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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , NU MB ER 1 , P AG E S 1 0 1 – 1 2 0

ROBUST H∞ CONTROL OF AN UNCERTAIN SYSTEM
VIA A STABLE DECENTRALIZED OUTPUT FEEDBACK
CONTROLLER

Ian R. Petersen

This paper presents a procedure for constructing a stable decentralized output feedback
controller for a class of uncertain systems in which the uncertainty is described by Integral
Quadratic Constraints. The controller is constructed to solve a problem of robust H∞

control. The proposed procedure involves solving a set of algebraic Riccati equations of the
H∞ control type which are dependent on a number of scaling parameters. By treating the
off-diagonal elements of the controller transfer function matrix as uncertainties, a decentral-
ized controller is obtained by taking the block-diagonal part of a non-decentralized stable
output feedback controller which solves the robust H∞ control problem. This approach to
decentralized controller design enables the controller to exploit the coupling between the
subsystems of the plant.
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AMS Subject Classification: 93B36, 93E20, 93B50, 93B35

1. INTRODUCTION

In this paper, we present a new approach to stable decentralized output feedback
robust H∞ control for a class of uncertain systems described with uncertainty de-
scribed by Integral Quadratic Constraints (IQCs); e. g., see [6]. The problem of
robust decentralized control has attracted a great deal of interest in the control
theory literature; e. g., see [6] – [11]. One important approach to the design of ro-
bust decentralized controllers is to treat the interconnections between subsystems
as uncertainties; e. g., [8]. This approach has been very successful in many prob-
lems where the interconnections between subsystems are not well known. However
in other cases, the interconnections between subsystems may be well known and it
would be desirable for the controller to be able to exploit these interconnections; e. g.,
see [11]. Our approach to robust decentralized control falls into this later category
in that it is able to exploit the interconnections between subsystems. Indeed, our
main idea is that rather than treat the interconnections between subsystems in the
plant model as uncertainty, we treat the off-diagonal blocks in the controller trans-
fer function matrix as uncertainty. This enables us to replace a non-decentralized
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controller transfer function matrix with a corresponding block-diagonal decentral-
ized controller transfer function matrix. However, in order to be able to treat these
off diagonal blocks of the controller transfer function matrix as uncertainties, it is
necessary that the controller transfer function matrix be stable. Thus, we address a
problem of designing stable robust decentralized output feedback controllers. This
idea of designing a controller which is robust against perturbations to the controller
gain matrix is somewhat reminiscent of non-fragile controller design methods; e. g.,
see [9]. It is well known that the use of stable controllers is preferable to the use
of unstable feedback controllers in many practical control problems; e. g., see [13,2].
Indeed, the use of unstable controllers can lead to problems with actuator and sensor
failure, sensitivity to plant uncertainties and nonlinearities and implementation prob-
lems. Also, it is well known that issues of robustness and disturbance attenuation
are important in control system design. This has motivated a number researchers
to consider problems of H∞ control via the use of stable feedback controllers; e. g.,
see [13,2, 3].

We consider a class of uncertain systems with structured uncertainty described by
Integral Quadratic Constraints (IQCs); e. g., see [7, 6]. Indeed, our results build on
the results of [7] which provide necessary and sufficient conditions for the absolute
stabilization of such uncertain systems with a specified level of disturbance attenua-
tion (but with no requirement that the output feedback controller is stable or have a
decentralized structure). The key idea behind our approach is to begin with an un-
certain system of the type considered in [7] and then add an additional uncertainty
to form a new uncertain system. This idea was applied in the paper [4] which con-
sidered a problem of robust H∞ control via a stable output feedback controller. The
main result of this paper is to extend the results of [4] to allow for stable decentral-
ized output feedback controllers. Indeed, a new uncertain system is constructed so
that the the error introduced by replacing the stable (non-decentralized) controller
by a corresponding block diagonal (decentralized) controller can be treated as an
additional H∞ norm bounded uncertainty. A similar idea is used in the paper [5] in
case of a decentralized state feedback guaranteed cost control problem. This paper
extends this idea to the case of decentralized output feedback H∞ control. In this
case, the additional requirement that the controller be stable needs to be imposed
since the controller is dynamic rather than static.

