
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Memudu Olaposi Olatinwo
Some stability results in complete metric space

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 48 (2009), No. 1, 83--92

Persistent URL: http://dml.cz/dmlcz/137516

Terms of use:
© Palacký University Olomouc, Faculty of Science, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital
signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/137516
http://project.dml.cz


Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 48 (2009) 83–92

Some Stability Results in Complete
Metric Space

Memudu Olaposi OLATINWO

Department of Mathematics, Obafemi Awolowo University,
Ile-Ife, Nigeria

e-mail: polatinwo@oauife.edu.ng

(Received April 26, 2008)

Abstract

In this paper, we obtain some stability results for the Picard iteration
process for one and two metrics in complete metric space by using different
contractive definitions which are more general than those of Berinde [1],
Imoru and Olatinwo [5] some others listed in the reference section. The
results generalize and unify some of the results of Harder and Hicks [4],
Rhoades [10, 12], Osilike [8], Berinde [1], Imoru and Olatinwo [5] as well
as Imoru et al [6].
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1 Preliminaries and Introduction

Let (E, d) be a complete metric space, T : E → E a selfmap of E.

Definition 1.1 [Harder and Hicks [4]]: Suppose that FT = {p ∈ E
∣∣ Tp = p}

is the set of fixed points of T . Let {xn}∞n=0 ⊂ E be the sequence generated by
an iteration procedure involving T which is defined by

xn+1 = f(T, xn), n = 0, 1, . . . , (1.1)

where x0 ∈ E is the initial approximation and f is some function. Suppose
{xn}∞n=0 converges to a fixed point p of T . Let {yn}∞n=0 ⊂ E and set εn =
d(yn+1, f(T, yn)), n = 0, 1, 2, . . . Then, the iteration procedure (1.1) is said to
be T−stable or stable with respect to T if and only if limn→∞ εn = 0 implies
limn→∞ yn = p.

83



84 Memudu Olaposi OLATINWO

Definition 1.2 [Singh et al [13]]: Let S, T : Y → E, T (Y ) ⊆ S(Y ) and z a
coincidence point of S and T , that is, Sz = Tz = p (say). For any x0 ∈ Y , let
the sequence {Sxn}∞n=0, generated by the iteration procedure

Sxn+1 = f(T, xn), n = 0, 1, . . . (1.2)

converge to p. Let {Syn}∞n=0 ⊂ E be an arbitrary sequence, and set εn =
d(Syn+1, f(T, yn)), n = 0, 1, . . . Then, the iteration procedure (1.2) will be
called (S, T )-stable if and only if limn→∞ εn = 0 implies that limn→∞ Syn = p.

This definition reduces to that of the stability of iteration procedure due to
Harder and Hicks [4] when Y = E and S = I (identity operator).
If in (1.1),

f(T, xn) = Txn, n = 0, 1, . . . ,

then we have the Picard iteration process, while we obtain the Jungck-type
iteration if in (1.2)

f(T, xn) = Txn, n = 0, 1, . . .

Definition 1.3 [Berinde [2]]: A function ψ : R+ → R+ is called a comparison
function if:
(i) ψ is monotone increasing;
(ii) lim

n→∞ψn(t) = 0, ∀t ≥ 0.

We remark here that every comparison function satisfies the condition ψ(0) = 0.

Several stability results have been obtained by various authors using dif-
ferent contractive definitions. Harder and Hicks [4] obtained interesting stabil-
ity results for some iteration procedures using various contractive definitions.
Rhoades [10, 12] generalized the results of Harder and Hicks [4] to a more gen-
eral contractive mapping. In Osilike [8], a generalization of some of the results
of Harder and Hicks [4] and Rhoades [12] was obtained by employing the fol-
lowing contractive definition: there exist a constant L ≥ 0 and a ∈ [0, 1) such
∀x, y ∈ E,

d(Tx, T y) ≤ Ld(x, Tx) + ad(x, y). (1.3)

