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ON A GENERALIZED CLASS OF RECURRENT MANIFOLDS

Absos Ali Shaikh and Ananta Patra

Abstract. The object of the present paper is to introduce a non-flat Rie-
mannian manifold called hyper-generalized recurrent manifolds and study its
various geometric properties along with the existence of a proper example.

1. Introduction

An n-dimensional Riemannian manifold M is said to be locally symmetric due to
Cartan if its curvature tensor R satisfies ∇R = 0, where ∇ denotes the Levi-Civita
connection. During the last five decades the notion of locally symmetric manifolds
has been weakened by many authors in several ways to a different extent such as
recurrent manifolds by A. G. Walker [12], 2-recurrent manifolds by A. Lichnerowicz
[6], Ricci recurrent manifolds by E. M. Patterson [8], concircular recurrent manifolds
by T. Miyazawa [7], [13], weakly symmetric manifolds by L. Tamássy and T. Q. Binh
[10], weakly Ricci symmetric manifolds by L. Tamássy and T. Q. Binh [11], confor-
mally recurrent manifolds [1], projectively recurrent manifolds [2], generalized
recurrent manifolds [3], generalized Ricci recurrent manifolds [4].

A non-flat n-dimensional Riemannian manifold (Mn, g) (n ≥ 2) is said to be a
generalized recurrent manifold [3] if its curvature tensor R of type (0, 4) satisfies
the following:
(1.1) ∇R = A⊗R+B ⊗G ,

where A and B are 1-forms of which B is non-zero, ⊗ is the tensor product, ∇
denotes the Levi-Civita connection, and G is a tensor of type (0, 4) given by

G(X,Y, Z, U) = g(X,U)g(Y,Z)− g(X,Z)g(Y,U)
for all X,Y, Z, U ∈ χ(Mn), χ(Mn) being the Lie algebra of smooth vector fields on
M . Such a manifold is denoted by GKn. Especially, if B = 0, the manifold reduces
to a recurrent manifold, denoted by Kn ([12]).

The object of the present paper is to introduce a generalized class of recurrent
manifolds called hyper-generalized recurrent manifolds.
A non-flat n-dimensional Riemannian manifold (Mn, g) (n ≥ 3) is said to be

2000 Mathematics Subject Classification: primary 53B35; secondary 53B50.
Key words and phrases: recurrent, generalized recurrent, conharmonically recurrent,

hyper-generalized recurrent, generalized conharmonically recurrent, generalized Ricci recurrent
manifold.

Received September 2, 2009, revised October 2009. Editor O. Kowalski.

http://www.emis.de/journals/AM/


72 A. A. SHAIKH AND A. PATRA

hyper-generalized recurrent manifold if its curvature tensor R of type (0, 4) satisfies
the condition
(1.2) ∇R = A⊗R+B ⊗ (g ∧ S) ,
where S is the Ricci tensor of type (0, 2), A, B are called associated 1-forms of
which B is non-zero such that A(X) = g(X,σ) and B(X) = g(X, ρ), and the
Kulkarni-Nomizu product E ∧ F of two (0, 2) tensors E and F is defined by

(E ∧ F )(X1, X2, X3, X4) = E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)
− E(X1, X3)F (X2, X4)− E(X2, X4)F (X1, X3) ,

Xi ∈ χ(M), i = 1, 2, 3, 4. Such an n-dimensional manifold is denoted by HGKn.
Especially, if the manifold is Einstein with vanishing scalar curvature, then HGKn
reduces to a Kn. And if a HGKn is Einstein with non-vanishing scalar curvature,
then the manifold reduces to a GKn [4]. Again, if a HGKn is non-Einstein, then
the manifold is neither Kn nor GKn, and the existence of such manifold is given
by a proper example in Section 3. Section 2 deals with some geometric properties
of HGKn.

An n-dimensional Riemannian manifold (Mn, g) (n ≥ 3) is said to be generalized
Ricci-recurrent if its Ricci tensor is non-vanishing and satisfies the following:
(1.3) ∇S = A⊗ S +B ⊗ g ,
where A and B are 1-forms of which B is non-zero. Such a manifold is denoted by
GRKn.
In Section 2 it is shown that a HGKn with non-vanishing scalar curvature is a
GRKn.

A non-flat Riemannian manifold (Mn, g) (n > 3) is said to be generalized
2-recurrent [6] if its curvature tensor R satisfies
(1.4) (∇∇R) = α⊗R+ β ⊗G ,
where α, β are tensors of type (0, 2). Again M is said to be generalized 2-Ricci
recurrent if its Ricci tensor S is not identically zero and satisfies the following:
(1.5) (∇∇S) = α⊗ S + β ⊗ g ,
where α, β are tensors of type (0, 2).

