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On a set of asymptotic densities

Pavel Jahoda and Monika Jahodová

Abstract. Let P = {p1, p2, . . . , pi, . . . } be the set of prime numbers (or
more generally a set of pairwise co-prime elements). Let us denote Aa,b

p =
{pan+bm | n ∈ N ∪ {0};m ∈ N, pdoes not dividem}, where a ∈ N, b ∈
N ∪ {0}.

Then for arbitrary finite set B, B ⊂ P holds
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| p ∈ P, a ∈ N, b ∈ N ∪ {0}

9=; ,

where P is the set of all prime numbers, then for closure of set A holds

clA = A ∪B ∪ {0, 1},

where B =
n

1
pb

“
1− 1

p

”
| p ∈ P, b ∈ N ∪ {0}

o
.

1 Introduction
Theorems 1, 2 and 3 introduced in this paper are generalizations of some results
from [1] and [2] concerned in sets of natural numbers in form pan+bm. In this paper
asymptotic densities of sets of natural numbers in form panm, where p,m ∈ N,
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p > 1, p does not divide m, and {an}∞n=1 is an increasing sequence of non-negative
integers are studied.

The denotation

Aan
p = {panm | m,n ∈ N, p does not dividem}

is used.
The above mentioned sets Aan

p are intresting because of one of their properties:
If we take two co-prime numbers p, and q, then for the asymptotic density of
intersection of sets Aan

p , and Abn
q holds

d(Aan
p ∩Abn

q ) = d(Aan
p )d(Abn

q ).

Moreover, if we take arbitrary finite number of pairwise co-prime numbers
p1, p2 . . . , pk, and arbitrary increasing sequences of non-negative integers {a1(n)}∞n=1,
{a2(n)}∞n=1, . . . , {ak(n)}∞n=1, then for the asymptotic density of intersection of sets

A
aj(n)
pj , j = 1, 2, . . . , k holds

d(

k⋂

j=1

Aaj(n)
pj

) =

k∏

j=1

d(Aaj(n)
pj

).

Theorem 4 describes the closure of set of asymptotic densities of sets Aan+b
p ,

where p is prime number, a ∈ N, and b ∈ N ∪ {0}.

2 Asymptotic densities of sets Aan
p

At first the asymptotic densities of sets Aan
p are determined.

Theorem 1. Let p ∈ N, p > 1, and let {an}∞n=1 be an increasing sequence of
non-negative integers. If we denote

Aan
p = {panm | m,n ∈ N, p does not dividem}

and ran
p =

∑∞
j=1

1
paj , then

d(Aan
p ) =

(
1− 1

p

)
ran
p .

Proof. Let us denote Cj = {pajm | m ∈ N} for every j ∈ N. We can see that the
set Cj contains natural numbers in form psm, where s ≥ aj .

Similarly, let us denote Dj = {paj+1m | m ∈ N} for every j ∈ N. We can see
that the set Dj contains natural numbers in form psm, where s ≥ aj + 1.

We denote the difference of set Cj , and Dj by Qj . It holds that

Qj = Cj \Dj = {pajm | m ∈ N, p does not dividem}. (1)

From equation (1) follows

Aan
p =

⋃

j∈N
Qj .
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Hence, for every k ∈ N holds

k⋃

j=1

Qj ⊆ Aan
p ⊆ Ck+1 ∪

k⋃

j=1

Qj . (2)

We determine asymptotic densities of sets Cj , Dj , and Qj . Element pajm ∈ Cj

fulfills condition pajm ≤ n if and only if m ≤ n
paj .

Hence, m is the number of elements of set Cj which are less or equal to n. Thus,
from above mentioned follows that1

Cj(n) =

[
n

paj

]
.

