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Banach algebra techniques in the theory of arithmetic

functions

Lutz G. Lucht

Abstract. For infinite discrete additive semigroups X ⊂ [0,∞) we study
normed algebras of arithmetic functions g : X → C endowed with the linear
operations and the convolution. In particular, we investigate the problem
of scaling the mean deviation of related multiplicative functions for X =
logN. This involves an extension of Banach algebras of arithmetic functions
by introducing weight functions and proving a weighted inversion theorem
of Wiener type in the frame of Gelfand’s theory of commutative Banach
algebras.

1 Introduction
In this note we present weighted inversion theorems for arithmetic functions in the
frame of Gelfand’s theory of commutative Banach algebras. In particular, we derive
a weighted Wiener type inversion theorem for power series and give applications
to the theory of multiplicative arithmetic functions.

2 Arithmetic functions on discrete additive semigroups
For a unitary approach to arithmetic functions we consider the class A(X) of
arithmetic functions g : X → C defined on an infinite discrete additive semigroup
X ⊂ [0,∞) with 0 ∈ X. Endowed with the usual linear operations and the convo-
lution defined by

(
f ∗ g

)
(x) =

∑

y,z∈X
x=y+z

f(y) g(z) (x ∈ X), (1)
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A(X) forms a unital commutative complex algebra. The unity ε ∈ A(X) is given
by ε(0) = 1 and ε(x) = 0 for x 6= 0. The multiplicative group of A(X), i.e. the
group of invertible functions under the convolution, is

A∗(X) = {g ∈ A(X) : g(0) 6= 0}. (2)

Indeed, for g ∈ A(X) given, we have to show the existence of f ∈ A(X) satisfying
f ∗g = ε. From (1) we obtain that f(0)g(0) = ε(0) = 1 so that necessarily g(0) 6= 0,
and for 0 < x ∈ X we see that

f(x) g(0) = −
∑

y,z∈X,y<x
x=y+z

f(y) g(z)

defines f recursively, if g(0) 6= 0. As usual we write g−1 for the inverse of g ∈
A∗(X), i.e., g−1 satisfies g ∗ g−1 = ε.

With every g ∈ A(X) we associate the general Dirichlet series

g̃(s) =
∑

x∈X

g(x) e−xs (s ∈ C). (3)

Endowed with the linear operations and the multiplication defined by

f̃(s) · g̃(s) := (f ∗ g)˜(s)

the series (3) form an algebra Ã(X) that is isomorphic to A(X). Note that this
definition is suggested by formal multiplication of the series and by arranging the
resulting product series as general Dirichlet series again, regardless of convergence.

If both f̃(s) and g̃(s) converge absolutely, then (f ∗g)˜(s) = f̃(s)·g̃(s) converges
absolutely. If a Dirichlet series g̃(s) converges absolutely at s0 ∈ C, then the
absolute convergence is uniform in the closed half plane Re s ≥ Re s0. Since the
absolute convergence of g̃(s) in an open half plane Re s > Re s0 implies that of the
formal derivative

g̃ ′(s) = −
∑

x∈X

x g(x) e−xs, (4)

g̃(s) represents a holomorphic function for Re s > Re s0. Further, for any g ∈
A(X) there is a number α ∈ R or α ∈ {−∞,∞}, called the abscissa of absolute
convergence of g̃(s), such that g̃(s) converges absolutely for Re s > α and does not
converge absolutely for Re s < α.

For illustration consider the following examples.

