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STRONG LAWS OF LARGE NUMBERS 
FOR WEIGHTED SUMS 

OF p-MIXING RANDOM VARIABLES 

GUANG-HUI C A I 

(Communicated by Gejza Wimmer) 

A B S T R A C T . Strong laws are established for linear statistics tha t are weighted 
sums of a p-mixing random sample. 1 he lesults obta ined generalize the results 
of Baxter et al. [SLLN for weighted independent indentically distributed random 
variables, J. Theore t . Probab. 17 (2004), 165 181] to p-mixing random variables. 
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1. Introduction 

Given nonempty sets S , T c JV, define Ts — &(Xk, k G S), and the maximal 
correlation coefficient pn = supcorr( / , g) where the supremum is taken over 
all (S,T) with dist(.5,T) > n and all / G L2(TS), g G L2(TT) and where 
dist(5', T) = inf \x — y\. 

DEF IN ITION 1. A sequence of random variables {K n ,n > 1} on a probability 
space {!fi, T, P} is called p-mixing if there exists k G N, such that p(k) < 1. 

As for /3-mixing sequences of random variables, one can refer to B r y c and 
S m o 1 e n s k i (1993), who found bounds for the moments of partial sums for a 
sequence of random variables satisfying 

lim p(n) < 1, 
n—>-oo 

to P e l i g r a d (1996) for CLT, P e l i g r a d (1998) for invariance principles, 
P e 1 i g r a d and G u t (1999) for the Rosenthal type maximal inequality, Y a n g 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 60F15. 
K e y w o r d s : Strong law of large numbers, weighted sum, p-mixing. 
This paper is supported by Key discipline of Zhejiang Province (Key discipline of Statistics of 
Zhejiang Gongshang University) and National Natural Science Foundation of China. 
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(1998) for the moment inequalities and strong law of large numbers, and to 
U t e v and P e 1 i g r a d (2003) for invariance principles of nonstationary se-
quences. 

As for independent random variables, let {X, Xiђ i > 1} be a sequence of i.i.d. 
random variables and {ani, 1 < i < n, n > 1} be a triangular array of constants. 

n 

The almost sure (a.s.) limiting behavior of weighted sums ^2 aniXi was studied 
i=l 

by many authors (see, B a x t e r, 2004; S u n g, 2001; B a i and C h e n g, 2000; 
C h o i and S u n g , 1987; C u z i c k , 1995; W u , 1999). Recently B a x t e r 
(2004) proved the following strong laws of large numbers (see Theorem A). 

THEOREM A . Let {X, XІ,І > 1} be a sequence of i.i.d. random variables satis-
fying EX = 0 and E\X\ < oo. And let {ani, 1 < i < n,n > 1} be a triangular 

n 

array of constants satisfying Aa = l i m s u p Л a ? n < oo. Aa^n = ^2 \ani\a/n for 
n—юo i=l 

some a > 1. Then we have 

1 n 

^ aniXi —> 0 a.s.. 
n i=l 

The main purpose of this paper is to establish the Marcinkiewicz-Zygmund 
strong laws for linear statistics of p-mixing sequences of random variables. The 
results obtained generalize the results of B a x t e r et al. [2] to /3-mixing random 
variables. 

2. The Marcinkiewicz-Zygmund strong laws 

Throughout this paper, C will represent a positive constant though its value 

may change from one appearance to the next, and an = 0(bn) will mean 

&n < Cbn, and an <C bn will mean an = 0(bn). 

In order to prove our results, we need the concept of complete convergence 

and Lemma 2.1 bellow. The concept of complete convergence see the following. 