So we obtain the asymptotic density of set Cj

d(Cj) = lim
n→∞

Cj(n)

n
=

1

paj
. (3)

Similarly,

d(Dj) =
1

paj+1
. (4)

Since Dj ⊂ Cj , and Qj = Cj \Dj , from equations (3), and (4) we obtain

d(Qj) = d(Cj)− d(Dj) =
1

paj
− 1

paj+1
=

(
1− 1

p

)
1

paj
. (5)

Sets Qj are pairwise disjoint (one can easily prove that Qi ∩ Qj 6= ∅ implies
i = j). It means that for every k ∈ N holds

d




k⋃

j=1

Qj


 =

k∑

j=1

d(Qj). (6)

From (2) we obtain estimations of lower and upper asymptotic density of set
Aan

p

d




k⋃

j=1

Qj


 ≤ d(Aan

p ) ≤ d(Aan
p ) ≤ d(Ck+1) + d




k⋃

j=1

Qj


 .

From (6) we obtain

k∑

j=1

d(Qj) ≤ d(Aan
p ) ≤ d(Aan

p ) ≤ d(Ck+1) +

k∑

j=1

d(Qj),

and from (3), and (5) follows

(
1− 1

p

) k∑

j=1

1

paj
≤ d(Aan

p ) ≤ d(Aan
p ) ≤ 1

pak+1
+

(
1− 1

p

) k∑

j=1

1

paj
.

1We denote the integral part of real number x by [x], and the number of elements of a set A
by A(n).
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These inequalities hold for every k ∈ N. With k → ∞ we obtain

d(Aan
p ) = lim

k→∞

(
1− 1

p

) k∑

j=1

1

paj
=

(
1− 1

p

) ∞∑

j=1

1

paj
=

(
1− 1

p

)
ran
p .

We should note that the sum ran
p =

∑∞
j=1

1
paj is convergent. The sequence

{an}∞n=1 is an increasing sequence of non-negative integers, hence aj ≥ j − 1 holds
for every j ∈ N. It means that

∞∑

j=1

1

paj
≤

∞∑

j=1

1

pj−1
=

p

p− 1
. �

Theorem 2. If p, q ∈ N \ {1}, gcd(p, q) = 1, {an}∞n=1, and {bn}∞n=1 are increasing
sequences of non-negative integers, ran

p =
∑∞

j=1
1

paj , and rbnq =
∑∞

j=1
1

qbj
, then

d(Aan
p ∩Abn

q ) =

(
1− 1

p

)(
1− 1

q

)
ran
p rbnq = d(Aan

p )d(Abn
q ).

Proof. Set
Aan

p = {panm | m,n ∈ N, p does not dividem}
and

Abn
q = {qbnm | m,n ∈ N, q does not dividem} .

Since gcd(p, q) = 1,

Aan
p ∩Abn

q = {pajqbim | i, j,m ∈ N; p, q does not dividem}. (7)

Let us denote Cj = {pajm | m ∈ Abn
q } for every j ∈ N. We can see that the set

Cj contains natural numbers in form psqbim, where s ≥ aj , m, i ∈ N, and q does
not divide m.

Similarly, let us denote Dj = {paj+1m | m ∈ Abn
q } for every j ∈ N. We can

see that the set Dj contains natural numbers in form psqbim, where s ≥ aj + 1,
m, i ∈ N, and q does not divide m.

We denote the difference of set Cj , and Dj by Qj . It holds that

Qj = Cj \Dj = {pajm | m ∈ Abn
q ; p, q does not dividem}. (8)

We can see that the set Qj contains natural numbers in form pajqbim, where j
is fixed, m, i ∈ N, and neither p nor q does not divide m.

From equations (7), and (8) follows

Aan
p ∩Abn

q =
⋃

j∈N
Qj . (9)

Hence, for every k ∈ N holds

k⋃

j=1

Qj ⊆ Aan
p ∩Abn

q ⊆ Ck+1 ∪




k⋃

j=1

Qj


 . (10)
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Now, we determine asymptotic densities of sets Cj , Dj , and Qj . Element
pajm ∈ Cj (m ∈ Abn

q !) fulfills condition pajm ≤ n if and only if m ≤ n
paj .