In Section 2 it is shown that a HGKn with non-zero constant scalar curvature
is a generalized 2-Ricci recurent manifold.

As a special subgroup of the conformal transformation group, Y. Ishii [5] in-
troduced the notion of the conharmonic transformation under which a harmonic
function transforms into a harmonic function. The conharmonic curvature tensor C
of type (0, 4) on a Riemannian manifold (Mn, g) (n > 3) (this condition is assumed
as for n = 3 the Weyl conformal tensor vanishes) is given by

(1.6) C = R− 1
n− 2g ∧ S .

If in (1.1) R is replaced by C, then the manifold (Mn, g) (n > 3) is called a
generalized conharmonically recurrent and is denoted by GCKn. Every GKn is a
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GCKn but not conversely. However, the converse is true if it is Ricci recurrent. It
is shown that a GCKn satisfying certain condition is a HGKn. Also it is proved
that a GCKn is a Kn if it is GRKn.

2. Some geometric properties of HGKn

Let {ei : i = 1, 2, . . . , n} be an orthonormal basis of the tangent space at any
point of the manifold. We now prove the following:

Theorem 2.1. In a Riemannian manifold (Mn, g) (n ≥ 3) the following results
hold:

(i) A HGKn with non-vanishing scalar curvature is a GRKn.

(ii) In a HGKn with non-zero and non-constant scalar curvature (r), the
relation

(2.1) A(QX) + (n− 2)B(QX) = r

2 [A(X) + 2(n− 2)B(X)] ,

holds for all X, Q being the symmetric endomorphism corresponding to
the Ricci tensor S of type (0, 2).

(iii) In a HGKn with non-zero constant scalar curvature
(a) the associated 1-forms A and B are related by A+ 2(n− 1)B = 0,
(b) rn is an eigenvalue of the Ricci tensor S corresponding to the eigen-

vector σ as well as ρ.
(iv) In a non-Einstein HGKn with vanishing scalar curvature the relations

A(QX) = 0 , B(QX) = 0 , A(R(Z,X)ρ) = 0 , and
A(X)B(R(Y,Z)V ) +A(Y )B(R(Z,X)V ) +A(Z)B(R(X,Y )V ) = 0 ,

hold for all X, Y , Z, V ∈ χ(Mn).
(v) A HGKn (n > 3) of non-vanishing scalar curvature is a GCKn.
(vi) A HGKn of vanishing scalar curvature is a conharmonically recurrent

manifold.
(vii) In a HGKn with non-vanishing and constant scalar curvature, the associa-

ted 1-forms A and B are closed.
(viii) A HGKn with non-zero constant scalar curvature is a generalized 2-Ricci

recurent manifold.

Proof of (i): After suitable contraction, (1.2) yields
(2.2) ∇S = A1 ⊗ S +B1 ⊗ g ,
where A1 and B1 are 1-forms given by A1 = A+ (n− 2)B and B1 = rB of which
B1 6= 0 as r 6= 0 and B 6= 0. This proves (i). �

Proof of (ii): From (2.2), it can be easily shown that the relation (2.1) holds.
This proves (ii). �
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Proof of (iii): From (2.2) it follows that

(2.3) dr = r[A+ 2(n− 1)B] ,

r being the scalar curvature of the manifold. If r is a non-zero constant, then (2.3)
implies that

(2.4) A+ 2(n− 1)B = 0 ,

which proves (a) of (iii).
By virtue of (2.4) and (2.1), we obtain

(2.5) A(QX) = r

n
A(X) , and B(QX) = r

n
B(X) ,

provided that r is a non-zero constant. This proves (b) of (iii). �

Proof of (iv): If r = 0, then (2.5) implies that A(QX) = 0 and B(QX) = 0 for
all X. Again, by virtue of second Bianchi identity, (1.2) yields

A(X)R(Y,Z, U, V ) +B(X){(g ∧ S)(Y,Z, U, V )}+A(Y )R(Z,X,U, V )
+B(Y ){(g ∧ S)(Z,X,U, V )}+A(Z)R(X,Y, U, V )
+B(Z){(g ∧ S)(X,Y, U, V )} = 0 .(2.6)

Taking contraction over Y and V in (2.6), we obtain

A(R(Z,X)U) + [A(X) + (n− 3)B(X)]S(Z,U)− [A(Z) + (n− 3)B(Z)]S(X,U)
+ r[B(X)g(Z,U)−B(Z)g(X,U)] + g(X,U)B(QZ)
− g(Z,U)B(QX) = 0 .(2.7)

Again plugging U = ρ in (2.7), we get

A(R(Z,X)ρ) = 0 .

