﬁl(vl & l)), Gq,kBk,mHm,'r‘ + GO (gr) — 0;
1—1

the ¥o-MINQUE of the function h(9) = W9,9 € 9, exists iff
heM [(" - k)SEO v+ 4SSy s H) 1H’:|a
where
{ss, |, —mEVEY)),
{SH(H/EOH) H} =T [H(H/EOH)—lH’viH(H’on)—lH’vJ,

i,j
,7=1,...,p.

The 9o-MINQUE is

P
9 =" X\ Tr(viv, 35 ViEgh),

1—1

where
{(?’L - k)SEO 1+ qSH(H’):UH) 1H/] A—h.

Proof. With respect to Lemma 2.3.1

WO =3 Nifvee(v,)]'(S5" @ N(V: ® )(S5" @ 1) vee(v,)
i—1

p
=) N Tr(viv, B VB,

v 1

where
he M(S4), A- [M(1®X)K(H/®G) (Zo @ DMrex)K 11 o r :
The matrix A can be rewritten as follows
A(E ) - (B e N19X)|[ My 6(B, @ DMaee] (1 X)(5; o)
~ ;' @My + HHEZH)'H © {x<x’x> IG/[G(X'X) 'G/]"! x
x G(x/X)—lx’} =S @My + A @Ay, A, = HH'SH) 'H,
A, = X(X'X)TI'G/[G(X'X) 'G] 'G(X'X)"'X’' (idempotent matrix).

278



MULTIVARIATE REGRESSION MODEL WITH CONSTRAINTS

Further
THAV; @ DAV, @ 1)] = ﬂ[(zgl ®Mx +A; ® Ay)(V; ® (5" © My
+AL® AV, ® |)] = Tr((zglvizglvj) ® My
+ [H(H’ZOH)‘IH’ViH(H’EOH)"lH’Vj] ® {X(x’X)—lc’ x
x [G(X’X)‘lG’]_lG(X’X)_lx’}) = Tr(My) Tr(S5 1V, 55 1V;)
+Tr{[G(x'xrlG’]—lG(x'X)-lx'X(x’X)-lc.;'} X
x Tr[H(H’EOH)'lH’ViH(H’ZOH)_IH’Vj]

= {(n - k)sgo-l + (ISH(H’EOH)—lH’}

i,J

O

Remark 2.3.3. If the matrix (n — k)SEO v + ¢Sy (H's )1 i 1S regular, then
the vector ¥ can be estimated and

Tr(viv S 'Visg )
9= (n— k)SZO v+ qSH(H'S H) - HY :

TV, 55 Vi)
In the case of normality
Varg, () = 2 [(n ~k)Sp-1 + qu(H,EOm_IHI] -t
Remark 2.3.4. If H,,, , = |, 1, then
(n — k)Szo—l +4SHH som -1 = (N+q — k)Szo_l.
If Ggx — lgk, then
(n— k)sz(;l +4SHHsoH) 1H = nSy 1+ k<SH(H/EOH)—1H/ ~ Sy 1).
LEMMA 2.3.5. Let the model

vec(Y) ~nm [(l ® X) vec(B), T @ |)], Gvec(B) + g = 0,

=) 9(Vi®l),
=1
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be reqular. Then the 99-MINQUE exists for the function h(9) h'9, 9 € 9.
iff h e M(S.),

(S, =n({61m X076} Glvis)  (xX) 16,
L,j=1,...,p,

— )4
and then the 9o-MINQUE of h(-) is W9 — Y\, Tr(vhv,; 5, 'V, 2, ). Here
v 1
v;=Y—-XB, S.A=h,
= ~ - - 1
B—B- devec([ZO ® (X’X)‘l]G’{G[EO ® (x'X)-l]G'} (G'»cc(B) + g)).

The operation “devec” creates the k x m matriz from the mk-dimensional vector
- (=~ _y 1
S0 @ (X’X)—l]G’{G[EO ® (X’X)—l]G’} (Gvec(B) + g).

