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On relations between /—density and (R) —density 

Vaclav Kijonka 

ABSTRACT. In this paper it is discus a relation between /—density and (R)— 
density. A generalization of Salat's result concerning this relation in the case 
of asymptotic density is proved. 

1. Introduction 

Asymptotic density is a well known means used for measuring of size of sets of 
positive integers. We remind that the lower and the upper asymptotic densities are 
special cases of a more general concept of weighted density or (/)—density which 
is defined as follows. 

Denote RQ , N the set of all nonnegative real numbers and positive integers, 
respectively and let / : N —> KQ he a (weight) function with / ( l ) > 0 which satisfies 

oo 

(D) £ / ( * ) = «> 
7 1 = 1 

and 

(L) lim / ( n ) = 0 

i = l 

For A C N we define the lower and upper /—densities of A (these densities are 
also known as densities with respect to the weight function / or simply as weighted 
densities): 
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£ f(m) £ /(m) 
i / A\ T . r m€A,m<n ~i / A \ *. raEA,m<n 

GM-A) = hminf =--- —,—-, df(A) = hmsup =-=——,—r-. 
-*K J n->oo £ f(mY M }

 n-+J £ fM 
m£N,m<n mGN,m<n 

If df(A) = d/(A), then we say that the set A has (/)—density and we denote this 
common value as df(A). There are two well known special f-densities. The first, 
when f(n) = 1 for each n G N, is called asymptotic density and their values are 
denoted as d, d and d for the lower asymptotic density, upper asymptotic density 
and asymptotic density , respectively. The second one, when f(n) = ^ for each 
n G N, is called logarithmic density and their values are denoted as £, S and S for 
the lower logarithmic density, upper logarithmic density and logarithmic density , 
respectively. 

Now let us remind the notion of (R)—density. For A C N we put R(A) = 
= {f; a,b e A}. We say that the set A is (R)—dense, if the set R(A) is dense in 
RQ". This concept was introduced in papers [5] and [6] where there were also proved 
the following relations between (R)—density and values of asymptotic density: 
(a) d(A) > 0 =-=> A is (R) - dense, 

(b) d(A) = 1 => A is (R) - dense. 

These results were later completed in [3] proving 

(c) d(A) > - => A is (R) - dense. 
Zi 

Notice also that no constant on the left sides of the above three implications can 
be decreased. A natural question arises whether similar implications hold, perhaps 
with different constants on the left sides of implications, also for other kinds of 
/-densities. This question was completely solved for logarithmic densities in [2]. 
Perhaps a bit surprising result says that all three implications for logarithmic den
sities hold with constants equal to \ each, and no one of them can be decreased. As 
a simple corollary one can see that there is a small chance that the implication (a) 
holds for some large general class of /-densities. On the other hand, we will see 
that this is not true in the case of implication (b). Relations between (i2)-density 
and asymptotic densities were also studied, among others, in papers [1] and [4]. 

Finally, let us notice that the result (b) was in fact proved in a stronger form 

(b*) d(A) = 1 =-> A is a strong quotient base. 

Recall that a set A C N is called a strong quotient base if for every rational | G Mr} 
there are infinitely many pairs (a, 6) G A x A such that f = ?• 

The aim of this article is to prove a generalization of (b*) for a large class of 
/-densities and to give some comments to this case. 

2. Results 
Theorem 2.1. Let A C N and df(A) = 1 with f non-increasing (and satisfying 
conditions (D) and (L)). Then the set A is a strong quotient base. 

Proof: Suppose the contrary, i.e. there exists a rational number x = | G (0,1) 
with only finitely many possibilities of expressions of x as a fraction with both 
denominator and numerator belonging to the set A. Denote | = x = %7 = j£ = 
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. . . = £--- all these possibilities having p <p\ <P2 < ••• < Pn- Then there exists a 
number in G N such that for all i > in holds pn < qn < ip < iq. Obviously for all 
i > in we have 

(1) ip £ A or iq # A. 

Using conditions (D) and (L) one can easily see that 

£ f(m) 
(2) d / (A ) = U m s u p m e ^ 7 . 

fc-OO 2Lr f\m) 
m<kq 

Now we will estimate the upper bound of df(A). For this purpose there is 
enough to have some convenient estimation of Y2 f(m). We will start this 

m€A,m<kq 

estimation from "the opposite side", i.e. by estimating the sum of values of / of the 
numbers which are not in the set A. Taking into account that / is non-increasing 
and (1), we obtain the following inequalities in which we assume that iq ̂  A holds 
for all i G N, not only for i > io (remember that changing the set A in finitely many 
elements does not affect the value of df(A)). 

fc fc 

(3) £ / ( m ) > £ / ( . g ) > £ / ( i g + l ) 
m£A,m<kq i=l i = l 

Using again the inequalities f(iq + 1) > f(iq + 2) > ... > f(iq + q — 1), we obtain 
that the estimation 

iq+q-l 

(4) fto+vz^i £ /(*») 
m—iq+l 

q-1 

holds for every i = 0 ,1, Denote S = ]T] f(j) and realize that (1) yields 

3=1 

k iq+q-l k iq+q-l 

(5) £ £ /M = £ £ f(m)-S> £ f(m)-S. 
i = l m=iq+l i=0 m—iq+l mEA,m<kq+q—l 

All the estimations (3), (4) and (5) together give 

£ /K>>A( £ f(m)-s\. 
m£A,m<kq \m£A,m<kq+q-l J 

This inequality together with (2) yields 

£ /("») 
i / A\ i. meA,m<kq , 
df(A) = hmsup ZZ? £ /H+ £ /H 

m#A,m<kq mЄA,m<kq 
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Ľ /("») 
^ ,. mЄA,m<fcg 
< lim sup 

k^cf^ii E f(m)-S)+ £ /(m) 
mGA,m<feg mGA,m<kg 

a contradiction to the assumption d/(A) = 1. 

