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N O N - H O M E O M O R P H I C DENSITY TOPOLOGIES 

STANISLAW W R O N S K I 

(Communicated by Eubica Hold) 

A B S T R A C T . In [ANISZCZYK, B . — F R A N K I E W I C Z , R.: Non homeomorphic 

density topologies, Bull. Polish Acad. Sci. Ma th. 3 4 (1986), 211-213] the 

au thors cons truc ted 2C non-homeomorphic density topologies tied to the concept 

of measure. In [WRONSKI, S.: The number of non-homeomorphic I-density 

topologies. Ins t i tu te of Ma thema t ics of Polish Academy of Sciences. Preprin t 482, 

December 1990, XXXIV Semester in Banach Cen ter, Theory of Real Functions] 

an analogous cons truc t ion has been given for topologies tied to the concept of 

category. Here we present a generalization con taining bo th the results men t ioned 

above. This generalization based only on the topological ideas is independen t of 

the concept of measure or category. 

©2007 
Mathematical Insti tute 

Slovak Academy of Sciences 

Let (1,T) be a fixed topological space. The symbols: A T , LT, I and C will 
stand for the family of nowhere dense sets, the algebra of sets with nowhere dense 
boundary, the interior operator and the closure operator of the space (1,T). 

By a density topology for (1,T) we shall mean any topology D on the set 1 
such that: 

T c D c L T , 

A T = Arj, FT — Lp. 

Compare with [1] and [6]. 

Let x denote a positive cardinal. By a x-partition we shall mean a function 
/ : x —-> L T / A T satisfying the following conditions: 

(i) (V7 < x)(/(7) + 0) 
(ii) sup / ( 7 ) = 1 

7 < X 

(iii) ( V 7 i , 7 2 < x ) (71 ф 72 =-> / (71) Л / (72) = 0 ) . 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 54A10, 54D80. 

K e y w o r d s : density topology, selector, au tohomeomorphism, Stone isomorphism. 
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STANISLAW WRONSKI 

The set of all x-partitions will be denoted by P a r ( x ) . For A G LT we denote 
by [A] the respective member of LT/AT. 

We say that a cardinal x is acceptable if the following condition holds: 

(A) (Vx G 1) ( 3 / G Par (x)) (V.A G LT) 
(x G T4 = > (V7 < H) ([A] A / (7) ^ 0)). 

The main theorem of our paper is the following: 

THEOREM. (Main) Let (1,T) be a regular topological space. If an infinite car
dinal K is acceptable and such that card ( L T / A T ) = 2", and ca rd ( l ) < 2*, 
then there exist 22* non-homeomorphic density topologies for the space (1 ,T . 
Moreover, none of those topologies has a non-trivial autohomeomorphism. 

We shall frequently use the following well-known fact: 

LEMMA 1. (Preliminary) If A, B are clopen and AnC = B n C where C is a 
dense set, then A = B. 

Let U be the set of all ultrafilters of the algebra LT/AT and let 
i: L T / A T -> P ( U ) be the mapping given by i([A]) = {j G U : [A] e j}, 
for every A G LT- (P (U) denotes the family of all subsets of the set U.) Let X 
be the topology on U determined by the basis {i ([A])}A(ELT\AT • ^ ls known that 
the topological space (U, X) is compact and extremally disconnected and more
over, its field of clopen subsets is just the image of LT/AT under the mapping 
i, called frequently the Stone-isomorphism. 

Using properties of interior operator one can easily prove the following: 

LEMMA 2. For every x G 1 the set Fx = {[A] G LT/AT : x G I A} is a proper 
filter of the algebra LT/AT-

For x G 1 we put ¥x = {j G U : Fx C j}. 

LEMMA 3. If A G L T \ AT, then: 

(a) IA ^ 0 

(b) (3xeA)(¥xGi([A])). 