If the matriz S, is regqular, then

Tr(viv, S ' Visg ")
v =S! ;
Tr(viv, X, 1Vp251)

If Y is normally distributed, then Valﬁo( ) =28;1.

Proof. With respect to Lemma 2.3.1

{8305 — T{ [Muexn,, (50 ® DMusxu, (So @] (V, D
+
X {M(I(XJX)MG,(ZO@|)M(I®X)MG,(ZO®I)] (V; ')}-

Here

+
[M(1®X)MG-, (3o ® ')M(I®X)M~/ (o ® ')}
=St el - (5 e X){Mg[S5" (XX)Mg}T(Z, @ X),
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and thus
(S.i = nTR(S5 ViS5 'V;) — 2T ({ Mg (857 © (XX)IMg, )
* (25 vizg v,z @ (XX)]) + Tr({Mg [557 @ (x'X)]MC;,,}+ x
x [(Z5'VizgH) @ (X'X)]{Mé, =t (x’X)]Mé,}+ x
< (V250 @ (xx')]).
Further
2 ’I‘r({Md, (25! ® (X'X)] MC;,,}+ (Vs v, 5 @ (x’X)])
= —2nTe(%5 ' ViZ5 V) + 2T ({G[Zo ® (X’X)‘l]é’}_l x
x G[(Viz5V;) ® (XX) 1] 6),

Tr({Mg 851 © (XX Mg} [(55'Visgh) © (X'X)] x
x {Mg [Z7" @ (XX)]Mg, }+ [(257V,=5Y) @ (xX)])
= nTr(Z5 'V, 3;1V;) — T&«( G[Zo® (x'X)-l](;'}'1 x
x G[(ViZ5'V)) ® (x'X)—l](;').
The rest of the proof is obvious. O

Remark 2.3.6. If the constraints are given in the form GBH + Gy =0, H # |
and Gvec(B) + g = 0, the the Yy-locally best linear estimator of B is known
only. However if the estimator of 9 is sufficiently precise, then the estimator
can be used instead of the actual value 9" of the parameter ¥. What means
“sufficiently precise” is commented in Section 3.

2.4. The matrix X is totally unknown

Analogously as in Remark 2.3.6 the constraints GBH + Gg = 0, H # | and
G vec(B) + g = 0, respectively, make problems in the estimation of B when the
matrix X is totally unknown. A ¥j-locally best estimator of B can be obtained
casily, however an investigation of statistical properties of a plug-in estimator,
i.c. the estimator of B with an estimated covariance matrix, is difficult. One
possibility offers the following Lemma 2.4.1. However it is necessary to say
something in advance.
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Analogously as in [17] and [3] let an univariate regular model
Y ~ N,(X3,X), b+ BB =0,

be under consideration. Let B be any unbiased estimator of 83, eg. B =
Mp XY — B/(BB’)7'b, and let v = ZY + z ~ N,(0,W). The class of all

linear unbiased estimators of zero function of the parameter 3 is
Lo = {u'Mxn,, Y +u'Mxp, XB'(BB)"'b: uecR"},
ie. 23 is the BLUE of 8 iff V{u € R"} cov(u’MXMB,,ﬁ) = 0 (in more detail cf.

[4, Chap. 10]). This class is created of all linear combination of the components
of the vector ZY + z ~ Ny,(0,W). Further

(¢)=xel(5)-(w w)]

f
If fS= Y ugul, ~ Wo(f,E) (Wishart distribution with f degrees of freedom),
=1

a=
ie. Uy~ N,(0,X),a=1,...,f,and w,..., uy, are stochastically independent,
then

Y !
u, Vv u, Vv
f(;,,, W>=Z<v;,1,vg,2>'< Ve ~ W | 1 (7w )|

a=1

Mp X~
where (V,, 1,V ) = ( Bzx > ug,a=1,...,f.

In the following text the symbol () means
“conditioned by (V1,2,...,Vysz2,V)".