D E F I N I T I O N 2. (see [8]) Let {X,Xn,n > 1} be a sequence of random variables, 
if for any e > 0, 

J2P(\Xn-X\>є)<<x> 
n=l 

holds, we call {Xn,n > 1} completely converging to X. 
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As for complete convergence, let {X, X n , n > 1} be a sequence of independent 
indentically distribution random variables (i.i.d) random variables and denote 

n 

Sn — ^2 Xi. The Hsu-Robbins-Erdos law of large numbers ([8], [7]) states that 
І 1 

Vє>0, 5 > ( | S n | >єn)< oo 

n = l 

is equivalent to EX = 0 and EX2 < oo. 

This is a foundamental theorem in probability theory and has been inten
sively investigated by many authors in the past decades. See in P e t r o v 
(1995), C h o w (1997) and S t o u t (1974), for example. Many extensions of 
Hsu-Robbins-Erdos law of large numbers have appeared since in various direc
tions. 

L E M M A 2.1 . ([17]) Let {Xi,i > 1} be a p-mixing sequence of random variables, 
EXi 0. £71̂ Y"i|p < oo for some p > 2 and for every i > 1. Then there exists 
C C(p), such that 

E max 
Kk<n 

k p s n / n x p/2 N 

$ > <C\YIE\XÍ?+(Y:EXA I. 
i-1 ^ i=l ^ 2=1 ' ' 

LEMMA 2.2. ([13, p. 84]) Let {Kz, i > 1} be a sequence of independent random 
variables, EXi = 0; ^ | ^ z | p < oo for some p > 2 and for every i > 1. Then 
there exists C = C(p), such that 

E max 
Kk<n 

k p s n / n \ p/2 N 

5> < c E w + E ^ }• 
2 = 1 ^ 2 - 1 V 2 = 1 ' J 

Our main result is: 

THEOREM 2.1. Let { X , X ^ i > 1} be a sequence of p-mixing identically dis
tributed random variables satisfying EX = 0 and E\X\ < oo. And let {ani, 1 < 
i<n,n>l}6ea triangular array of constants satisfying Aa = limsup^4a ) n 

n—>oo 
n n 

< oo. Aa^n = ^2 | a n ^ | a /n for some a > 2. Let Tn = ^ aniXi,n > 1. then we 
2 = 1 2 = 1 

have 

oo 

Ve > 0, V n _ 1 p f max |7)| > en) < oo. (2.1) 
--—' V l < j < n / l < j 
n = l 
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P r o o f . For all i > 1, define X^ = XJQX^ < n)+nI(Xi > n)~nI(Xt < - „ ) , 

TJU) = t(amXln) - EaniX<n)), then Ve > 0, 
І = l 

P(maxjTi\>en) 

< P ( i m a x i \X,\ >n)+ - * ( ™ « |-f' + 1 > ^ | > en^ 

< P( max |X, | > n ) + T ^ r n a x ( 2 f >| > en - max | £ £ a m x H Y ( 2 . 2 ) 

i = l / 

First we show that 

з 
n x max Y^ # a n i X - ( n j —> 0, as n —> oo. to q\ 

l < j < n -—-' V^-°) 
1 i = l ' 

n 

By 5^ l a m | a = O(n) and Holder inequality, for all 1 < k < a, then 
i=i 

n / n \ « / n \ 9L~&1 

£ K . i * < ( £ K . i * f ) ( £ - ) ° ^c«- (2.4) 
i = l ^ 2=1 ' ^ i=l ' 

Using £ X = 0, (2.4), Markov inequality and E\X\ < oo, when r w oo, then 

I ^ I 
n _ 1 max > EaniX-n 

l<j<n\ z - ' l 

1 i=l ' 
n n 

^ n - ^ ^ K ^ I / d X , ! > n) + X>ni|-P(M-"i| > n) 
2 = 1 i = l 
n 

« « " ' £ |a„.|^|.X-|/(|A'| > n) + n P ( | X | > n) 
i = l 

< CE\X\I(\X\ >n) + nP(\X\ > n) -> 0. 

From (2.5), we have that (2.3) is true. 