P r o o f . It is easy to check that every boundary set with a nowhere dense bound
ary is itself nowhere dense. This fact and the assumption that A G LT \ AT 
yields (a) and the existence of x G A, such that [A] G Fx. We will show that 
¥x C i ([A]). Indeed, if j G F x , then Fx c J, and therefore [A] G j . This meaiib 
that j G i ([-4]), by the definition of the Stone isomorphism i. • 

Let Sel denote the set of all functions S: 1 —> U such that (Vx G 1) (S (x) G ¥x). 
The elements of the set Sel are called the selectors. 

LEMMA 4. For an arbitrary S G Sel the set S (1) is a dense subset of the space 
(U,X). 7 / ( l , T ) is a Hausdorff space then the mapping S is one-to-one. 
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P r o o f . To prove the first part let us assume that U is a base set of the space 
(U,2). Then U = i([A]), for some A e LT\AT. By Lemma 3(b), there exists 
x e A such that ¥x C i ([A]) and consequently S (x) e i ([A])nS (1) = UnS(l). 
By the choice of U, this yields the density of S (1). 

To prove that S is one-to-one we will show that F^ H¥y = 0 whenever x ^ y. 
Assume to the contrary that j e ¥x nF^ , for some j e U. Since x ^ y and (1, T) 
is a Hausdorff space, there exist sets A, B e T C LT such that x e A, y e B, 
A n B = 0. In such a situation x e IA and y e IB C I (—A) which means 
that [A] e Fx and [-A] e Fy. Since Fx, Fy C j , we have [A], [—A] e j which is 
impossible because j is a proper filter. • 

For an arbitrary S G Sel, let <ps : LT —> P (1) be a mapping given by 
p 5 (A) = S-1 (i ([A])), for every A e LT. 

THEOREM 1. The following conditions hold for every A,B e LT: 

(1) IAC(ps(A) CCA 

(2) A = B ^=> <ps (A) = <ps (B) 

(3) <ps (A\JB) = <ps (A) U <ps (B) 

(4) <ps (AHB) = <ps (A) n <ps (B) 

(5) <ps (~A) = -<ps (A) 

(6) [A]<[B] => <ps(A)C(ps(B) 

(7) <ps(A)=$ <=> AeAT 

(8) A-r<ps(A) eAT. 

P r o o f . To prove the first inclusion of (1) assume that x E I A. This implies 
that [A] eFxcS (x) and therefore S (x) e i ([A]) and finally x e S'1 (i ([A])) = 
<Ps(A). 

To prove (2) assume first that A = B. Then i ([.4]) = i ([B]) and consequently 
ips (A) = S-1 (i ([A])) = s"1 (i ([B])) = <ps (B). 

Conversely, assume that <ps (A) = <ps (B). This means that 5 x (i ([A])) = 
S-1 (i ([B])) and consequently S (S'1 (i ([A]))) = S ( S " 1 (i ([B]))). This implies 
that i ([A])nS(l) = i ([B])nS(l) where i ([A]) and i ([B]) are clopen and S (1) 
is dense (Lemma 4). Finally one gets that A = J?, by Preliminary Lemma. The 
assertions (3), (4) and (5) follow directly from the property of inverse images 
while the second inclusion of (1) follows from the first inclusion, by (5). 

To prove (6) observe that if [A] < [B], then <ps (A) = <ps(AuB), by the 
definition of <ps. Now, by (3), one gets <ps (A) = <ps (A) U <ps (B) and therefore 
<Ps(A) C<ps(B). 

To prove (7) assume first that <ps (A) = 0. Now, by the definition of <ps it 
follows that i ([A]) n S (1) = 0 n S (1) where i ([A]), 0 are clopen while S (1) is 
dense. Thus, by Preliminary Lemma, i([A]) = 0 which means that A e AT. 
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Conversely, assume that A G AT. Then [A] = 0, and therefore z([-4]) = 0. 
Finally <ps (A) = S " 1 (i ([A])) = S " 1 (0) = 0. 