Setting U = ρ in (2.6), we obtain

A(X)B(R(Y,Z)V ) +A(Y )B(R(Z,X)V ) +A(Z)B(R(X,Y )V ) = 0 .

Proof of (v): From (1.6) it follows that

(2.8) ∇C = ∇R− 1
n− 2

(
g ∧ (∇S)

)
,

which yields by virtue of (1.2) and (2.2) that

(2.9) ∇C = A⊗ C +D ⊗G ,

where D is a non-zero 1-form given by

D(X) = − 2r
n− 2B(X) .

This proves the result. �

Proof of (vi): If r = 0, then D = 0 and hence (2.9) implies that

∇C = A⊗ C .

Hence the result. �
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Proof of (vii): Differentiating (1.2) covariantly and then using (2.2) we obtain

(∇Y∇XR)(Z,W,U, V ) = [(∇YA)(X) +A(X)A(Y )]R(Z,W,U, V )
+ [(∇YB)(X)
+A(X)B(Y ) +B(X)A(Y )
+ (n− 2)B(X)B(Y )](g ∧ S)(Z,W,U, V )
+ 2rB(X)B(Y )G(Z,W,U, V ) .(2.10)

Interchanging X and Y and then subtracting the result we obtain

(∇Y∇XR)(Z,W,U, V ) = (∇X∇YR)(Z,W,U, V )
= [(∇YA)(X)− (∇XA)(Y )]R(Z,W,U, V )

+ [(∇XB)(Y )− (∇YB)(X)](g ∧ S)(Z,W,U, V ) .(2.11)

From Walker’s lemma ([12], equation (26)) we have

(∇X∇YR)(Z,W,U, V )− (∇Y∇XR)(Z,W,U, V ) + (∇Z∇WR)(X,Y, U, V )
− (∇W∇ZR)(X,Y, U, V ) + (∇U∇VR)(Z,W,X, Y )
− (∇V∇UR)(Z,W,X, Y ) = 0 .(2.12)

By virtue of (2.11), (2.12) yields

P (X,Y )R(Z,W,U, V ) + L(X,Y )(g ∧ S)(Z,W,U, V ) + P (Z,W )R(X,Y, U, V )
+ L(Z,W )(g ∧ S)(X,Y, U, V ) + P (U, V )R(Z,W,X, Y )
+ L(U, V )(g ∧ S)(Z,W,X, Y ) = 0 ,(2.13)

where P (X,Y ) = (∇XA)(Y )− (∇YA)(X)
and L(X,Y ) = (∇XB)(Y )− (∇YB)(X).
If the scalar curvature is a non-zero constant, then we have the relation (2.4). Using
(2.4) in (2.13) we obtain

P (X,Y )H(Z,W,U, V ) + P (Z,W )H(X,Y, U, V )
+ P (U, V )H(Z,W,X, Y ) = 0(2.14)

where H = R− 1
2(n−1) (g ∧ S), from which it follows that H is a symmetric (0, 4)

tensor with respect to the first pair of two indices and the last pair of two indices.
Consequently by virtue of Walker’s lemma ([12], equation (27)) we obtain

P (X,Y ) = L(X,Y ) = 0

for all X,Y . And hence

(∇XA)(Y )− (∇YA)(X) = 0 ,

(∇XB)(Y )− (∇YB)(X) = 0 .

Therefore dA(X,Y ) = 0, dB(X,Y ) = 0. This proves (vii). �
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Proof of (viii): If the manifold is of non-zero constant scalar curvature, then
from (2.2) it follows that

(∇Y∇XS)(Z,W ) = [(∇YA)(X) + (n− 2)(∇YB)(X)]S(Z,W )
+ [A(X) + (n− 2)B(X)][A(Y ) + (n− 2)B(Y )]S(Z,W )
+ rg(Z,W )[(∇YB)(X) +B(Y ){A(X) + (n− 2)B(X)}] .(2.15)

Interchanging X, Y and subtracting the result, we obtain
(∇X∇Y S)(Z,W )− (∇Y∇XS)(Z,W ) = [P (X,Y ) + (n− 2)L(X,Y )]