Example 1. The additive semigroup X = N0 serves as domain for the algebra of
arithmetic functions g ∈ A(N0). Here the Cauchy convolution corresponds to the
Cauchy product of formal power series. After substituting z = e−s and writing
g̃(z) instead of g̃(s), they take the usual form

g̃(z) =

∞∑

n=0

g(n) zn (z ∈ C). (5)
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Example 2. The additive semigroup X = logN with elements x = log n serves as
domain for the algebra A(logN) of arithmetic functions g : N → C. With g(log n)
replaced by g(n) the Dirichlet convolution corresponds to the product of ordinary
Dirichlet series

g̃(s) =

∞∑

n=1

g(n)

ns
(s ∈ C). (6)

Well-known subalgebras of A(X) are those referring to the absolute convergence

of Dirichlet series g̃ ∈ Ã(X), which reflects the mean growth of the generating
arithmetic functions g ∈ A(X). Let H = {s ∈ C : Re s > 0} be the open right half
plane of the complex plane and H its closure. The usual classification distinguishes
the subalgebras of functions g ∈ A(X) with absolutely convergent series g̃(s) for
s ∈ H + %, with % ∈ R fixed. Obviously each of these nested subalgebras is
isomorphic to that with % = 0, under the mapping g(x) 7→ g(x) e−%x. A major
problem consists in determining its multiplicative group. The result is an inversion
theorem of Wiener type, originally proved for Fourier series (cf. Wiener [19]). With
the open unit disk U = {z ∈ C : |z| < 1} ⊂ C, the most frequent version is that for
power series:

Theorem 1. If the power series g̃(z) converges absolutely and is zero-free for all

z ∈ U , then the power series f̃(z) := 1/g̃(z) converges absolutely for z ∈ U , too.

3 Weighted Banach algebras
We aim for a finer classification. To this end let W(X) be the set of admissible
weight functions w : X → [1,∞) satisfying both conditions

w(0) = 1 ≤ w(x+ y) ≤ w(x)w(y) for all x, y ∈ X, (7)

lim
k→∞

k
√
w(kx) = 1 for every x ∈ X. (8)

For w ∈ W(X) we introduce the normed unital complex algebra

Dw(X) =
{
g ∈ A(X) : ‖g‖w < ∞

}

of all functions g ∈ A(X) having a finite w-norm

‖g‖w =
∑

x∈X

|g(x)|w(x).

In particular, for the constant weight function w = 1, D1(X) consists of all g ∈
A(X) with absolutely convergent Dirichlet series g̃(s) for s ∈ H.

For w ∈ W(X) we have ‖ε‖w = w(0) = 1, and we infer from (7) that the w-
norm is submultiplicative, i.e., ‖f ∗ g‖w ≤ ‖f‖w ‖g‖w. Further, Dw(X) considered
as metric space is complete relative to the w-norm. Hence Dw(X) is a Banach
subalgebra of D1(X) for every w ∈ W(X). Note that (8) delimits the growth of
w ∈ W(X). In fact,

w(x) � eηx (x ∈ X) (9)

holds for every η > 0. Therefore the absolute convergence of g̃(s) in some open
half plane transfers to the series (gw)˜(s).

We return to the Examples 1 and 2.
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Example 3. Typical examples of admissible weights w ∈ W(N0) are powers w(n) =
(1 + n)c and exponential functions of the form w(n) = exp(c nd), with c ≥ 0 and
0 ≤ d < 1. In particular, for w(n) = (1 + n)k with k ∈ N0 and g ∈ Dw(N0), the
power series g̃(z) in (5) and its derivatives up to order k converge absolutely for
|z| ≤ 1.

Example 4. For w ∈ W(logN) write w(n) instead of w(log n). Then w(n) � nη for
every η > 0. Typical examples of admissible weights for the ordinary Dirichlet series
(6) are the log powers w(n) = (1 + log n)c and the functions w(n) = exp(c logd n),
with c ≥ 0 and 0 ≤ d < 1. In particular, for w(n) = (1 + log n)k with k ∈ N0

and g ∈ Dw(logN) the Dirichlet series g̃(s) in (6) and its derivatives up to order k
converge absolutely for Re s ≥ 0.

The problem to determine the multiplicative group of Dw(X) for weight func-
tions w ∈ W(X) is answered by the following theorem (cf. Lucht and Reifenrath
[12]).