To prove (8) observe first that 

A \ <ps (A) = (I A U (A \ I A)) \ <ps (A) c (<ps (A) U (A \ I A)) \ <ps (A) 

= (A\IA)\<ps(A). 

But A \ IA G A T because A G LT. Thus A\<ps (A) G A T . This implies that 
(5) 

<ps (A) \ A = (-A) \ (-<ps (A)) = (-A) \ <ps (-A) G A T and for this reason 
A + <ps (A) = (A\<ps (A)) U (<ps (A) \ A) G A T . • 

COROLLARY 1. 

(a) <ps (LT) C FT 

(b) <pS o<ps = cps 

(c) <ps (LT \ A T ) C L T \ A T . 

P r o o f . Since <ps (A) = (A\(A\<ps (A))) U (<ps (A) \ A) for every A G LT , 
then <ps (A) G FT, by Theorem 1(8). This proves (a), and (b) follows from (a) 
by virtue of Theorem 1(8),(2). 

To prove (c) assume that A G LT\AT. By (a) it will be sufficient to prove that 
<ps (A) rf. A T . Assume on the contrary. Then <ps (A) = 0, by Theorem 1(7) and 
(b). Again, by Theorem 1(7), it follows that A G A T which is a contradiction. 

D 

COROLLARY 2. If A G LT \ AT, then I<ps (A) ^ 0. 

P r o o f . By Corollary 1(c) it follows that <ps (A) G LT\ A T , which implies that 
I<ps (A) ^ 0, by Lemma 3(a). D 

It is ea'sy to check that the family {<ps (A)}AELT\AT is a topological basis. 
The topology determined by this basis on the set 1 will be further denoted by Ts. 

LEMMA 5. If (1,T) is a Hausdorff space then the spaces (1,TS) and 
(S (1) , {S (1) D U}UeX) are homeomorphic. 

P r o o f . From Lemma 4 it follows that the required homeomorphism is just the 
mapping S: 1 -*S(1 ) . • 

LEMMA 6. Ts C LT, if (1,T) is a regular space then T c Ts. 

P r o o f . First let us note that the following assertion is true: 

(*) (YH CLT) (3G G LT) ( G C U « A [G] = ^sup [H]\. 
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To prove the inclusion Ts C LT assume that A G Ts. Then A = (J (ps (J7), 
for some family FC L T . By Corollary 1(a), (ps (J7) C LT and thus, applying 
the assertion (*) to the family (ps (J7), we get that there exists B G LT such 
that B C \J(ps (J7) = A and [B] = sup [ps (H)]. By the definition of supre-

HeT 
mum, (VH G T) ([ps (H)] <[B]). This, together with Theorem 1(6) implies that 
ips (vs (H)) C cps (-B), for every H e J7. Applying Corollary 1(b) we get that 
for every H G T, (ps (H) C (ps (B), which yields that A = {J (ps (J7) c (ps (B). 
Thus, B C A C (ps (B) and finally A G LT because B + (ps (B) G A T , by virtue 
of Theorem 1(8). 

To prove the inclusion T C Ts assume that A CT. We shall prove that every 
x G A has a neighbourhood which is a subset of A belonging to the basis of the 
space (1,TS). Take any x G A. Since (1,T) is a regular space, by virtue of the 
assumption, then there exists U G T\{0} C LT\AT such that x G U C CU C A. 
On the other hand, by Theorem 1(1), U = IU C ps (U) C CU and combining 
all this we get that x G ips (U) C .A, as required. D 

COROLLARY 3. / / (1,T) is a regular space, then AT = ATs, LT = LTs. 

P r o o f . From Lemma 6 and Corollary 2 we infer that the families T \ {0} and 
Ts \ {0} are cofinal. This, by virtue of [2, Proposition 1.2(i), Proposition 1.3], 
implies both equalities to be proved. D 

COROLLARY 4. / / (1, T) is a regular space then for every selector S, the family 
Ts is a density topology for (1 ,T) . 