Hence, the number of elements of the set Cj which are less or equal to n is equal
to the number of elements m ∈ Abn

q which are less or equal to n
paj . It means that

Cj(n) = Abn
q

([
n

paj

])
.

So we obtain the asymptotic density of the set Cj

d(Cj) = lim
n→∞

Cj(n)

n
= lim

n→∞

Abn
q

([
n

paj

])

n
=

d(Abn
q )

paj
. (11)

Similarly,

d(Dj) =
d(Abn

q )

paj+1
. (12)

Since Dj ⊂ Cj , and Qj = Cj \Dj , from equations (11), and (12) we obtain

d(Qj) = d(Cj)− d(Dj) =
d(Abn

q )

paj
− d(Abn

q )

paj+1
= d(Abn

q )

(
1− 1

p

)
1

paj
. (13)

Sets Qj are pairwise disjoint (one can easily prove that Qi ∩ Qj 6= ∅ implies
i = j). It means that for every k ∈ N holds

d




k⋃

j=1

Qj


 =

k∑

j=1

d(Qj). (14)

From (10) we obtain estimations of lower and upper asymptotic density of set
Aan

p ∩Abn
q

d




k⋃

j=1

Qj


 ≤ d(Aan

p ∩Abn
q ) ≤ d(Aan

p ∩Abn
q ) ≤ d(Ck+1) + d




k⋃

j=1

Qj


 .

From (14) follows

k∑

j=1

d(Qj) ≤ d(Aan
p ∩Abn

q ) ≤ d(Aan
p ∩Abn

q ) ≤ d(Ck+1) +

k∑

j=1

d(Qj),

and from (11), and (13) we obtain

(
1− 1

p

) k∑

j=1

d(Abn
q )

paj
≤ d(Aan

p ∩Abn
q ) ≤ d(Aan

p ∩Abn
q )

≤ d(Abn
q )

pak+1
+

(
1− 1

p

) k∑

j=1

d(Abn
q )

paj
.
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These unequalities hold for every k ∈ N. With k → ∞ we obtain

d(Aan
p ∩Abn

q ) = lim
k→∞

(
1− 1

p

) k∑

j=1

d(Abn
q )

paj
= d(Abn

q )

(
1− 1

p

) ∞∑

j=1

1

paj
.

And according to Theorem 1 holds

d(Aan
p ∩Abn

q ) = d(Aan
p )d(Abn

q ). �

Theorem 3. Let P = {p1, p2, . . . , pr} be a set of pairwise co-prime natural num-
bers2, where 1 /∈ P , and {a1(n)}∞n=1, {a2(n)}∞n=1, . . . , {ar(n)}∞n=1 are increasing
sequences of non-negative integers. Then

d

(
r⋂

i=1

Aai(n)
pi

)
=

r∏

i=1

d(Aai(n)
pi

) =

r∏

i=1



(
1− 1

pi

) ∞∑

j=1

1

p
ai(j)
i


 .

Proof. We can perform the proof of Theorem 3 by induction according to r. The
case of r = 1 (and r = 2) was proved in Theorem 1 (and in Theorem 2). Therefore,
we can consider (induction hypothesis) that

d

(
r−1⋂

i=1

Aai(n)
pi

)
=

r−1∏

i=1

d(Aai(n)
pi

) =

r−1∏

i=1



(
1− 1

pi

) ∞∑

j=1

1

p
ai(j)
i


 . (15)

Since p1, p2, . . . , pr are pairwise co-prime numbers

r⋂

i=1

Aai(n)
pi

= {par(jr)
r p

ar−1(jr−1)
r−1 . . . p

a1(j1)
1 .m | m ∈ N,

ji ∈ N, pi does not dividem, i = 1, 2, . . . , r} , (16)

and

r−1⋂

i=1

Aai(n)
pi

= {par−1(jr−1)
r−1 . . . p

a1(j1)
1 .m | m ∈ N,

ji ∈ N, pi does not dividem, i = 1, 2, . . . , r − 1} . (17)

For simplicity, let us denote

A =

r⋂

i=1

Aai(n)
pi

, and A∗ =

r−1⋂

i=1

Aai(n)
pi

.