Theorem 2. If X ⊂ [0,∞) is an infinite discrete additive semigroup with 0 ∈ X
and w ∈ W(X), then the multiplicative group of the Banach algebra Dw(X) is

D∗
w(X) =

{
g ∈ Dw(X) : 0 /∈ g̃(H)

}
.

The inversion condition 0 /∈ g̃(H) is equivalent to inf { |g̃(s)| : Re s ≥ 0} > 0.
We remark that the corresponding Lévy extension replacing the inversion by a
holomorphic function defined on some region Ω ⊂ C is also true (cf. [12]).

In particular, Wiener’s inversion theorem 1 for power series g̃(z) according to
(5) occurs as the special case X = N0, w = 1 of Theorem 2 (cf. Lucht [10]):

Theorem 3. For w ∈ W(N0) the multiplicative group of the Banach algebraDw(N0)
is

D∗
w(N0) =

{
g ∈ Dw(N0) : g̃(z) 6= 0 for z ∈ U

}
.

Note that the inversion condition is equivalent to 0 /∈ g̃(U), because U is com-
pact.

The weighted inversion theorem for ordinary Dirichlet series g̃(s) according to
(6) follows from Theorem 2 for X = logN (cf. [12]). In the special case w = 1 it
was proved in 1957 by Hewitt and Williamson [7] and, independently, by Edwards
[2].

Theorem 4. For w ∈ W(logN) the multiplicative group of the Banach algebra
Dw(logN) is

D∗
w(logN) =

{
g ∈ Dw(logN) : 0 /∈ g̃(H)

}
. (10)

In the next section we confine to a short direct proof of the weighted inver-
sion Theorem 3 for power series and explain the major difficulty of the proof of
Theorem 4 for Dirichlet series. This requires some tools from Gelfand’s theory of
commutative Banach algebras (Gelfand [4], see, for instance, Rudin [15, Chapter
18]).
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4 Functional analytic tools and proof of Theorem 3
Let A be a commutative complex algebra with unity e and finite norm ‖ . ‖, which
makes A into a metric space. Recall that A is a normed complex algebra, if the
norm is submultiplicative, i.e. ‖x · y‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A. It is a Banach
algebra, if the metric space A is also complete relative to this norm. Obviously we
have ‖e‖ ≥ 1, and we shall assume that ‖e‖ = 1.

Gelfand’s theory associates with A the space ∆(A) of homomorphisms of A
onto the complex field, or, in other words, the non-trivial multiplicative linear
functionals h : A → C. The following general theorem relates the norm on ∆(A) to
that on A and characterizes the invertible elements of A (cf., for instance, Rudin
[15, Theorem 18.17]).

Theorem 5. For all a ∈ A and h ∈ ∆(A) we have |h(a)| ≤ ‖a‖. An element a ∈ A
is invertible, if and only if h(a) 6= 0 for all h ∈ ∆(A).

To identify the invertible elements of A therefore suggests to determine all non-
trivial multiplicative linear functionals of A.

Proof. [Proof of Theorem 3] For application of Theorem 5 to the Banach algebra
Dw(N0) endowed with the linear operations, the Cauchy convolution and the norm
‖ . ‖w with weight functions w ∈ W(N0) we determine all non-trivial multiplicative
linear functionals h ∈ ∆

(
Dw(N0)

)
. Let εk ∈ Dw(N0) be defined for k ∈ N0 by

εk(n) = δkn for all n ∈ N0, where δ is the Kronecker symbol. Then ε0 = ε, and
εk = εk1 := ε1 ∗ · · · ∗ ε1 with k factors ε1 satisfies

‖εk‖w = w(k) (k ∈ N0).