P r o o f . It is an immediate consequence of Lemma 6 and Corollary 3. D 

ForeveryxG 1, / G Par (x) and j G ¥x let V (j, f) = { P C x : s u p / ( P ) G j } . 
Moreover, let /3x stand for the set of all ultrafilters of the algebra of all subsets 
of X. 

LEMMA 7. V (j, f) G (3x. 

P r o o f . Clearly V (j, / ) must be an ultrafilter because so is j . D 

For every x G 1, j G Fx let B (j) = {V (j, / ) : / G Par ( x ) } . 

LEMMA 8. 1/ x is an infinite cardinal and card (LT/AT) = 2", then 
card (B (j)) <2". 

P r o o f . From the definition of the set B (j) it follows that its cardinfdity can
not exceed the number of mappings of x into LT/AT. Thus, card (B (j)) < 
card ( L T / A T ) ^ = (2*)* = 2" because x is an infinite cardinal by virtue of the 
assumption. D 

L e t l m = ( 5 ( 1 ) : S G Sel}. 
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LEMMA 9. Let Z\, Z2 G Im and let h: Z\ —> Z2 be a homeomorphism of sub-
spaces Z\, Z2 of the space (U,J) . Then for every f G P a r ( x ) there exists 
g G Par (H) satisfying the following condition: 

(B) (VP C x) (/z(Zi n i ( s u p / ( P ) ) ) = Z2 n i (sup g(P))). 

P r o o f . Since for every 7 < x the set Zi C\i(f (7)) is clopen in the space Zi 
and the mapping h is a homeomorphism h (Z\ Di(f (7))) is clopen in the space 
Z2 . The algebra L ^ / A T is complete, so by'Lemma 4 it follows that there exists 
a mapping g: x —> LT/AT such that /i (Zi C\i(f (j))) = Z2C\i(g (7)) for every 
7 < K. We will prove that g G Pa r (x ) i.e. it obeys the conditions (i), (ii) and 
(hi) of the definition of xr-partition and moreover, it obeys the condition (B). 

To prove (hi) suppose that 71,72 < x and 71 7̂  72- Then 

% ( 7 i ) A 0(72)) n z2 -1(0(71)) n z2 n 2(0(72)) n z 2 

= h(z1 n t(/(7i))) n h(z, n i(/(72))) 
= h(z1m(f(11))ni(f(l2))) 
= / i (Z in i ( / (7 i )A/ (72 ) ) ) 
= h(Z1ni (0)) = h (Zi n 0) = h (0) = 0. 

Now, by Lemma 4 and Preliminary Lemma it follows that g (71) f\g (72) = 0. 
To prove (i) suppose to the contrary, that g (70) = 0, for some 70 < x. Then 

Z 2 n i (g (70)) = Z 2 n i (0) = Z 2 n 0 = 0, which implies that h (Zx H i ( / (70))) = 0-
Clearly Zi n i (f (70)) = 0 = Zi n 0 because /i is a homeomorphism. Applying 
again Lemma 4 and Preliminary Lemma one gets that / (70) = 0 which is 
impossible since / G Par (x), by virtue of the assumption. 

Starting the proof of (B) let us denote the closure operators of the space 
(U,X) and subspaces (Zi , {Zi n U}UeX), (Z2 , {Z2nU}ljeX) by Or, C Z l , 
Cz2, respectively. By Lemma 4, the sets Zi, Z2 are dense in the space (U,2) 
and for every P C x the sets ( J i ( / ( P ) ) , \Ji(g(P)) are open in this space. 
Therefore Cx (\Ji (f (P))) = CI(Zln[ji(f (P))) and Cx([Ji(g(P))) = 
Cx (Z2n\Ji (g (P))). Thus we get: 

h(Zi Hi (sap f(P))) 

= h(z1nsnPi(f (P))) = h(zxncx (\Ji(f (P)))) 

= h(zxn cx (zx nji(f (P)))) = h (cZl (zi n (Ji (/ (P)))) 

= CZ2(h(z1nJi(f(P))))=Cz2( \Jh(Z1ni(f(y))) 

= czJj (Z2ni(g(7)))) = CZ2 (z2n\Ji(g(P))) 
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= z2ncx(z2n\Ji(g(p))^=z2ncx()Ji(g(P))) 

= Z2n supz (g (P)) = Z2ni (sup # (P)). 