Condition (1.3) is more general than those of Rhoades [12] and Harder and
Hicks [4]. As in Harder and Hicks [4], Berinde [1] obtained the same stability
results for the same iteration procedures using the same contractive definitions,
but applied a different method. The method of Berinde [1] is similar to that
employed in Osilike and Udomene [9].
Recently, Imoru and Olatinwo [5] obtained some stability results for Pi-

card and Mann iteration procedures by using a more general contractive condi-
tion than those of Harder and Hicks [4], Rhoades [12], Osilike [8], Osilike and
Udomene [9] and Berinde [1]. In the paper [5], the following contractive defi-
nition was employed: there exist a ∈ [0, 1) and a monotone increasing function
ϕ : R+ → R+, with ϕ(0) = 0, such that ∀x, y ∈ E,

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ad(x, y). (1.4)
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It is our purpose in this paper to obtain several stability results in metric space
by applying different contractive definitions. However, we shall employ the
following lemmas in the sequel.

Lemma 1.4 [Imoru et al [6]]: If ψ : R+ → R+ is a subadditive comparison func-
tion and {εn}∞n=0 is a sequence of positive numbers such that limn→∞ εn = 0,
then for any sequence of positive numbers {un}∞n=0 satisfying

un+1 ≤
s∑

m=0

δmψ
m(un) + εn, n = 0, 1, 2, . . . ,

where
∑s

m=0 δm = 1, δ0, δ1, · · · , δs ∈ [0, 1], we have limn→∞ un = 0.

Lemma 1.5 [Imoru et al [6]]: Let {ψk(t)}n
k=0 be a sequence of comparison func-

tions. Then, any convex linear combination
∑n

j=0 cjψ
j(t) of the comparison

functions is also a comparison function, where
∑n

j=0 cj = 1 and co, c1, . . . , cn
are positive constants.

Lemma 1.6 [Imoru et al [6]]: Let ψ : R+ → R+ be a comparison function and
{vn}∞n=0 a sequence of positive numbers such that limn→∞ vn = 0. Then, we
have

lim
n→∞

n∑

k=0

ψn−k(vk) = 0, for each k.

Lemma 1.7 If ψ : R+ → R+ is a subadditive comparison function and {εn}∞n=0

is a sequence of positive numbers such that limn→∞ εn = 0. Suppose that ε > 0
is an arbirarily small given number. Then, for any sequence of positive numbers
{un}∞n=0 satisfying

un+1 ≤
m∑

k=0

δkψ
k(un) + εn + ε, n = 0, 1, . . . , (1.5)

where δk ∈ [0, 1], k = 0, 1, . . . ,m, 0 ≤ ∑m
k=0 δk ≤ 1, we have

lim
n→∞un = 0

Proof By putting ψ̄(un) =
∑m

k=0 δkψ
k(un) in (1.5), then we have

un+1 ≤ ψ̄(un) + εn + ε, n = 0, 1, . . . , (1.6)

and also by Lemma 1.5, we have that ψ̄(un) is a comparison function. It follows
from (1.6) that

u1 ≤ ψ̄(u0) + ε0 + ε,

u2 ≤ ψ̄(u1) + ε1 + ε ≤ ψ̄(ψ̄(u0) + ε0 + ε) + ε1 + ε

≤ [ψ̄2(u0) + ψ̄(ε0) + ε1] + [ψ̄(ε) + ε],
u3 ≤ ψ̄(u2) + ε2 + ε ≤ ψ̄3(u0) + ψ̄2(ε0) + ψ̄(ε1) + ψ̄2(ε) + ψ̄(ε) + ε2 + ε

= [ψ̄3(u0) + ψ̄2(ε0) + ψ̄(ε1) + ε2] + [ψ̄2(ε) + ψ̄(ε) + ε]
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In general,

un+1 ≤ ψ̄n+1(u0) +
n∑

k=0

ψ̄n−k(εk) +
n∑

k=0

ψ̄k(ε). (1.7)

Since ψ̄ is a comparison function, then limn→∞ ψ̄n+1(u0) = 0. �

Using Lemma 1.6, we obtain that

lim
n→∞

n∑

k=0

ψ̄n−k(εk) = 0 and lim
n→∞

n∑

k=0

ψ̄k(ε) = 0

since ε > 0 is arbitrary. Hence, (1.7) leads to limn→∞ un = 0.
We shall establish our main results in the next two sections. Section 2 deals

with some stability results involving one metric, while stability results involving
two metrics are proved in section 3.