If the matrix S is substituted into the BI:UE ,Z3 of 3 instead of X, then we
obtained the plug-in estimator denoted as ,@

LEMMA 2.4.1. If the Wishart matriz fS ~ Wr(f, Z), f > n+1, is independent
of the observation vector Y, then

=(p) A VW v
5 ot 1229

where
Var(B) = U — VW™V
— (xlz—lx)—l _ (Xlz—lx)_lB/[B(xlz—lx)—lB/]—lB(x/z—lx)—l
and

F(O = VW) ~ Wi(f — (W), Var(B)].
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X e o~ =) . o~
Proof. The plug-in estimatoris 8=8—-VW~vand 3 = ﬁ(p) —-V@®W-p.
Here

B® ~ Ni[B - VW~ ¥, Var(8)],

f
E(\'}(P)):(1/f)E(ZVE£)1V;72) l/f)ZVW Va2V, = VW™ W,

a=1

Thus
=(p) _ ~—
EB )=B-VW v+VW WW™ v =3,
since P{v € M(W)} =1 = WW 7=
The vectors [i(p) and V@)W~ are stochastically independent, thus

%(p) = (p) S (p) i -
Var(8 )= Var(8" )+ Var(VPW~¢)

. i .
= Var(3) + Var(z vf;j{v’a,zw—r/) = Var(3) + Var(3) Z(va W)
a=1
A ~ N —
= Var(3) <1+ VV}I V) .

The other statement is well known (cf, e.g. [18]). d

Remark 2.4.2. The residual vector

V=Y - XB= Y XXX XS 4 X(XSTX) B x
x [B(X'E71X)"IB| 7 B(X'STIX) " IX'SY + b

depends on the matrix X, however v = ZY + z does not depend on it. Thus
there exists a regular matrix Ry, with the property v = Rgv and

Var(v) = Z — X(X'E71X)7IX + X(X'=71X) "B/ [B(X'='X) 1B/ !
x B(X'S71X)"!X’ = Ry Var(V)Ry = RyWRY,.

Let ¥ = Y — X3. Then ¢ = Rg¥ and

Q’Wi} = f/'(zsz,)_f/ = OIRg(RSW_ng)_RSD = ol(st\ng)_fl
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However
RSWRI = RS(ZSZI)R/ = s — X(xls_lx)—lx/ + x(x/s—lx)—lBl x
x [B(X'S™!X)~'B']'B(X'ST'X)"1X".

Since one version of the g-inverse of the matrix RSWR’S is S71, we have
=(p) a //S—1{
B~ N [ﬂ, Var(B) (1 +2 7 V)J ;

where v =Y — xﬁ.

THEOREM 2.4.3. Let the multivariate model and constraints
Y ~Nom(XB,ZR1), GBH + Gy =0,

be regular. If fT ~ Won(f,E@1=T), f > nm + 1, which is stochastically
independent of Y, is at our disposal, then

~ Ni [B Var[vec(ﬁ)] (1 n [vee(iry)]'T—* vec(f/])])J
m 9 f ,

=(p)

where
B = vec(B) - [10X)T1(1® X)] "(H®G) x
x {(H' ®G)[18X) T (1eX)] '(H® G')}_1 [(H' ® G) vec(B) + vec(Go)],

;=Y —-XB, B=(XX)"IXY.

<>

Proof. Regarding Lemma 2.4.1 and Remark 2.4.2 we have

Uy ~ Npm (0, T), a=1,...,f,

_ I X~ — Py ® (Pe:X™) 0 U,
V, = ( Z Uy ~ Niminm 0 ) V',

Y
w
f ~ ~
Va1 _ u Vv u v
c; ( Va,g > (V;’lav;ﬂ) - f ( v/’ \/,v\ ) ~ ka+nm [f, < V,, W )] .

Now it can be proceeded as in Lemma 2.4.1 and Remark 2.4.2. ]
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=(p)
Remark 2.4.4. Even if the conditioned estimator B has only restricted ap-
plication, it can be suitable utilized in the determination of a confidence region.