Every g ∈ Dw(N0) has the representation

g =

∞∑

k=0

g(k) εk. (11)

Given h ∈ ∆
(
Dw(N0)

)
, we have z := h(ε1) ∈ C and h(εk) = hk(ε1) = zk. Theorem

5 yields
|z|k = |h(εk)| ≤ ‖εk‖w = w(k) (k ∈ N)

so that |z| ≤ k
√
w(k) for all k ∈ N. By (8) this is equivalent to |z| ≤ 1. Applying

the continuous function h to (11) yields

h(g) = g̃(z)
(
g ∈ Dw(N0)

)
. (12)

Now Theorem 5 asserts that g is invertible in Dw(N0), if and only if g̃(z) does not
vanish at any point z ∈ U , as stated in Theorem 3. �

Usually inversion theorems of Wiener type are formulated and proved in terms
of generating series. The preceding version shows explicitly the significant role
of the structure of the underlying semigroup X. Here the simplicity of the proof
essentially relies on the fact that the additive semigroup N0 is generated by the



50 Lutz G. Lucht

singleton {1}, which entails the representations (11) and (12) for functions g ∈
Dw(N0) and their image under h.

In contrast, the additive semigroup logN occurring in Theorem 4 is generated
by the infinite set logP = {log p : p prime}. Since the specific functionals hs ∈
∆ := ∆

(
Dw(logN)

)
defined by hs(g) = g̃(s) for s ∈ H form a sparse subclass of

∆ only, the crucial part of the proof of Theorem 4 consists in verifying that this
subclass is dense in ∆, i.e., for all h ∈ ∆, g ∈ Dw(logN) and ε > 0 there exists an
s ∈ H such that |h(g)− hs(g)| < ε .

5 Weighted inversion of multiplicative functions
Returning to the usual multiplicative notation we replace the additive semigroup
X = logN in Example 2 with the multiplicative semigroup N. Then the class of
arithmetic functions g : N → C is a unital commutative complex algebra B = B(N)
under the linear operations and the Dirichlet convolution ∗ ,

f ∗ g(n) =
∑

dm=n

f(d) g(m) (n ∈ N).

The unity ε ∈ B is given by ε(n) = δ1n for n ∈ N, and B∗ = {g ∈ B : g(1) 6= 0} is
the multiplicative group of B. For instance, the constant function 1 , the Möbius
function µ = 1−1, the identity I with I(n) = n belong to B∗, and the logarithm
log belongs to B \B∗.

The set P of primes serves as free multiplicative generator of N. An impor-
tant subgroup M of B∗ is that of multiplicative functions g ∈ B∗, i.e., g(mn) =
g(m) g(n) for all coprime m,n ∈ N. Obviously g(1) = 1 for all g ∈ M. If g ∈ M

is completely multiplicative, i.e., g(mn) = g(m) g(n) holds for all m,n ∈ N, then
g−1 = µg. In particular, 1 , µ, I ∈ M, and 1 and I are completely multiplicative.

Let P? = {pk : p ∈ P , k ∈ N} be the set of prime powers with positive integer
exponents. For g ∈ M and p ∈ P, we define the function gp ∈ M by

gp(n) =

{
g(n) for n = pk ∈ P? ∪ {1}
0 otherwise.

(13)

Since g(n) is the product of the gp(p
k) when n factors as the product of coprime

powers pk, g ∈ M can be reconstructed from the functions gp ∈ M. We write this
formally as

g = ∗
p∈P

gp . (14)

Conversely, this representation characterizes the multiplicative functions g ∈ B.

The algebra B̃ = B̃(N) of ordinary Dirichlet series (6) is isomorphic to B. If
the Dirichlet series g̃(s) of a function g ∈ M converges absolutely, then g̃(s) has a
representation as absolutely convergent Euler product

g̃(s) =
∏

p

g̃p(s) with g̃p(s) = 1 +
g(p)

ps
+

g(p2)

p2s
+ · · · (15)
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corresponding to (13) and (14). Conversely, if the series

∑

pk∈P?

g(pk)

pks
=
∑

p

(
g̃p(s)− 1

)
(16)

converges absolutely, then g̃(s) converges absolutely.