2 Stability results involving one metric in complete
metric space

Theorem 2.1 Let (E, d) be a complete metric space and T : E → E a selfmap
of E satisfying

d(Tx, T y) ≤ ϕ1(d(x, Tx)) + ψ(d(x, y))
ϕ2(d(x, Tx))

, ∀x, y ∈ E, (2.1)

where ψ : R+ → R+ is a continuous comparison function and ϕ1, ϕ2 : R+ → R+

are monotone increasing functions such that ϕ1(0) = 0 and ϕ2(0) = 1. Suppose
T has a fixed point p. Let x0 ∈ E and let xn+1 = Txn, n = 0, 1, . . . , be the
Picard iteration associated to T . Then, the Picard iteration process is T -stable.

Proof Let {yn}∞n=0 ⊂ E and εn = d(yn+1, T yn). Assume limn→∞ εn = 0.
Then, we shall establish that limn→∞ yn = p by using the contractive condition
and the triangle inequality:

d(yn+1, p) ≤ d(Tp, T yn) + εn ≤ ψ(d(yn, p)) + εn. (2.2)

Using Lemma 1.4 in (2.2) yields limn→∞ d(yn, p) = 0, that is, limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, by the contractive condition and the
triangle inequality, we have

εn = d(yn+1, T yn) ≤ d(yn+1, p) + ψ(d(yn, p)) → 0 as n→ ∞. �

Corollary 2.2 Let (E, d) be a complete metric space and T : E → E a selfmap
of E satisfying

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ad(x, y)
1 + Ld(x, Tx)

, ∀x, y ∈ E,
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where a ∈ [0, 1), L ≥ 0 and ϕ : R+ → R+ is a monotone increasing function such
that ϕ(0) = 0. Suppose T has a fixed point p. Let x0 ∈ E and let xn+1 = Txn,
n = 0, 1, . . . , be the Picard iteration associated to T . Then, the Picard iteration
process is T -stable.

Corollary 2.3 Let (E, d) be a complete metric space and T : E → E a selfmap
of E satisfying

d(Tx, T y) ≤ ϕ1(d(x, Tx)) +
ψ(d(x, y))
ϕ2(d(x, Tx))

, ∀x, y ∈ E,

where ψ : R+ → R+ is a continuous comparison function and ϕ1, ϕ2 : R+ → R+

are monotone increasing functions such that ϕ1(0) = 0 and ϕ2(0) = 1. Suppose
T has a fixed point p. Let x0 ∈ E and let xn+1 = Txn, n = 0, 1, . . . , be the
Picard iteration associated to T . Then, the Picard iteration process is T -stable.

Remark 2.4 Theorem 2.1 and its corollaries generalize and unify Theorem 3.1
of Imoru and Olatinwo [5] and several others in the literature. In particular,
see Berinde [1], Imoru and Olatinwo [5], Rhoades [10, 11, 12] and some other
references in the reference section of this paper for detail.

We now establish the following stability results for uniform convergence of
sequences of operators:

Theorem 2.5 Let (E, d) be a complete metric space and {Tn}∞n=0 a sequence
of operators Tn : E → E. Let {xn}∞n=0 be the Picard iteration process. If the
sequence {Tn}∞n=0 converges uniformly to an operator T : E → E satisfying

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ψ(d(x, y)), ∀x, y ∈ E, (2.3)

where ϕ : R+ → R+ is a monotone increasing function such that ϕ(0) = 0 and
ψ : R+ → R+ is a continuous, subadditive comparison function. Suppose also
that T has the fixed point p. Then, the Picard iteration process is T -stable.