Since

£ =YWV’ ~ Wi [f — r(W), Var[vec(B)),
r(W) = nm + qr — km,

é(?) o N [B,Var[vec(ﬁ)] (1 N [vec(l?l)]/'i'f—l vec(%)])]

~ e~ =(p)
and U—VW~V’' and B are stochastically independent, the Hotelling theorem
([18]) can be used. With respect to it

= ~ o~~~ = 2 N
[vec(B — B)[f(U — VW~V")] vec(B — B) X, (Varlvec(B]}

~ 2

[vec(¥1)]'T—1 vec(ir) -
1+ : f Xf—r(W)—r{Var[vec(B)]}+1

and thus this random variable does not depend on the condition (?) and it can
be used for a determination of an exact (1 — a)-confidence region. Since one

version of (U - \7W‘\7’)‘ is (I® X’)T"l(l ® X), this region can be written in
the form

vee(B — B)'[(1® X)T~1(1® X)] vec(B — B)
[vec(¥y)]'T—1 vec(¥)
1 + 1 f 1

E={B: GBH + Gy =0,

< f(km —qr)

> f —m+ 1ka—qr,f—nm+1(1 —Ot)}.

Remark 2.4.5. Unfortunately a realization of the matrix T cannot be written
in the form S ® I. Until now author has not been able to find a matrix of the
form X ® | with properties necessary for the validity of Theorem 2.4.3. Thus
the explicit formulae are rather rough. Except this the degrees of freedom f
must be larger than the number nm + 1 in order the matrix T can be inverted
(f <mm+1 = T is singular) and thus f could be huge number. Therefore
the plug-in estimator given in Theorem 2.4.3 will be used rarely.

It seems that the approach given in the next section has a greater chance to
be used in applications. This approach is demonstrated for a determination of
a variance and a confidence region.
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3. Sensitivity approach

Let in the model (1) an estimator of the function f(B) — Tr(AB), B € {U:
P
GUH + Gy = 0}, be considered. If () — > 9¥;V;, 9 € ¥ C RP, then the
i—1
Uo-locally best estimator of the function f(-) can be determined only, i.e.

By — B — (X'X)'G[G(X'X)~'G'|"'GBH[H'S(9)H] 'H'S(9)
—(X'X)7IG'[G(X'X) 1G] LGy [H'=(I)H] ' H'=(9)
=B-K=8B- (P 1)/ BPL") — (X'X)"'G’
x [GX'X)"1G|71Go[H' = (9)H] T H'(99),
K= (X'X)"'G'[G(X'X)"*G']"}(GBH + Go)[H'S(9)H] 'H'S(9).
LEMMA 3.1.

(i) Tr(ABy+s9) ~ Tr(ABy) + k69,

{k}; — —Tr [AKE“I(ﬂ)ViMf,w) L i=1,...p

(ii) Tr(ABy) and k are uncorrelated and E(k)=0,

{Var(k)}, , — Tr [Piﬁ”z—l(a)vimﬁ"ﬁ)A(x'X)-lpgf'X) 1A’vjz(19>} ,
ij—1,...,p.

Proof.
(i)

= - Tr(A{(X'X)"'GG(X'X) '] '(GBH +Go x
o
B9,
= —Tr(A(X'X)-lc’[G(x'x)—lc-;’]-l(Gé + GO){—[H’zw)H] TH'V,H x

X

[H'z(ﬁ)H]—lH’z(ﬁ)})

< HE@)H] T HS() + WE@)H]HV, }) = - T [AKE " (0)v, M5, 7]
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(ii) The equality E(GBH + Go) = 0 implies E(k) = 0. Since vec(ﬁﬂ) =
vec(B) — vec(K) and
vec(K) = [(P?}")) (Pg,‘,f )]Vec(B ({2 (HH'SO)H] "'} ®
® {(x'X)-IG'[G(x'x)-IG']—l}) vec(Go),

we have

~
-~

cov [vec(Bg),vec(K)] = cov {I @1 [(Pf,“”)' ® (ng;f"‘)'] vec(B),

(7)o () | wec®)} =0

~

Since k is a function of the matrix K and Tr(Aﬁ) is a function of the estimator E,
cov[Tr(AB), k] = 0.
Let