Our main result is obtained applying the results of [7] and [4] to the new un-
certain system. This gives us a procedure for constructing a stable decentralized
output feedback controller solving a problem of absolute stabilization with a spec-
ified level of disturbance attenuation. This is achieved by solving three algebraic
Riccati equations dependent on a set of scaling parameters. The output feedback
controller obtained is of the same order of the plant. Because our approach involves
the addition of new uncertainties, our results provide only sufficient conditions rather
than necessary and sufficient conditions for absolute stabilization with a specified
level of disturbance attenuation. However, because the new uncertainty is explic-
itly constructed, this can give some indication about the degree of conservatism
introduced.

The remainder of the paper proceeds as follows: In Section 2 of the paper, we
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set up the decentralized robust H∞ control problem under consideration. Section 3
introduces the IQCs and the notation necessary to convert the problem under con-
sideration into a problem which can be handled using the approach of [7, 4]. This
leads to our main result which is a procedure for constructing the required stable
decentralized output feedback controller solving the robust H∞ control problem un-
der consideration. In Section 4, we present an illustrative example involving the
decentralized control of a pair of vehicles.

2. PROBLEM STATEMENT

We consider an output feedback H∞ control problem for an uncertain system of the
following form:

ẋ(t) = Ax(t) + B1w(t) + B2u(t) +

k∑

s=1

Dsξs(t);

z(t) = C1x(t) + D12u(t);

ζ1(t) = K1x(t) + G1u(t);

...

ζk(t) = Kkx(t) + Gku(t);

y(t) = C2x(t) + D21w(t) (1)

where x(t) ∈ Rn is the state, w(t) ∈ Rg is the disturbance input, u(t) ∈ Rm is
the control input, z(t) ∈ Rq is the error output, ζ1(t) ∈ Rh1 , . . . , ζk(t) ∈ Rhk are
the uncertainty outputs, ξ1(t) ∈ Rr1 , . . . , ξk(t) ∈ Rrk are the uncertainty inputs and
y(t) ∈ Rl is the measured output.

The uncertainty in this system is described by a set of equations of the form

ξ1(t) = φ1(t, ζ1(·)|t0)
ξ2(t) = φ2(t, ζ2(·)|t0)

...

ξk(t) = φk(t, ζk(·)|t0) (2)

where the following Integral Quadratic Constraint is satisfied.

Definition 1. (Integral Quadratic Constraint; see Savkin and Petersen [7], Pe-
tersen et al. [6]) An uncertainty of the form (2) is an admissible uncertainty for
the system (1) if the following conditions hold: Given any locally square integrable
control input u(·) and locally square integrable disturbance input w(·), and any cor-
responding solution to the system (1), (2), let (0, t∗) be the interval on which this
solution exists. Then there exist constants d1 ≥ 0, . . . , dk ≥ 0 and a sequence {ti}∞

i=1

such that ti → t∗, ti ≥ 0 and

∫ ti

0

‖ξs(t)‖2 dt ≤
∫ ti

0

‖ζs(t)‖2 dt + ds ∀i ∀s = 1, . . . , k. (3)
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Here ‖ · ‖ denotes the standard Euclidean norm and L2[0, ∞) denotes the Hilbert
space of square integrable vector valued functions defined on [0, ∞). Note that
ti and t? may be equal to infinity. The class of all such admissible uncertainties
ξ(·) = [ξ1(·), . . . , ξk(·)] is denoted Ξ.

It is assumed that the measured output vector y(t) ∈ Rl has been decomposed
into p components as follows

y =




y1

y2...
yp


 (4)

where yi ∈ Rli for i = 1, 2, . . . , p and l =
∑p

i=1 li. Also, it is assumed that the
control input vector u(t) ∈ Rm has been decomposed into p components as follows

u =




u1

u2

...
up


 (5)

where ui ∈ Rmi for i = 1, 2, . . . , p and m =
∑p

i=1 mi. Each of the components ui is
regarded as the control input vector corresponding to the measured output vector
component yi although no assumptions are made concerning the structure of the
system matrices A, B2 and C2.

For the uncertain system (1), (3), we consider a problem of absolute stabilization
with a specified level of disturbance attenuation. The class of controllers considered
are stable decentralized output feedback controllers of the form

ẋci(t) = Acixci(t) + Bciyi(t);

ui(t) = Ccixci(t) (6)

for all i = 1, 2, . . . , p where each Aci is a Hurwitz matrix. Each local feedback
controller has a transfer function Hii(s) = Cci(sI − Aci)

−1Bci. The control law (6)
is a special case of the general output feedback controller

ẋc(t) = Acxc(t) + Bcy(t);

u(t) = Ccxc(t) (7)

where Ac is a Hurwitz matrix and such that controller transfer function matrix

H(s) = Cc(sI − Ac)
−1Bc (8)

has a block-diagonal structure.