Proving (ii) we will apply (B) with P = x. Then we have h I Z\ n i f sup / (7) 1 ) 

= Z2ni\ sup g (7) ) . But on the other hand hlZiHil sup / (7) ) ) = 

\7<x / V \7<x / / 
h (Zi n i (1)) = h (Zi n U) = h (Zi) = Z2 = Z2 n U =Z2 n i (1). Comparing the 
right sides of the above series of equalities, we infer that Z2 n i I sup g (7) 

\ 7 < ^ j 

Z2 n i ( l ) . Now, applying Lemma 4 and Preliminary Lemma, we get that 

supg (7) = l- • 
7 < x 

LEMMA 10. Given Z G Im and a mapping h: Z —> U such that h(Z) G Im. 
If h is a homeomorphism of subspaces Z and h(Z) of the space (U,X), then 
B (j) = B(h (j)), for every j G Z. 

P r o o f . First we will prove that B (j) C B (h(j)). Take any member of B (j), 
it has a form V (j, / ) for some / G Par (H). By Lemma 9, it follows that there 
exists g G Par (x) such that for every P C x: 

(W) h(Z ni(supf (P))) = h(Z)ni(supg(P)). 

Now let us consider the ultrafilter V (h (j) ,g) G B (h (j)), we will prove that 
V ( i , / ) C V(Mj),<7). Indeed, if P G V ( j , / ) , then s u p / ( P ) G j . Since 
j G Z, then j G Z n i (sup f(P)). Applying (B') we get that h(j) G h(Z) n 
i (sup # (P)) and therefore sup # (P) G /i (j) or in other words P e V (h (j) ,g). 
Since V (j, / ) , V (/i (j) ,g) G /3x, then the inclusion just proved implies that 
V ( j , / ) = V(h(j),g) and consequently V (j, / ) G B(h(j)). The inclusion 
B (h(j)) C B (j) can be proved in a similar manner. • 

COROLLARY 5. Le£ (1,T) be a Hausdorff space. Let S,S1,S2 G Sel, S (1) = Z, 
Si (1) = Zi , S2 (1) = Z2. Then the following conditions hold: 

(a) If for every distinct j , k e Z, B (j) ^ B (k) then the space (1, T5) has only 
trivial autohomeomorphism. 

(b) If for every j G Zi , k G Z2 we /icwe P (j) 7-- P (k) then spaces (l,TSl), 
(l,Ts2) are not homeomorphic. 

P r o o f . To prove (a) assume that a non-trivial autohomeomorphism of (I .T5) 
exists. Then, by Lemma 5, a non-trivial autohomeomorphism h exists also in 
the space (Z, {Z n U}UeX). Let s G Z be such that h (s) ^- s. Then, by 
Lemma 10, B (s) = B (h (s)) and putting j = s, fc = h (s) we get that j ^ k and 
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B (j) = B(k), as required. The condition (b) can be proved in an analogous 
way. • 

For every q E (3x and / E Par (H) we put 

F (q, / ) = (o G L T / A T : (3P eq)(a> sup / (P))}. 

LEMMA 1 1 . F (q,f) is a proper filter of the algebra LT/AT-

P r o o f . F (q, f) is a proper filter because so is q. D 

L E M M A 12. If x is acceptable then for every q E (3x and x E 1 there exists an 
ultrafilter j E ¥x such that q E B (j). 