U = A(X'X)"1G'[G(X'X)"1G']"1G,
W, = HH'S(9)H] " 'H'S(9) 2 (9)V; M2,
Then
cov({k}s, {k};) = cov[Tr(UBW;), Tr(UBW;)]
= [vec(U'W})]’ Var[vec(B)] vec(U'W)) = Tr[W,;U(X'X) " U'W; 2(9)]
and
{Var(k)}, , = TY{Pgw)z(ﬂ)‘IViMEIw)A(X’X)‘lG’[G(X’X)G’]‘l X
x G(X'X) 716 6(X'X) MG [6(X'X) G| LG (X'X) A
—Tr [Pi“”2-1(ﬂ)vimi‘”’A(x'X)-lP(G’f""'lA’vjz(ﬁ)] .

Let the variance of the estimator Tr(Aﬁ) of the function
f(B) = Tr(AB), GBH + G, =0,

be under consideration. The problem is whether the a priori unknown param-
eters ¥1,...,7p, can be substituted by their estimates from Remark 2.3.3. We
have:
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THEOREM 3.2. If the observation matriz Y is normally distributed and
69 € {u: u' Var(k)u < *},
then
|Var [Tr(ABy, 59)] — Var[Tr(ABy)]| ~ 69 Var(k)s9 < c2.

Proof. Proof is a direct consequence of the assumption and Lemma 3.1. O

COROLLARY 3.3. If the realization of the estimator Tr(Aélg) 18 given, then also
the vector k is given and the implication

|k'69| <& => | Tr(ABy,ss) — Tr(ABy)| < ¢

is obvious.
If it is known that with sufficiently high probability the actual value 1
9" — 9 lies in the domain {69 : |k'89| < e} (this fact can be verified by

Remark 2.3.3), then the best estimate Tr(ABg.) differs from the estimate
T‘I‘(A@g) less than €.
Moreover, if 9* = 9+ 69, where §9' Var(k)d9 < c2, then also the variance of

the best estimator Tr(Aﬁlgx) differs from the variance of the estimator Tr(A@,g
less than c?.
Let now a confidence region for B in the model (1) must be determined in the
p
case X = Y 9;V,.
=1
Since the estimator

B(v*) =B — (X'X)"'G'[G(X'X)" G/} (GBH + Gy )[H'S(9*)H] "' H'=(9*)

depends on 9" (the actual value of the parameter ¥) and it can be easily proved
that

{Varly [vec(f;ﬂ*)] }_ = 719" ® (X'X),
the (1 — «)-confidence region for the parameter B can be written in the form

£={U: GUH+Gy =0, Tx[(U- By-)'X'X(U — Eﬁ,)z—l(ﬁ*)] <

S X%m—qr(oa 1- Ot)}

Let

-~
o~

k(9) = Tr[ (B - By) X'X(B - Eﬂ)z—l(ﬂ)].
(Obviously k(0%) ~ X3 _qr(0).)
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LEMMA 3.4.
E (6259?) 19:0*) = -k e[S (9")Vy] +q’I‘r{H[H’2(19*)H]—1H’Vi},
oV [(agg?) 19:19.> ’ (6;1(9?) L9=19~>] = 2k X[~ H(9*)V, =1 (9%)V]

—2¢ Tr{HH'E(®*)H]"'H'V,;H[H'S(9*)H] ' H'V;}.

Proof. Since

~
o~

0By  xiyr—lge NP
0: g = ~XX)TIGIGXX)TIG]H(GBH + Go) x
X [H'Z(ﬁ*)H]_lH’viMi(ﬂ‘)’
we have
(9k(’l9) — " ! ’ -1 / , =1
99; 19:19~_2T\1{xx(xx) G'[G(X'X)"'G]"! x

x (GBH + Go)[WS(9)H] " HV,ME ) 5 (9°)(B - B}

- Tr[(B — By-)X'X(B — Egt)z—l(v*)viz-lw*)}.
Now the substitution
By =B — (X'X)"!G'[G(X'X) 1G] "!GBH[H'S(9*)H] ' H'=(9*)

is used and thus

k()
0
X [H’E(ﬂ*)H’]‘I(G§H+GO)'} —Tr[X'X(B=B)Z}(9")V; =~} (9*)"(B-B)].