Definition 2. The uncertain system (1), (3) is said to be absolutely stabilizable
with disturbance attenuation γ via the output feedback controller (7) if there exists
constants c1 > 0 and c2 > 0 such that the following conditions hold:
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1. For any initial condition [x(0), xc(0)], any admissible uncertainty inputs ξ(·)
and any disturbance input w(·) ∈ L2[0, ∞), then

[x(·), xc(·), u(·), ξ1(·), . . . , ξk(·)] ∈ L2[0, ∞)

(hence, t∗ = ∞ ) and

‖x(·)‖2
2 + ‖xc(·)‖2

2 + ‖u(·)‖2
2 +

k∑

s=1

‖ξs(·)‖2
2

≤ c1

[
‖x(0)‖2 + ‖xc(0)‖2 + ‖w(·)‖2

2 +
k∑

s=1

ds

]
. (9)

2. The following H∞ norm bound condition is satisfied: If x(0) = 0 and xc(0) = 0,
then

J
∆
= sup

w(·)∈L2[0,∞)

sup
ξ(·)∈Ξ

‖z(·)‖2
2 − c2

∑k
s=1 ds

‖w(·)‖2
2

< γ2. (10)

Here, ‖q(·)‖2 denotes the L2[0, ∞) norm of a function q(·). That is, ‖q(·)‖2
2

∆
=∫ ∞

0
‖q(t)‖2 dt.

Assumption 1. The uncertain system (1), (3) will be assumed to satisfy the fol-
lowing conditions throughout the paper:

(i) The pair (A,C1) is observable.

(ii) The pair (A,B1) is controllable.

3. THE MAIN RESULTS

The main idea behind our approach is to design a non-decentralized stable out-
put feedback controller with transfer function matrix H(s) using the methodology
described in [4]. Then, a decentralized controller is obtained by taking only the
block-diagonal part of the transfer function matrix H(s). The ignored blocks of
the transfer function matrix H(s) are treated as additional uncertainties which are
added to the uncertainties in the original uncertain system (1), (3).

Consider a stable output feedback controller for the uncertain system (1), (3) of
the form (7) with transfer function matrix H(s) as in (8). Also, suppose H(s) is
partitioned to be compatible with u in (5) and y in (4) as follows:

H(s) =




H11(s) H12(s) . . . H1p(s)
H21(s) H22(s) . . . H2p(s)
...

. . .
...

Hp1(s) Hp2(s) . . . Hpp(s)


 . (11)

We then construct the corresponding stable decentralized output feedback controller

u(s) = H̃(s)y(s)
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where

H̃(s) =




H11(s) 0 . . . 0
0 H22(s) . . . 0
...

. . .
...

0 0 . . . Hpp(s)


 . (12)

Such a controller could also be described in state space form as in (6).
We now define a sequence of uncertainty transfer function matrices obtained from

the blocks of the transfer function matrix H(s) which are not included in the transfer
function matrix H̃(s):

∆1(s) =
[

H12(s) H13(s) . . . H1p(s)
]
;

∆2(s) =
[

H21(s) H23(s) . . . H2p(s)
]
;

...

∆p(s) =
[

Hp1(s) Hp2(s) . . . Hp(p−1)(s)
]
. (13)

Note that because the transfer function matrix H(s) is assumed to be stable, each
of the above transfer function matrices will also be stable. Also, we define

ξ̃1(s) = −∆1(s)ζ̃1(s);

ξ̃2(s) = −∆2(s)ζ̃2(s);

...

ξ̃p(s) = −∆p(s)ζ̃p(s); (14)

where
ζ̃1 =

[
y′
2 y′

3 . . . y′
p

]′
= C1,1x + H1w;

ζ̃2 =
[

y′
1 y′

3 . . . y′
p

]′
= C1,2x + H2w;

...

ζ̃p =
[

y′
1 y′

2 . . . y′
p−1

]′
= C1,px + Hpw; (15)

the matrices C1,1, C1,2, . . . , C1,p−1 are corresponding sub-matrices of the matrix C2,
and the matrices H1,H2, . . . ,Hp are corresponding sub-matrices of the matrix D21.

Then for the decentralized controller, we can write

u(s) = H̃(s)y(s) = H(s)y(s) +

p∑

i=1

Jiξ̃i(s) (16)

where

J1 =

[
Im1×m1

0m̃1×m1

]
;

J2 =




0m̄1×m2

Im2×m2

0m̃2×m2


 ;

...