The defining properties (7) and (8) of admissible weight functions w ∈ W =
W(N) defined on N take the form

w(1) = 1 ≤ w(mn) ≤ w(m)w(n) for all m,n ∈ N, (17)

lim
k→∞

k
√
w(nk) = 1 for every n ∈ N, (18)

according to Example 4. The Banach algebra Dw(logN), now called Fw = Fw(N),
consists of all functions g ∈ B with finite w-norm

‖g‖w =

∞∑

n=1

|g(n)|w(n).

Theorem 4 yields the multiplicative group

F∗
w =

{
g ∈ Fw : 0 /∈ g̃(H)

}
.

For w ∈ W let g ∈ M ∩ F∗
w. Then the inversion condition takes the simpler form

0 /∈ g̃p(H) for all p ∈ P or, equivalently,

g̃p(s) 6= 0 for all p ∈ P and s ∈ C with Re s ≥ 0. (19)

This follows from the Euler product representation (15) of g̃(s), because the ab-
solute convergence of the series (16) yields g̃p(s) → 1 as p → ∞, uniformly for
Re s ≥ 0. Moreover, we see that

∑

p

(
‖gp‖w − 1

)
≤ ‖g‖w ≤ exp

(∑

p

(
‖gp‖w − 1

))
.

We extend M∩Fw considerably by partly replacing the w-norm with the mean
square w-norm (cf. Lucht [10]).

Theorem 6. For w ∈ W the class

Gw =
{
g ∈ M :

∑

p

|g(p)|2 w2(p) < ∞ and
∑

p,k≥2

|g(pk)|w(pk) < ∞
}

(20)

is a unital subsemigroup of M under the Dirichlet convolution, with the multiplica-
tive group

G∗
w =

{
g ∈ Gw : g̃p(s) 6= 0 for p ∈ P and s ∈ H

}
.



52 Lutz G. Lucht

Proof. The submultiplicativity (17) of the w-norm combined with the Cauchy-
Schwarz inequality entails that Gw is closed under ∗ , and obviously ε ∈ Gw. For
f, g ∈ G∗

w and p ∈ P we have fp , gp ∈ G∗
w and (f ∗ g)p˜(s) = f̃p(s) g̃p(s) 6= 0 for

Re s ≥ 0. Hence G∗
w is also closed under ∗ . It remains to verify that g ∈ G∗

w implies
g−1 ∈ Gw.

In order to apply Theorem 3 to g̃p(s) with p ∈ P fixed, we define a weight
function ω ∈ W(N0) by ω(k) = w(pk) and a function G ∈ Dω(N0) by G(k) =

gp(p
k) p−k for k ∈ N0. Then the power series G̃(z) = g̃p(s) with z = p−s does not

vanish for |z| ≤ 1. Theorem 3 yields G ∈ D∗
ω(N0), which is equivalent to gp ∈ G∗

w.
Therefore g−1

p ∈ Gw for each p ∈ P. We have to transfer this property to g−1 and
consider the Euler product

g̃(s) =
∏

p≤p0

g̃p(s) ·
∏

p>p0

(
1− g(p)

ps

)−1

·
∏

p>p0

(
1− g(p)

ps

)
g̃p(s).

It corresponds to the decomposition

g =
( ∗
p≤p0

gp

)
∗ b ∗ h (21)

with p0 suitably large, and b, h ∈ M defined by

b(pk) =

{
gk(p) for p > p0 , k ∈ N0

0 otherwise,

h(pk) =

{
g(pk)− g(pk−1)g(p) for p > p0 , k ∈ N
0 otherwise.

We have h(p) = 0 for p ∈ P and b(p) = g(p) for all p > p0. Now choose p0
sufficiently large such that for p > p0 both estimates

|g(p)|w(p) ≤ 1

2
and

∑

p,k≥2

|h(pk)|w(pk) ≤ 1

2

hold. Then b ∈ G∗
w and b−1 = µb ∈ G∗

w, because b ∈ M is completely multiplicative.
Further h ∈ Gw. In order to verify that h is invertible within Gw we conclude from
h−1 ∗ h = ε that h−1(p) = h(p) = 0 for all p ∈ P, h(pk) = 0 for all p ≤ p0 and
k ∈ N, and

h−1(pk) = −
∑

2≤j≤k

h(pj)h−1(pk−j) (p > p0 , k ≥ 2).