e TY{G’[G(X’X)‘IG’J*(GI?H + Go)[H'S(9*)H] "' H'V,H x
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In the following consideration the equality

E[Tr(UEVY')] = {Elvec(E)]} (V ® U') E[vec(Y)]
+ Tr{(V @ U’) cov|vec(Y), vec(Z)]},

which is valid for any random matrices E and Y, is used. Thus

5 (22

ﬂ:§*> = Tr[({ WS )HHVHHS0)H " | @
® [G(X’X)‘IG’]“l) Var|(H' ® G) vec(B)]|
- ﬁ({[E‘l(ﬂ*)ViE'l(ﬂ*)] ® (X’X)} Var(B — §)>
- T&«({[H'z(ﬂ*)H]—lH'viH} ® {[G(X'X)—IG']—IG(x'X)—lc’})
. Ty{ [S1(9°)Vi] ® (X’X)(X’X)‘l}

— kIS L9V + qTr{H[H’E(ﬂ*)H]“lH’Vi}.

k(1)
99,

2

In order to obtain a formula for cov [( ) , (0(];5919) )J, the fol-
9=0* 7 l9—u+

lowing notation is used

A = ’I‘r{[G(X’X)‘lG’]“l(GﬁH+G0) X
x [H'=(")H] '"H'V,H[H'S(9*)H] " (GBH + GO)’},
—4; = —Tr[X'X(B-B)Z™'(¥)V;Z7}(9*)(B-B)],
B = 'I‘r{[G(X'X)_IG']'l(GﬁH + Go) x
x [H'S(9")H]"'H'V;H[H'S(9*)H] " (GBH + GO)’},
~-B, = -Tr[X'X(B-B)Z™'(¥")V,;=7'(9")(B-B)].
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Thus

Ok (9 Ok(9) B B 3 _
cov [( o9, 0:0*) , ( av, ‘19:19*)} = cov(A;1, —A2,B; — B2) =

= cov(A1, B1) — cov(Ay, Bg) — cov(Az, By) + cov(Ag, Bz).

Let 2 =B — B, Y = GBH + Go. Then
vec(Y) = —(H' ® G) vec(E) + (H' ® G) vec(B) + vec(Gyp).
Now the relationships

cov [’I‘r(AiEBiE’), Tr(AjEBjs')] =2 Tr{(sg ® A;) Var[vec(2)] (B} @ A;) x
x Varlvee(2)]} +4{ Elvec(2)]} (B] © A;) Var[vec(Z))(8; ® A;)Elvec(E)),
cov[Tr(AZBE'), Tr(CYDY')] = Tr{(B’ ® A) Var[vec(E)][(U'D'U) ®

® (V'CV)] Var[vec(E)]} + 4E[vec(E)](B’ ® A) Var[vec(E)][(U'D'U) ®
® (V'CV)]E[vec(E)],

where vee(Y) = (U ® V) vec(E), will be utilized in the following calculation.
Thus we obtain
cov(4r, Br) = 2T ({[HE@" ) HITHVHIN S )H] 1} &
® [G(x'X)—IG']—l){[H'z(ﬂ*)H] ® [G(x’X)—IG’]}({[H'zw*)m-l x
x HV;HH'S(0)H] '} © [6(X'X) 76 ){ 9" )H] ®
®[G(X’X)‘1G’]H :2qTr{H[H (0" H] " H'V HIH S(97)H]THV; }
— cov(Ag, By) = —2Tr[[2(19*)_1V2-E (9] @ (X'X)][E(9%) @ (X'X)~] x
X ({H[H'z(ﬂ*)H]—lH’ij[H’z(v*)H]—lH’} ® {G’[G( X)~'G' ]—1G}> x
 [S(0") ® (x'X)—l]]
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= —2qTr{H[H’E(ﬁ*)H]‘lH’ViH[H’E(ﬁ*)H]_lH’V]} = —cov(Ay, By)
= —COV(Al,Bl),
cov(As, By) = 2%({[2(19*)‘1Vi2‘1(19*)] ® (X’X)]}[E(ﬂ*) ® (X'X)7] x
x {27V, ET Y] 8 (XX ) @ (X'X) 1))
=2k Tr[E7 1 (9")V, =71 (9%)V;)].