Jp =

[
0m̄p×mp

Imp×mp

]
. (17)
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Here m̄i =
∑i

j=1 mj and m̃i = m − m̄i for i = 1, 2, . . . , p.

Now it follows from the above construction that if we apply the decentralized
stable output feedback control u(s) = H̃(s)y(s) to the uncertain system (1), (3), we
obtain the same closed loop system as if we apply the controller u(s) = H(s)y(s) to
the following uncertain system:

ẋ(t) = Ax(t) + B1w(t) + B2u(t) +
k∑

s=1

Dsξs(t) +

p∑

i=1

B2Jiξ̃i(t);

z(t) = C1x(t) +

p∑

i=1

D12Jiξ̃i(t) + D12u(t);

ζ1(t) = K1x(t) +

p∑

i=1

G1Jiξ̃i(t) + G1u(t);

...

ζk(t) = Kkx(t) +

p∑

i=1

GkJiξ̃i(t) + Gku(t);

y(t) = C2x(t) + D21w(t). (18)

Also, ζ̃1, . . . ζ̃p are defined as in (15), and the additional uncertainty inputs ξ̃i(t)

are related to the additional uncertainty outputs ζ̃i(t)) according to the equations
(13), (14). Now for a given stable output feedback controller transfer function matrix
H(s), we define the positive constants βi so that

βi ≥ ‖∆i(s)‖2
∞;

for i = 1, 2, . . . , p. Here ‖ · ‖∞ denotes the H∞ norm and the ∆i(s) are defined as
in (13). From these inequalities, we can conclude that the uncertainty inputs ξ̃i(t)
satisfy the following IQCs of the form (3):

∫ ti

0

(βs‖ζ̃s(t)‖2 − ‖ξ̃s(t)‖2) dt ≥ −d̃s (19)

for all i and for s = 1, 2, . . . , p. Here the d̃s are any positive constants. Our
main result is obtained by applying the main results of [4] to the uncertain sys-
tem (18), (15), (3), (19). Note that since the equivalence between the use of a sta-
ble decentralized output feedback controller on the uncertain system (1), (3) and
the use of a general stable output feedback controller on the uncertain system
(18), (15), (3), (19) only holds for the specific realization of the additional uncertain-
ties defined by (13), (14), then we will obtain only sufficient condition for absolute
stabilization via a stable decentralized output feedback controller.

In order to construct a stable decentralized output feedback controller for the
uncertain system (18), (15), (3), (19), we must use a slight extension of the results
of [4]. We note that the results of [4] depend on the results of [7] and as in [7], we
consider a corresponding system dependent on a set of scaling parameters τ1, . . . , τk̃
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where k̃ = k + p:

ẋ(t) = Ax(t) + B̄1w̄(t) + B2u(t);

z̄(t) = C̄1x(t) + D̄11w̄(t) + D̄12u(t);

y(t) = C2x(t) + D̄21w̄(t). (20)

Here

C̄1 =




C1√
τ1K1

...√
τkKk√

τk+1β1C1,1

...√
τk+pβpC1,p




; D̄12 =




D12√
τ1G1

...√
τkGk

0
...
0




;

D̄11 =




0 0 . . . 0 1√
τk+1

D12J1 . . . 1√
τk+p

D12Jp

0 0 . . . 0
√

τ1

τk+1
G1J1 . . .

√
τ1

τk+p
G1Jp

...
...

...
...

...

0 0 . . . 0
√

τk

τk+1
GkJ1 . . .

√
τk

τk+p
GkJp

√
τk+1

γ H1 0 . . . 0 0 0
...

...
...

...
...√

τk+p

γ Hp 0 . . . 0 0 0




;

B̄1 =
[

γ−1B1 B̄1,1 B̄1,2

]
;

B̄1,1 =
[ √

τ1
−1D1 . . .

√
τk

−1Dk

]
;

B̄1,2 =
[ √

τk+1
−1B2J1 . . .

√
τk+p

−1B2Jp

]
;

D̄21 =
[

γ−1D21 0 0 0
]
. (21)

The results of [4,7] involve solving the H∞ control problem corresponding to the
system (20) and the H∞ norm bound condition

J̄
∆
= sup

w̄(·)∈L2[0,∞),x(0)=0,xc(0)=0

‖z̄(·)‖2
2

‖w̄(·)‖2
2

< 1. (22)

Here,

w̄(·) =




γw(·)√
τ1ξ1(·)

...√
τkξk(·)√

τk+1ξ̃1(·)
...√

τk+pξ̃p(·)




; z̄(·) =




z(·)√
τ1ζ1(·)

...√
τkζk(·)√

τk+1ζ̃1(·)
...√

τk+pζ̃p(·)



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In order to solve this H∞ problem, we will convert it into a standard H∞ control
problem by removing the D̄11 term using standard loop shifting ideas; e. g., see
Section 5.5 of [1]. In order to achieve this, we restrict attention to parameters
τ1 . . . τk̃ such that D̄′

11D̄11 < I:

Assumption 2. The constants τ1 > 0, . . ., τk̃ > 0 are assumed to be chosen such
that D̄′

11D̄11 < I.