P r o o f . Take any q E f3x and x E 1. Let / E Par (x) be a partition satisfying 
the following condition: 

(A') (VA E LT ) (x E IA => (V7 < x) ([A] A / (7) ^ 0)). 

By Lemma 11, F (g, / ) is a proper filter of L T / A T - Let F be the filter gen
erated by F (q, f)UFx. Then F = {a E L T / A T : (36 E F (q, / ) ) (3g E Fx) (a > 
oAg)}. We shall prove that the filter F is proper. Suppose to the contrary, that 
for some b E F (q, f) and g E Fx, bAg = 0. Since b € F (q, f), there exists P e q 
such that b > s u p / ( P ) . Since g £ Fx, there exists G e LT such that x E JG 
and # = [G\. By (A'), one gets that g A / (7) 7̂  0, for every 7 < x. Since the set 
P, as an element of an ultrafilter, must be nonempty, we have g A sup / (P) ^ 0. 
From g A b > g A sup / (P) we get g A b ^ 0, a contradiction. Now, let j be an 
ultrafilter of LT/AT containing F. Since Fx C F C j , then j E F x . To make 
sure that q € B (j) take any P E g. Then, by the definition of F (q, / ) , it follows 
that sup / (P) E F (q, f) C j which means that P E V (j, f). We have proved 
that q C V (j, / ) . Since both q and V (j, f) are ultrafilters then q = V (j, f) and 
consequently q € B (j). • 

Now we are ready to prove the main result of this paper. First, by Zermelo's 
well-ordering theorem, we equip the set 1 with a well-order and arrange its 
elements into a transfinite sequence (x7) < c a r dM\- Next, we define a sequence of 
selectors (5 7 ) 7 < 2 2" where the following conditions are satisfied: 

I.' (V7 < 22") (Vj,fc E S 7 ( l ) ) ( j ^ k = » B(j) ^ B(k)). 

2. (V 7 / ,7" < 22") (7/ 7̂  7 " = * (Vj e 57,(l))(Vfc E S7„(lj)( .B(j) ^ ^(fc))). 

We start with the selector S0. Recall that So (xo) is a member of FXo and 
assume for induction that all values So(xa) E ¥Xa have already been defined 
for a < (3 < card(l) in such a way that B(So(xai)) ^ B(So(xa2)) whenever 

a i , a 2 < P a n d <*i ¥" a2- By Lemma 8, card IJ B (S0 (xa)) ) < 2H card (/3) 
\a<P J 
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< 2 2" while card(/3x) = 2 2 " , by a theorem of Pospisil ([3, pp. 146]). Thus, 
there exists an ultrafilter q e (5K \ (J B (So (xa)) and, by Lemma 12, there 

a</3 
exists j e ¥Xf3 such that q G B(j). Putting So(xp) = j we complete our 
inductive definition of a selector So satisfying the condition 1 for 7 = 0. ' 

Next, let us assume that 0 < (3 < 22* and that selectors Sa have already been 
defined for all a < (5 in such a way that the following conditions are satisfied: 

1'. (Va < 0) (Vj, fe G Sa (1)) (j + k = * B (j) + B (k)). 

2'. (\/a/,a/K(3)(a/^a// = » (Vje Sal (1)) (Vfce Sa„ (1)) (B (j) ? B (fe))). 

Note that by Lemma 8 and the assumptions of our Theorem it follows that 

card( | J U B(Sa(x))) < card(/3) ca rd( l )2" < card(/?)2><2>< < 2 2 " . Thus, as 

before, there exists an ultrafilter q E (3K\ [j \J B(Sa(x)) and again we can use 
a</3xel 

Lemma 12 to complete an inductive definition of Sp and thereby of the sequence 
of selectors (S1)1<2i>

t which satisfy the conditions 1 and 2, by construction. 
Note that topologies Ts1 determined by selectors 5 7 , 7 < 2 2" are density 

topologies, by virtue of Corollary 4. Moreover, by Corollary 5, all these topolo
gies have only trivial autohomeomorphisms and no two of them are homeomor-
phic, if determined by distinct selectors. 