From

Σ :=
∑

pk≤x
k≥2

|h−1(pk)|w(pk)

≤
∑

pk≤x
k≥2

∑

2≤j≤k

|h(pj)|w(pj) · |h−1(pk−j)|w(pk−j)
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=
∑

pk≤x
k≥2

|h(pk)|w(pk) +
∑

pj+`≤x
j,`≥2

|h(pj)|w(pj) · |h−1(p`)|w(p`)

≤
(
1 + Σ

) ∑

pk≤x
k≥2

|h(pk)|w(pk) ≤ 1

2

(
1 + Σ

)

we see that Σ ≤ 1. Hence h−1 ∈ Gw, and (21) entails that

g−1 =
( ∗

p≤p0

g−1
p

)
∗ b−1 ∗ h−1

is a convolution of finitely many elements of Gw so that g−1 ∈ Gw. �

Note that Theorem 6 does not presume the absolute convergence of g̃(s) for
Re s ≥ 0.

6 Arithmetic applications
A function g ∈ A is said to possess a mean-value M(g), if the limit

M(g) = lim
x→∞

1

x

∑

n≤x

g(n)

exists. Influenced by the Erdős-Wintner problem, mean-value theorems for multi-
plicative functions became important in the theory of arithmetic functions. The
progress achieved since 1961 is visible in the results of, e.g., Delange [1], Wirs-
ing [20], [21], Halász [5], Elliott [3], and Indlekofer [8]. Elementary and analytic
proof techniques often involve the replacement of a multiplicative function f by a
somewhat simpler function, say g, and the back transfer of properties from g to f .

In 1961 Delange [1] stated and used an assertion concerning the transfer of
mean-values between related multiplicative functions.

Proposition 1. For f, g ∈ M bounded by 1 and satisfying

∑

p

|f(p)− g(p)|
p

< ∞, (22)

the existence of M(g) yields that of M(f), if g(2k) 6= −1 for some k ∈ N. Moreover,

the Dirichlet series h̃(s) of h = f ∗ g−1 converges absolutely at s = 1 and M(f) =

h̃(1)M(g).

Note that the boundedness of g by 1 combined with g(2k) 6= −1 for some k ∈ N
implies g̃p(s) 6= 0 for all p and Re s ≥ 1. The first proof of Proposition 1 was given
by Schwarz [16], via Wiener’s inversion theorem for power series. After some inter-
mediate improvements concerning possible extensions of the class of multiplicative
functions (see [17], [9]), Heppner and Schwarz [6] proved the following relationship
theorem.
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Proposition 2. Let

H =

{
g ∈ M :

∑

p

|g(p)|2
p2

< ∞ ,
∑

p,k≥2

|g(pk)|
pk

< ∞
}
.

Then, for f, g ∈ H satisfying (22), the existence of M(g) implies that of M(f), if
g̃p(s) 6= 0 for all p and Re s ≥ 1.

Note that H is closed under convolution.
Proposition 2 raises the problem to find a quantitative version. In fact, the so-

lution based on Theorem 3 immediately follows from Theorem 6. For abbreviation
we set

M(g, x) =
∑

n≤x

g(n)

and state the result in a slightly modified version compared to Propositions 1 and
2 (cf. Lucht [10]):

Theorem 7. Let w ∈ W be defined by w(n) = (1 + log n)k for k ∈ N0 fixed.
Suppose that f ∈ Gw and g ∈ G∗

w satisfy

∑

p

|f(p)− g(p)|w(p) < ∞. (23)

If there are constants α ∈ C, β ∈ R with Reα ≥ β ≥ 0, ` ∈ N0, and a polynomial
P (x) ∈ C[x] of degree ≤ k such that