Proof Let {yn}∞n=0 ⊂ E and let εn = d(yn+1, Tnyn), d(Tnx, Tx) < ε, ∀x ∈ E,
∀n ≥ N . Assume limn→∞ εn = 0. Then, we shall establish that limn→∞ yn = p
by using the contraction condition (2.3) for T and the triangle inequality:

d(yn+1, p) ≤ d(yn+1, Tnyn) + d(Tnyn, p) ≤ d(Tp, T yn) + d(Tyn, Tnyn) + εn

≤ ψ(d(p, yn)) + εn + ε. (2.4)

Using Lemma 1.7 in (2.4) yields

d(yn+1, p) → 0 as n→ ∞
That is, since ε > 0 is arbitrary, then limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, we have

εn = d(yn+1, Tnyn) ≤ d(yn+1, p) + ψ(d(p, yn)) + ε→ 0 as n→ ∞,

since ε > 0 is arbitrary. �
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Corollary 2.6 Let (E, d) be a complete metric space and {Tn}∞n=0 a sequence
of operators Tn : E → E. Let {xn}∞n=0 be the Picard iteration process. If the
sequence {Tn}∞n=0 converges uniformly to an operator T : E → E satisfying

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ad(x, y), ∀x, y ∈ E, a ∈ [0, 1),

where ϕ : R+ → R+ is a monotone increasing function such that ϕ(0) = 0.
Suppose also that T has the fixed point p. Then, the Picard iteration process is
T -stable.

Remark 2.7 We remark that this theorem holds if {Tn} converges pointwise
to T since uniform convergence is more general than pointwise convergence.

Corollary 2.8 Let (E, d) be a complete metric space and {Tn}∞n=0 a sequence
of operators Tn : E → E. Let {xn}∞n=0 be the Picard iteration process. If the
sequence {Tn}∞n=0 converges pointwise to an operator T : E → E satisfying

d(Tx, T y) ≤ ϕ(d(x, Tx)) + ψ(d(x, y)), ∀x, y ∈ E,

where ϕ : R+ → R+ is a monotone increasing function such that ϕ(0) = 0 and
ψ : R+ → R+ is a continuous, subadditive comparison function. Suppose also
that T has the fixed point p. Then, the Picard iteration process is T -stable.

Remark 2.9 To the best of our knowledge, this is the first time that stabil-
ity results are being considered using the concepts of uniform and pointwise
convergence of sequences of operators.

Theorem 2.10 Let (E, d) be a complete metric space and Y an arbitrary set.
Suppose that S, T : Y → E are nonselfoperators such that T (Y ) ⊆ S(Y ), S(Y )
a complete subspace of E. Let z be a coincidence point of S and T (that is,
Sz = Tz = p). Suppose that S and T satisfy the contractive condition

d(Tx, T y) ≤ ψ(d(Sx, Sy))
1 +Md(Sx, Tx)

, M ≥ 0, ∀x, y ∈ Y, (2.5)

where ψ : R+ → R+ is a continuous subadditive comparison function. For x0 ∈
Y , let {Sxn}∞n=0 be the Jungck-type iteration process defined by Sxn+1 = Txn,
n = 0, 1, . . . , converging to p. Then, the Jungck-type iteration process is (S, T )-
stable.

Proof We now assume that limn→∞ εn = 0 and establish that limn→∞ Syn = p,
using the contractive condition and triangle inequality. Therefore, we have

d(Syn+1, p) ≤ d(Syn+1, T yn) + d(Tyn, p) ≤ ψ(d(p, Syn)) + εn (2.6)

By using Lemma 1.4 in (2.6), we get limn→∞ d(Syn, p) = 0, that is,

lim
n→∞Syn = p.



Some stability results in complete metric space 89

Conversely, let limn→∞ Syn = p. Then, by the contractive condition on S
and T as well as the triangle inequality, we have

εn = d(Syn+1, T yn) ≤ d(Syn+1, p) + d(p, T yn)
≤ d(Syn+1, p) + ψ(d(p, Syn)) → 0 as n→ ∞. �

Theorem 2.11 Let S and T be operators on an arbitrary set Y with values
in E such that T (Y ) ⊆ S(Y ) and S(Y ) or T (Y ) is a complete subspace of E.
Let z be a coincidence point of S and T (i.e. S(z) = T (z) = p (say)). Let
x0 ∈ Y and let {Sxn}∞n=0 ⊂ E defined by Sxn+1 = Txn, n = 0, 1, · · · , be
the Jungck iteration process converging to p. Suppose that {Syn}∞n=0 ⊂ E and
εn = d(Syn+1, T yn), n = 0, 1, · · · Suppose that S and T satisfy the contractive
condition

d(Tx, T y) ≤ ψ(d(Sx, Sy)) + ϕ(d(Sx, Tx))
1 +Md(Sx, Tx)

, M ≥ 0, ∀x, y ∈ Y, (2.7)

where ψ : R+ → R+ is a continuous subadditive comparison function and ϕ :
R+ → R+ is a monotone increasing function such that ϕ(0) = 0. Then, the
Jungck iteration process is (S, T )-stable.