• 
Remark 2.1. The theorem would not hold if we assumed non-decreasing f instead 
of non-increasing f. In this remark we mil give an example of A c N which is 
not a strong quotient base with df(A) = 1 for a non-decreasing f satisfying (D) 
and (L). 

Let the greatest common divisor of p, q G N be 1 and q > 2p. We will construct 
a set A C N such that | ^ R(A) simply by assuring that (1) holds for all i G N. 
When constructing this set, we will need a sequence (&n)neNu{o} of integers with 
the following properties. Let fen = 1 and 

(6) (kn)p>(kn-1)q n - 1 , 2 , . . . . 

Notice that this condition assures that kn > kn-1 holds in general, which implies 

lim kn = oo. 
n—•co 

We will determine the set A by giving the list of all numbers which are in its 
complement: 

(k2n + l)p i A, (k2n + 2)p £ A , . . . (k2n+1)p <£ A, 

(fc2n+i + l)q & A, (k2n + 2)q#A,... (k2n+2)q $ A 

for n = 0, 1, 2, , i.e. 

Л = N-{p}-Q 
n = 0 

k2n + l \ / k2n+2 

U w u ( U {<«} 
ii=k2n + l I V=k2n+1 + 1 

Properties of the function / are following: firstly, / is constant on 
[1, (fci)p] fl N and on Pi for each / G N, where Pi is defined as follows: 

fl = [(fc2i-i)p+l, (k2t+1)p\nN. 

This gives us a possibility to compute easily the value of 

E /(m) 

mG-4,m<(k2n+i)p 

m6N,m<(k 2 n+i)p 

for n G N arbitrary. Take into account that in [1, (fci)p] fl N there is exactly fci 
numbers which does not belong to the set A. Similarly we obtain that in the set 
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Pn there are no more than &2n+i — &2n-i positive integers missing in A. Together 
with the fact that / is constant on Pn for each n _ N, we conclude 

£ / ( m ) M - I W 
, v mGA,m<(fc2-+i)p V1

 p)°n 
u £ 7(ro) " sn ' 

mGN,m<(fc2-+i)p 

where 

$ = £ /M 
m€N,m<(fc2f+i)p 

for / € N U {0}. Further we set for each n G N for each m _ P n 

(8) ^m)='yw^1 A"1 ' 
m(fc2n-i) 

These selection of values f(m) ensures the requirement of df(A) = 1 and that 
both (L) and (D) holds. Indeed, concerning the value of df(A) notice that the in
terval [(fon-iLP+l, (^2n-i)o\ includes at least &2n-i integers which are all elements 
of A. This means that the value of 

£ /(m) 
m^A^m<n 

£ " /(m) 
m_N,m<n 

as a function of variable n increases on the interval [(fc2n-i):P + 1, (&2n-i)<z]- The 
value of / on this interval defined in (8) together with the estimation (7) allow us 
to prove that df(A) = 1: 

£ / (m) £ / ( m ) + £ f(m) 
mЄA,m<(fc2 r г_i)g _ mЄЛ,m<(fc2 r г_i)p (fc2n-i)p+l<m<(fc2 т г_i)g 

£ 7 R _ £ 7M+ £ JЩ 
mЄN,m<(fc2тг_i)g mЄN,m<(fc2 т г-i)p (fc2n-i)p+l<m<(fc 2n-i)g 

> 

> C1 — j) g-4-l + ln(ŽL-i)g~-l 
_ C I k2n-l Q 

which implies 

/ (m) 

mЄN,m<(fc2n-i)g 

.. mЄA,m<(fc2n-i)g . 

hm = — = 1, 
n->°° Z_ f(m) 

thus df(A) - 1. 
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As the next step, we will verify that (L) holds. Due to the fact that / is 
constant on Pi for each I G N there is enough to prove that 

, i m / ( f e , - 1 ) p + i ) = 0 

71—>CO ( k 2 n - l ) P + l 

£ /(0 
i = l 

This follows from (8): 
/ ( ( • W i ) p + 1) < f((k2n-i)p+l) = 1 

(*2»-I)P+I ~ Sn-x ln(k2n-i)' 
£ /(0 
i=l 

Now we shall check whether the function / is non-decreasing. We will compare 
values f(m) and f(m + 1) for m = (k2n+i)p, where n G N using (6), (8) and the 
assumption that q > 2p: 

f(m) = — < -. < — = f(m + 1). 
P(fc2n+1 - fon-l) k2n+i - \k2n+i ln ( f e 2 n + l ) 

Notice finally that (D) holds simply because / ( l ) > 0 and / is non-decreasing. 
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