M(g, x) = xα P (log x) + o
(
xβ log` x

)
(x → ∞), (24)

then there exists a polynomial Q(x) ∈ C[x] of degree ≤ k such that

M(f, x) = xα Q(log x) + o
(
xβ log` x

)
(x → ∞). (25)

Moreover, h = f ∗ g−1 ∈ Fw ∩ M, the Dirichlet series h̃(s) = f̃(s)/g̃(s) and its
derivatives up to the order k converge absolutely for Re s ≥ 0, and

Q(t) =
∑

0≤j≤k

h̃ (j)(α)

j!
P (j)(t) . (26)

Proof. By Theorem 6, h = f ∗ g−1 ∈ Gw. From h(p) = f(p)− g(p) combined with
(22) it follows that h ∈ Fw. By inserting f = g ∗ h into M(f, x) and using (23), we
obtain the assertions (24) and (25) by elementary evaluation. �

We may rewrite Theorem 7 with f and g replaced with the quotient functions
f/I and g/I, respectively. This is equivalent to a shift by 1 of the argument s in
the corresponding Dirichlet series. Then Proposition 2 occurs as the special case
w = 1 and α = β = ` = 0 of Theorem 7.

The next application concerns the transfer of the convergence quality of Dirich-
let series between related multiplicative functions (cf. Lucht [10]).
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Theorem 8. Let w ∈ W be defined by w(n) = (1+log n)k for k ∈ N0 fixed. Suppose
that f ∈ Gw and g ∈ G∗

w are w-related in the sense of (23). If the Dirichlet series
g̃(s) and its derivatives up to the order k converge at some point s with Re s ≥ 0,

then f̃ (j)(s) does so for 0 ≤ j ≤ k. Moreover, h = f ∗ g−1 ∈ Fw ∩M, the Dirichlet

series h̃(s) = f̃(s)/g̃(s) and its derivatives up to the order k converge absolutely at
s, and

f̃ (k)(s) =
(
g̃ · h̃

)(k)
(s) =

k∑

j=0

(
k

j

)
g̃ (j)(s) h̃ (k−j)(s).

Proof. For every g ∈ A the absolute convergence of the series (gw)˜(s) is equivalent
to that of (g logk)˜(s). Hence the assertion follows from Theorem 6. �

Note that Theorem 8 does not presume the absolute convergence of the series
g̃(s). We only use the convergence of (g ∗ h)˜(s) to g̃(s) · h̃(s) for convergent series
g̃(s) and absolutely convergent series h̃(s).

Finally, we mention an application to Ramanujan expansions of arithmetic func-
tions g ∈ B. In 1919, for a, n ∈ N, Ramanujan [14] introduced the sum cn(a) called
Ramanujan sum as sum of the ath powers of the nth primitive roots of unity.
He used these sums to represent a variety of arithmetic functions g as pointwise
convergent series of the form

g(a) =

∞∑

n=1

ĝ(n) cn(a) (a ∈ N) (27)

with certain coefficients ĝ(n). Ramanujan’s paper initiated the development of
the Fourier analysis of arithmetic functions, which essentially covers arithmetic
functions that possess a non-zero mean-value (see, e.g., Schwarz and Spilker [18]).
Therefore some of Ramanujan’s examples remained mysterious (cf. Knopfmacher

[13]), e.g., the expansion (27) of the divisor function d = 1 ∗ 1 with d̂(n) = − logn
n .

A natural explanation of such expansions relies on the close relation of the Ra-
manujan sums cn and the Möbius function µ. Namely, observe that the convolution

ηa(n) =
∑

d|n
cd(a) =

{
n if n | a
0 otherwise

(n ∈ N)

defines a function ηa ∈ M with finite support {n ∈ N : ηa(n) 6= 0}. Note that
the definition of ηa is equivalent to c.(a) = µ ∗ ηa. This offers an alternative
approach (cf. Lucht [11]) to Ramanujan expansions for multiplicative functions via
Theorem 6.
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