Proof The proof of this theorem follows a similar argument as in that of
Theorem 2.10. �

Remark 2.12 Theorem 2.10 and others extend some celebrated results of [1,
4, 8, 9, 12] and some results due to the author [5, 6]. Infact, Theorem 2.10 is
also a generalization and extension of Theorem 3.1 of Singh et al [13].

3 Stability results involving two metrics d and ρ on a
nonempty set E

Theorem 3.1 Let E be a nonempty set, d and ρ two metrics on E and T : E →
E a mapping. Suppose that:
(i) T has a fixed point p;
(ii) there exist c > 0, and a monotone increasing function ϕ1 : R+ → R+

with ϕ1(0) = 0 such that

d(Tx, T y) ≤ ϕ1(ρ(x, Tx)) + cρ(x, y), ∀x, y ∈ E;

(iii) (E, d) is a complete metric space;
(iv) T : (E, ρ) → (E, ρ) satisfies the contractive condition

ρ(Tx, T y) ≤ ϕ2(ρ(x, Tx)) + ψ(ρ(x, y)), ∀x, y ∈ E,

where ψk : R+ → R+, k = 1, 2, . . . , are continuous comparison functions (ψk is
the k-th iterate of ψ) and ϕ2 : R+ → R+, k = 1, 2, . . . , is a monotone increasing
function such that ϕ2(0) = 0.
Let x0 ∈ E and xn+1 = Txn, n = 0, 1, . . . , be the Picard iteration associated

to T . Then, the Picard iteration process with T : (E, d) → (E, d) is T -stable.
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Proof Let {yn}∞n=0 ⊂ E, εn = d(yn+1, T yn), n = 0, 1, . . . , and suppose that
limn→∞ εn = 0. Then, we shall establish that limn→∞ yn = p, using condi-
tions (i)-(iv) and the triangle inequality: Therefore, using (i), (ii) and triangle
inequality lead to

d(yn+1, p) ≤ d(Tyn, T p) + εn ≤ ϕ1(ρ(p, T p)) + cρ(p, yn) + εn

= cρ(yn, p) + εn. (3.1)

Using (iii), we have that p ∈ E. Condition (iv) shows that T has a unique
fixed point. Also by condition (iv), we get

ρ(yn, p) = ρ(Tyn−1, T p) = ρ(Tp, T yn−1) ≤ ψ(ρ(yn−1, p))
≤ ψ2(ρ(yn−2, p)) ≤ · · · ≤ ψn(ρ(y0, p)) → 0 as n→ ∞. (3.2)

Using (3.2) in (3.1), we have

d(yn+1, p) ≤ cψn(ρ(y0, p)) + εn. (3.3)

Taking limits of both sides in (3.3) yields

lim
n→∞ d(yn+1, p) ≤ c lim

n→∞ψn(ρ(y0, p)) + lim
n→∞ εn → 0 as n→ ∞

That is, limn→∞ yn = p.
Conversely, let limn→∞ yn = p. Then, by condition (ii) and (3.2) we have

εn = d(yn+1, T yn) ≤ d(yn+1, p) + d(Tp, T yn)
≤ d(yn+1, p) + cψn(ρ(p, y0)) → 0 as n→ ∞. �

Corollary 3.2 Let E be a nonempty set, d and ρ two metrics on E and T : E →
E a mapping. Suppose that:
(i) T has a fixed point p;
(ii) there exist c > 0, M ≥ 0 such that

d(Tx, T y) ≤Mρ(x, Tx) + cρ(x, y), ∀x, y ∈ E;

(iii) (E, d) is a complete metric space;
(iv) T : (E, ρ) → (E, ρ) satisfies the contractive condition