From (2.2) and (2.3), it follows that for n large enough 

pL^r<n ,2>' > e n ) ^ x : ^ ' ^ ' > » ) + p ( ^ a < x
n i-;(n)i > § n). 

3 = 1 
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Hence we need only to prove that 
oo n 

1 =: E n " 1 E ? ( ^ i > n ) < 0 0 ' 
n = l j = l 

II =: Yn~lp( m a x l T i n ) | > ̂  < 00. (2.6) 
----' Vl<j<n' J ' 2 / V J 

n=l 

From the fact that E\X\ < 00, it follows easily that 
00 

/ = ^n-xnP{\X\ >n) 
П=l 

OO 

Y,P(\X\>n) 
П=l 

< E\X\ + Koo. (2.7) 

By Lemma 2.1, it follows that 
00 

II < CYn-ln-2E max |rjn ) |2 

" " --—' l < j < n 3 

n=l 
00 n 

< C^n-3J2E\anjXjn)\2 

n = l j = l 

00 ^ n n >. 

= CY,n~3\ ^l«nd 2 ^^ 2 ^(l^l<^)+^ 2 ^l«m| 2 P(|X|>n)i 
n = l ^ z=l i=l J 

00 00 

< ^n-*nEX2I(\X\ <n) + Y^n-1nP(\X\ > n) 
n=l n=l 

00 n 00 

= ^jn-2YJEX2I{k-l<\X\<k) + ^P(\X\>n) 
n=l fc=l n = l 

00 00 00 

= J2J2n-2Ex2i(k-i<\x\<k) + Y,p(\x\>n) 
k=ln=fc n = l 

00 

< Yl k~lk2P{k - 1 < X| < k) + £|X| + 1 
fc = l 

OO 

J2 kP{k - 1 < \X\ < k) + £|X| + 1 
fc=l 

< 2(E\X\ + 1) < 00. (2.8) 

Now we complete the prove of Theorem 2.1. • 
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COROLLARY 2 .1 . Under the conditions of Theorem 2.1. 

\Tn lim — -
n—>oo n 

0 a.s.. 

P r o o f . By (2.1), we have 
oo 

oo > y ^ n _ 1 P ( max TA > en) 
--—^ \ i < ? < n J l ) 
n=l 

oo 2 г 

E V n~xP\ max |T 7 | > en 
— - ' V i < j < n •" 

ѓ = 0 n 2 г 

^ oo 

> - У V f max ІГJ > є 2 г + 1 Y 
~ 2 z—' Vi<j<2 г ' л ) 

ѓ==l 

By Borel-Cantelli Lemma, we have 

P( max \TA > e2l+1 i.o.) = 0. 
\ l < 7 < 2 i / 

Hence 

and using 

we have 

lim max —— — 0 a.s. 
г ^ o o l < j < 2 г 2 г 

T \T-\ 
\±n\ ^ - j 

max < max ——, 
2i 1<n<21 n l<j<2i 2l 

\Tn\ 
lim —— = 0 a.s.. 

a—>oo n 

R e m a r k 2 .1 . Corollary 2.1 generalizes the result of B a x t e r et al. [2] to 
/5-mixing random variables. 

T H E O R E M 2.2. Let {X,Xi,i > 1} be a sequence of independent identically dis
tributed random variables satisfying EX — 0 and E\X\ < oo. And let {a m , 1 < 
i < n,n > 1} be a triangular array of constants satisfying Aa = l imsupyl a n 

n—>oo 
n n 

< oo. Aa,n = J2 \am\a/n for some a > 2. Let Tn = £ &mX%, n>\, then we 
i = l i 1 

have 
oo 

\fe > 0, y ^ r 7 - 1 P ( max |T7| > en) < oo. 
— - / V l < j < n J] ) 

(2.9) 
П = l 

P r o o f . Using Lemma 2.2 instead of Lemma 2.1, the proof of Theorem 2.2 is 
similar to the proof of Theorem 2.L • 
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