× S(Z,W ) + rg(Z,W )[L(X,Y ) +A(Y )B(X)−A(X)B(Y )] .(2.16)
In view of (2.16) and (2.2) we obtain
(2.17) (R(X,Y ) · S)(Z,W ) = K(X,Y )g(Z,W ) +N(X,Y )S(Z,W ) ,
where K(X,Y ) = r [A(Y )B(X)−A(X)B(Y ) +XB(Y )− Y B(X)− 2B([X,Y ])]
and
N(X,Y ) = XA(Y )−Y A(X)−2A([X,Y ])+(n−2) [XB(Y )−Y B(X)− 2B([X,Y ])] .
The relation (2.17) implies that the manifold is a generalized 2-Ricci recurrent.
This proves (viii). �

Theorem 2.2.
(i) A GCKn (n > 3) is a HGKn provided it satisfies

(2.18) ∇S = −n− 2
2 B ⊗ g .

(ii) A GCKn (n > 3) is a GKn if it is Ricci recurrent.
(iii) A GCKn (n > 3) is recurrent if it satisfies

(2.19) ∇S = A⊗ S − n− 2
2 B ⊗ g .

Proof of (i): If the manifold is GCKn (n > 3), then we have
∇C = A⊗ C +B ⊗G ,

which yields, by virtue of (1.6), that

(2.20) ∇R− 1
n− 2(g ∧ (∇S)) = A⊗ (R− 1

n− 2g ∧ S) +B ⊗G .

By virtue of (2.18), (2.20) takes the form
∇R = A⊗R+ C ⊗ (g ∧ S) ,

where C is a 1-form given by C = − 1
n−2A. This proves (i). �

Proof of (ii): If the manifold is Ricci recurrent (∇S = A⊗ S), then (2.20) takes
the form (1.1) and hence the result. �

Proof of (iii): In view of (2.19), (2.20) reduces to
∇R = A⊗R .

�
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3. An example of HGKn(n > 3) which is not GKn

In this section the existence of HGKn is ensured by a proper example.

Example 3.1. We consider a Riemannian manifold (R4, g) endowed with the
metric g given by

ds2 = gijdx
idxj = (1 + 2q)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2] ,(3.1)
(i, j = 1, 2, ..., 4)

where q = ex
1

k2 and k is a non-zero constant. This metric was first appeared in a
paper of Shaikh and Jana [9]. The non-vanishing components of the Christoffel
symbols of second kind, the curvature tensor and their covariant derivatives are

Γ1
22 = Γ1

33 = Γ1
44 = − q

1 + 2q , Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 = q

1 + 2q ,

R1221 = R1331 = R1441 = q

1 + 2q , R2332 = R2442 = R4334 = q2

1 + 2q ,

R1221, 1 = R1331, 1 = R1441, 1 = q(1− 4q)
(1 + 2q)2 ,

R2332, 1 = R2442, 1 = R4334, 1 = 2q2(1− q)
(1 + 2q)2 .

From the above components of the curvature tensor, the non-vanishing components
of the Ricci tensor and scalar curvature are obtained as

S11 = 3q
(1 + 2q)2 , S22 = S33 = S44 = q

(1 + 2q) , r = 6q(1 + q)
(1 + 2q)3 6= 0 .

We consider the 1-forms as follows:

A(∂i) = Ai =
{

2q3−6q2−6q+1
(1+2q)(1−q2) for i = 1 ,

0 otherwise,

B(∂i) = Bi =
{

q
2(1−q2) for i = 1 ,
0 otherwise,

where ∂i = ∂
∂ui , u

i being the local coordinates of R4.
In our R4, (1.2) reduces with these 1-forms to the following equations:

R1ii1, 1 = A1R1ii1 +B1[Siig11 + S11gii] for i = 2, 3, 4 ,(3.2)

R2ii2, 1 = A1R2ii2 +B1[Siig22 + S22gii] for i = 3, 4 ,(3.3)

R4334, 1 = A1R4334 +B1[S44g33 + S33g44] .(3.4)
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For i = 2,

L.H.S. of (3.2) = R1221, 1 = q(1− 4q)
(1 + 2q)2

= A1R1221 +B1[S22g11 + S11g22]
= R.H.S. of (3.2) .

Similarly for i = 3, 4, it can be shown that the relation is true. By a similar
argument it can be shown that (3.3) and (3.4) are also true. Hence the manifold
under consideration is a HGK4. Thus we can state the following:
Theorem 3.1. Let (R4, g) be a Riemannain manifold equipped with the metric
given by (3.1). Then (R4, g) is a HGK4 with non-vanishing and non-constant
scalar curvature which is neither GK4 nor K4.
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