Further let us denote

Cj = {par(j)
r .m | m ∈ A∗},

Dj = {par(j)+1
r .m | m ∈ A∗},

Qj = Cj \Dj .

2For each i, j ∈ N, i 6= j holds gcd(pi, pj) = 1.
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The same way as in previous proofs we can prove following equations

d(Cj) =
d(A∗)

p
ar(j)
r

,

d(Dj) =
d(A∗)

p
ar(j)+1
k

,

d(Qj) = d(Cj)− d(Dj) =
d(A∗)

p
ar(j)
r

(
1− 1

pr

)
,

d




k⋃

j=1

Qj


 =

k∑

j=1

d(Qj).

Furthermore, we can prove this relations, following from (16), (17), and holding
for every k ∈ N

k⋃

j=1

Qj ⊆ A =

r⋂

i=1

Aai(n)
pi

⊆ Ck+1 ∪
k⋃

j=1

Qj ,

and estimations

k∑

j=1

d(Qj) ≤ d(A) ≤ d(A) ≤ d(Ck+1) +

k∑

j=1

d(Qj),

(
1− 1

pr

) k∑

j=1

d(A∗)

p
ar(j)
r

≤ d(A) ≤ d(A) ≤ d(A∗)

p
ar(k+1)
r

+

(
1− 1

pr

) k∑

j=1

d(A∗)

p
ar(j)
r

.

With k → ∞ we obtain

d(A) = d(A∗)

(
1− 1

pr

) ∞∑

j=1

1

p
ar(j)
r

=

= d(A∗)d(Aar(n)
pr

) =

= d

(
r−1⋂

i=1

Aai(n)
pi

)
d(Aar(n)

pr
).

Finally, according to (15), and Theorem 1

d(A) = d(Aar(n)
pr

)

r−1∏

i=1

d(Aai(n)
pi

) =

=

r∏

i=1

d(Aai(n)
pi

) =

=

r∏

i=1



(
1− 1

pi

) ∞∑

j=1

1

p
ai(j)
i


 . �
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As a special case we can consider sets Aan
p , where an = a(n − 1) + b is an

increasing arithmetical sequence of non-negative integers, p is a prime number,
and a ∈ N, b ∈ N ∪ {0}. For simplicity, we denote them by Aa,b

p , i.e.

Aa,b
p = {pa(n−1)+bm | m,n ∈ N, p does not dividem},

Asymptotic density of Aa,b
p is equal (according to Theorem 1) to

d(Aa,b
p ) =

(
1− 1

p

) ∞∑

j=1

1

pa(j−1)+b
=

1
pb

(
1− 1

p

)

1− 1
pa

.

Theorem 4. Let p1 < p2 < · · · < pi < . . . be the sequence of all prime numbers,

A = {d(Aa,b
pi

) | i, a ∈ N, b ∈ N ∪ {0}}

and

B =

{
1

pbi

(
1− 1

pi

)
| i ∈ N, b ∈ N ∪ {0}

}
.

Then for the closure of set A holds

clA = A ∪B ∪ {0, 1}.

Proof. The strategy of this proof is following: It is obvious that clA ⊆ 〈0, 1〉, and
A ⊆ clA. We choose arbitrary x0 ∈ (0, 1), x0 /∈ A, x0 /∈ B and we prove that
x0 /∈ clA. Then we prove that B ⊂ clA, and 0 ∈ clA, 1 ∈ clA.

First of all, we are going to prove that there is just a finite number of elements
of the set B in an arbitrary interval (α, β) ⊆ (0, 1), 0 < α < β < 1.

Let us denote

kb,i =
1

pbi

(
1− 1

pi

)
. (18)

Hence, B = {kb,i | i ∈ N, b ∈ N ∪ {0}}. It is obvious that for b ≥ 1 holds
lim
i→∞

kb,i = 0, and lim
i→∞

k0,i = 1. Therefore, for fixed b just a finite number of

elements kb,i belongs to the interval (α, β).
Moreover, for arbitrary α > 0 exists b0 ∈ N such that for every b > b0 and for

every i ∈ N holds

kb,i =
1

pbi

(
1− 1

pi

)
<

1

pbi
<

1

2b
< α.