ρ(Tx, T y) ≤ ϕ(ρ(x, Tx)) + ψ(ρ(x, y)), ∀x, y ∈ E,

where ψk : R+ → R+, k = 1, 2, . . . , are continuous comparison functions (ψk

is the k-th iterate of ψ) and ϕ : R+ → R+, k = 1, 2, . . . , monotone increasing
functions such that ϕ(0) = 0.
Let x0 ∈ E and xn+1 = Txn, n = 0, 1, . . . , be the Picard iteration associated

to T . Then, the Picard iteration process with T : (E, d) → (E, d) is T -stable.
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Theorem 3.3 Let E be a nonempty set and Y an arbitrary set. Let d and ρ
two metrics on Y and S, T : Y → E nonselfmappings such that T (Y ) ⊆ S(Y )
and S(Y ) is a complete subspace of E. Suppose that:
(i) S and T have a coincidence point z (that is Tz = Sz = p);
(ii) there exist c > 0, and a monotone increasing function ϕ1 : R+ → R+

with ϕ1(0) = 0 such that

d(Tx, T y) ≤ ϕ1(ρ(Sx, Tx)) + cρ(Sx, Sy), ∀x, y ∈ Y ;

(iii) (E, d) is a complete metric space;
(iv) T : (Y, ρ) → (E, ρ) satisfies the contractive condition

ρ(Tx, T y) ≤ ϕ2(ρ(Sx, Tx)) + ψ(ρ(Sx, Sy)), ∀x, y ∈ Y,

where ψk : R+ → R+, k = 1, 2, . . . , are continuous comparison functions (ψk is
the k-th iterate of ψ) and ϕ2 : R+ → R+, k = 1, 2, . . . , is a monotone increasing
function such that ϕ2(0) = 0.
Let x0 ∈ E and xn+1 = Txn, n = 0, 1, . . . , be the Jungck-type iteration

associated to S and T . Then, the Jungck-type iteration process with T : (Y, d) →
(E, d) is (S, T )-stable.

Proof Let {Syn}∞n=0 ⊂ E, εn = d(Syn+1, T yn), n = 0, 1, . . . , and suppose
that limn→∞ εn = 0. Then, we shall establish that limn→∞ Syn = p, using
conditions (i)–(iv) and the triangle inequality: Therefore, using (i), (ii) and
triangle inequality lead to

d(Syn+1, p) ≤ d(Syn+1, T yn) + d(Tyn, p) = d(Tz, T yn) + εn

≤ ϕ1(ρ(Sz, T z)) + cρ(Sz, Syn) + εn = cρ(p, Syn) + εn. (3.4)

Using (iii), we have that p ∈ E. Condition (iv) shows that T has a unique fixed
point. Also by condition (iv), we get

ρ(p, Syn) = ρ(Tz, T yn−1) ≤ ψ(ρ(Syn−1, p))
≤ ψ2(ρ(Syn−2, p)) ≤ · · · ≤ ψn(ρ(Sy0, p)) → 0 as n→ ∞. (3.5)

Using (3.5) in (3.4), we have

d(Syn+1, p) ≤ cψn(ρ(Sy0, p)) + εn. (3.6)

Taking limits of both sides in (3.6) yields

lim
n→∞ d(Syn+1, p) ≤ c lim

n→∞ψn(ρ(Sy0, p)) + lim
n→∞ εn = 0

That is, limn→∞ Syn = p.
Conversely, let limn→∞ Syn = p. Then, by condition (ii) and (3.5) we have

εn = d(Syn+1, T yn) ≤ d(Syn+1, p) + d(Tz, T yn)
≤ d(Syn+1, p) + cψn(ρ(p, Sy0)) → 0 as n→ ∞. �



92 Memudu Olaposi OLATINWO

Remark 3.4 Theorem 3.1 and Theorem 3.3 as well as the corollary generalize
and extend the well-known stability results in the literature. In particular, see
Singh et al [13], Berinde [1], Imoru and Olatinwo [5], Rhoades [10, 11, 12] and
some other references in the reference section of this paper for detail. Indeed,
Theorem 3.1 and Theorem 3.3 are generalizations and extensions of Theorem
3.1 and Theorem 3.4 of Singh et al [13].

Remark 3.5 To the best of our knowledge, this is the first time the stability
of the Picard and Jungck-type iteration processes is being investigated for the
case of two metrics.
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