In the following text the notation (cf. also Corollary 2.3.2)
{Sg-1}; ;= T (= O)VS WOV, ii=1,...,p,
and

{Sursm-ra} :Tr{H[H’E(ﬂ*)H]_lH’ViH[H’E(ﬂ*)H}“lH’VJ},

]
,7j=1,...,p,
will be used. Thus
Var (8/{;_&;9)) = 2kSy-1 — 2¢Sy(m'sH) 1H-
COROLLARY 3.5. Let
a' = (ay,az,...,a,),

a; = kTr{Z]_l(ﬂ*)Vi} - qTr{H[H’E(ﬁ*)H’]_lH’Vi}, i—1,....p,
A =2kSy-1 — QQSH(H'):H) 1H/-
Then

i(“{[G(X’X)"lG/]‘l(GﬁH +Go)[H'S(W")H] ' H'V,H[H'S 9" )H] ™! x

~

x (GBH + Go)’} ~TX'X(B - B)S " (9)V, =L (97)(B — B)’])Mi

and
E[k(69)] = —a'd9, Var[k(69)] = §9'AsY.
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THEOREM 3.6. If

69 € {u cueRP, [u—c,(t?A — aa')*a) (?A — aa')[u — c,(t°A — aa')* a]

< c2t?
—t2-aAtal’

then

P{B cE= {u : Ue MP™ GUH+ G =0, Tr[(U— Byys9)X'X X

X (U=Byr159) =7 (9" +09)] < Xm0 1- )} 21—,

where M¥X™ is the class of all k x m matrices, t is sufficiently large number
satisfying the relationship

P{n(éﬂ) < —a'69 + tV/60' ASY } ~1
and c¢; satisfies the equation
P{X}%m—qr(o) < X%m—q’r‘(o, 1- OL) - ct} =l-a- €,

i€ Ct = Xgm—gr(0,1—0a) — x%m_qr(o, l1-a-ce).

Proof. Regarding Theorem 3.2

k(9" + 69) ~ k(9*) + k(69) and p{kw* +69) < X2n_qr (0,1 - a)}
~ P{Xrngr(0) + K(09) < xmgr (0,1 = 0) } = P{xn_ 4 (0) + 5(59)
< Xhm—qr (0,1 = @)|K(39) < c} P{k(89) < c} + P{xEn—4r(0) + K(69)

< X (0,1 = )|5(59) > C}P{n(éﬁ) > c}.
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If k(0¥) < c occurs with probability near to 1, then P{k(d* + 69) <
Xim—qr(0,1 — @) — ¢} > 1—-a—e. Now the number ¢ can be found for a

given £ and the number ¢ must bo chosen such that k(§9) < —a’'§9 +tv§9' As9
occurs with probability near to 1.

If the numbers ¢ and t are given, the nonsensitivity region can be found as a
set {09 : t269'A6Y < (c+ a'69)?}. The equality

t269' A6 = ¢? + 519 aa' 9 + 2ca’ 59
can be rewritten as

(69 — wp)' (t2A — aa') (69 — wy) = ¢® + c*a’ (t*°A — aa')Ta

where uy = c;(t?A — aa’)*a. Here it is necessary to remark that a €
M(t?A — aa'). Since

(t’A — aa')" = (*A)T + (2A)tall — &' (t*A)ta]ta (AT

1 Ataa’ At
= AT o —
12 t2(t2 — a’'Ata)
we have
2, 21042 "+ At?
c“+c a(t A—aa) a:m.

O

Sensitivity approach for other statistical inference is used in [4], [5], [6], [7],
(8], 191, [10], [11], [12], [13], [14], [15], [16].
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