Hence, only elements kb,i ∈ B where b ≤ b0 belong to interval (α, β). Thus,
there is just finite number of elements of the set B in the given interval (α, β).

Let us consider arbitrary x0 ∈ (0, 1), x0 /∈ A, x0 /∈ B. There must exist some
interval (α, β), where 0 < α < β < 1, x0 ∈ (α, β). We know that there exist just a
finite number of elements of B in the interval (α, β).

Hence, (x0 /∈ B according to above mentioned assumptions)

∃c1, c2 ∈ B : x0 ∈ (c1, c2), (c1, c2) ∩B = ∅. (19)
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For arbitrary d ∈ A exists (see (18)) kb,i ∈ B:

d = d(Aa,b
pi

) =

1
pb
i

(
1− 1

pi

)

1− 1
pa
i

=
kb,i

1− 1
pa
i

. (20)

We are looking for all elements d ∈ A, which belong to the interval (c1, c2).
Doing so, we solve inequalities

c1 < d < c2.

From (20), and from the fact that pi ≥ 2 we obtain

c1 <
kb,i

1− 1
pa
i

< c2,

c1(1−
1

pai
) < kb,i < c2(1−

1

pai
),

c1(1−
1

2a
) < kb,i < c2,

c1
2

< kb,i < c2,

and from (19)

d = d(Aa,b
pi

) ∈ (c1, c2) ⇒ kb,i ∈ (
c1
2
, c1〉. (21)

As proved above, there is just a finite number of elements kb,i ∈ B which satisfy
the condition kb,i ∈ ( c12 , c1〉. Let us denote them (recall that c1 ∈ B)

kb1,i1 < kb2,i2 < · · · < kbr,ir = c1.

Hence, (see (20) and (21)),

d = d(Aa,b
pi

) ∈ (c1, c2) only if b ∈ {b1, b2, . . . , br}, and i ∈ {i1, i2, . . . , ir}. (22)

Let us determine for which a the elements d = d(A
a,bj
pij

), j = 1, 2, . . . , r belong

to the interval (c1, c2)?
We can see that

lim
a→∞

d(Aa,bj
pij

) = lim
a→∞

kbj ,ij
1− 1

pa
ij

= kbj ,ij for j = 1, 2, . . . , r.

Thus, for every j = 1, 2, . . . , r holds:
∀ε > 0∃a0(ε) ∈ N :

∀a > a0(ε) : d(A
a,bj
pij

) < kbj ,ij + ε ≤ kbr,ir + ε = c1 + ε. (23)

We can choose ε small enough to x0 ∈ (c1 + ε, c2) (see (19)). From (22) and
(23) follows that the element d = d(Aa,b

pi
) ∈ A belongs to the interval (c1 + ε, c2)
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only if b ∈ {b1, b2, . . . , br}, i ∈ {i1, i2, . . . , ir}, and a ∈ {1, 2, . . . , a0(ε)}. Thus, for
every x0 ∈ (0, 1), x0 /∈ A, x0 /∈ B holds x0 /∈ clA.

Moreover,

lim
a→∞

d(Aa,b
pi

) = lim
a→∞

1
pb
i

(
1− 1

pi

)

1− 1
pa
i

=
1

pbi

(
1− 1

pi

)
∈ B,

lim
i→∞

d(Aa,0
pi

) = lim
i→∞

1
p0
i

(
1− 1

pi

)

1− 1
pa
i

= 1,

and

lim
b→∞

d(Aa,b
pi

) = lim
b→∞

1
pb
i

(
1− 1

pi

)

1− 1
pa
i

= 0.

Hence, B ⊂ clA, 1 ∈ clA, and 0 ∈ clA. Thus, clA = A ∪B ∪ {0, 1}. �
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