Finally, it is worth to note that the assumptions of our theorem are satisfied 
by any standard density topology T of the space 1 =(0,1) with an acceptable 
cardinal u, no matter whether T is defined by means of measure or by means 
of category (see [4], [5]). The same is true if T is the Euclidean topology of this 
space. 

Let us notice, that u is not the only cardinal number for which the main 
theorem holds. 

THEOREM 2. Let K denote any infinite cardinal. Then there exists regular topo
logical space (1,T) fulfilling the condition c a rd ( l ) = card ( L ^ / A T ) = 22 such 
that 2* is acceptable for this space. 

P r o o f . Let W denote the set of all open intervals included in ( — 1,1). Let S 
denote the family of all functions e: 2^ —> P ((—1,1)), which fulfil the following 
conditions: 

• ( V 7 < 2 " ) ( e ( 7 ) e W) 

• card({ 7 < 2* : e(7) + ( -1 ,1)}) < K. 
r\>C 

Let 1 = (—1,1) . The topology determined on the set 1 by the basis B = 

\ I ! e (7) : e £ £ \ will be further denoted by T. It is easy to check that the 

topological space ( l , T ) is regular and that ca rd ( l ) = c a r d ( L T / A T ) = 22". To 
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prove that 2^ is acceptable assume that x = ( „ 7 ) <2>c E l , a G {—1,1}^. Let 
us suppose that for arbitrary 7 < 2^ 

4-1,1) if 7 > к 

?(*) = « (-l,ж 7) if 7 < >-* and a (7) = — 1 

(Xy,l) if 7 < x and a (7) = 1-

Let Wa(x) = f j WV?(x). Prom the definitions given above we can infer 
7 < 2 " 

that all the sets Wa(x) belong to B and that Wa(x) n WV (̂x) = 0 while a,/3 G 
{—1,1}^ and a j£ /3. Moreover for arbitrary a G {—1,1}", U e B, and x G l , 
such that £ G U, we have that U n PVa(x) G S. Since card ({ -1 ,1}" ) = 2" , we 
can construct a function / which fulfils the condition (A) of the cardinal 2^, by 
the use of the family {[Wa (x)]}aerljlyf<. CD 

R E F E R E N C E S 

[1] ANISZCZYK, B . — FRANKIEWICZ, R.: Non homeomorphic density topologies, Bull. 
Polish Acаd. Sci. Mаth. 34 (1986), 211-213. 

[2] BALCERZAK, M.—BARTOSZEWICZ, A . — R Z E P E C K A , J . — W R O Ń S K I , S.: Mar-
czewski fields and ideals, Reаl. Anаl. Exchаnge 26 (2000-2001), 703-715. 

[3] C O M F O R T , W. W.—-NEGREPONTIS, S.: The Theory of Ultrafilters, Springer- erlаg, 
Berlin, 1974. 

[4] ТALL, F. D.: The density topology, Pаcific J. Mаth. 62 (1976), 275-284. 
[5] WILCZYSKI, W.: Density topologies. In: Hаndbook of Meаsure Тheory (Endre Pаp, 

ed.), Elsevier, 2002. 

[6] W R O Ń S K I , S.: The number of non-homeomorphic I-density topologies. Inst i tute of Mаth-
emаtics of Polish Acаdemy of Sciences. Preprint 482, December 1990, XXXIV Semester 
in Bаnаch Center, Тheory of Reаl Functions. 

Received 7. 4. 2005 Institute of Mathematics 

Łódz Technical University 
al. Politechniki 11, 1-2 
PL-90-92Ą Łódź 
POLAND 
E-mail: wronskis@p.lodz.pl 

368 


		webmaster@dml.cz
	2012-08-01T19:50:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