Now define Φ = I − D̄′
11D̄11 > 0; Φ̄ = I − D̄11D̄

′
11 > 0

Also, define transformed inputs and outputs as

ŵ
∆
= Φ

1
2 w̄ − Φ− 1

2 D̄′
11

[
C̄1x + D̄12u

]
;

ẑ
∆
= Φ̄− 1

2

[
C̄1x + D̄12u

]
.

Hence, w̄ = Φ− 1
2 ŵ + Φ−1D̄′

11

[
C̄1x + D̄12u

]
.

Now, using these definitions, it is straightforward to verify that

‖w̄(t)‖2 − ‖z̄(t)‖2 ≡ ‖ŵ(t)‖2 − ‖ẑ(t)‖2.

Therefore, the H∞ norm bound condition (22) will hold if and only if

Ĵ
∆
= sup

ŵ(·)∈L2[0,∞),x(0)=0,xc(0)=0

‖ẑ(·)‖2
2

‖ŵ(·)‖2
2

< 1. (23)

Also, we can re-write the state equations (20) as

ẋ(t) = Âx(t) + B̂1ŵ(t) + B2u(t);

ẑ(t) = Ĉ1x(t) + D̂12u(t);

y(t) = Ĉ2x(t) + D̂21ŵ(t) + D̂22u(t) (24)

where

Â
∆
= A + B̄1D̄

′
11Φ̄

−1C̄1;

B̂1
∆
= B̄1Φ

− 1
2

B̂2
∆
= B2 + B̄1D̄

′
11Φ̄

−1D̄12;

Ĉ1
∆
= Φ̄− 1

2 C̄1;

D̂12
∆
= Φ̄− 1

2 D̄12;

Ĉ2
∆
= C2 + D̄21D̄

′
11Φ̄

−1C̄1;

D̂21
∆
= D̄21Φ

− 1
2 ;

D̂22
∆
= D̄21D̄

′
11Φ̄

−1D̄12;

Ê1 = D̂′
12D̂12. (25)
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The main idea behind the result of [4] is to force the controller to be stable by
introducing some extra uncertainty into the origin uncertain system. This is done in
such a way so that the controller must not only achieve absolute stabilization with
disturbance attenuation γ when applied to the original uncertain system but also
the controller must achieve internal stability when applied to a “null” system; i. e.,
the controller itself must be stable. In order to define the required new uncertain
system, we consider a state feedback version of the problem of absolute stabilization
with disturbance attenuation (which corresponds to a state feedback version of the
H∞ problem (24), (23)). The solution to this problem is given in terms of the
existence of solutions to a parameter dependent algebraic Riccati equation. The
Riccati equation under consideration is defined as follows: Let τ1 > 0, . . ., τk̃ > 0 and
β1 > 0, . . . , βp > 0, be given constants and consider the algebraic Riccati equation

(Â − B̂2Ê
−1
1 D̂′

12Ĉ1)
′X + X(Â − B̂2Ê

−1
1 D̂′

12Ĉ1)

+X(B̂1B̂
′
1 − B̂2Ê

−1
1 B̂′

2)X

+Ĉ ′
1(I − D̂12Ê

−1
1 D̂′

12)Ĉ1 = 0; (26)

Assumption 3. The uncertain system (24), (3), (19) will be assumed to be such
that Ê1 > 0 for any τ1 > 0, . . ., τk̃ > 0.

We now present a result relating the Riccati equation (26) to the problem of
absolute stabilization with disturbance attenuation via state feedback. The proof of
this theorem follows along similar lines to the proof of a corresponding result given
in [4].

Lemma 1. Let β1 > 0, . . . , βp > 0 be given constants and suppose the uncertain
system (24), (3), (19) satisfies Assumptions 1 and 3 and is absolutely stabilizable with
disturbance attenuation γ via a controller of the form (7) (but which is not necessarily
stable). Then, there exist constants τ1 > 0, . . . , τk̃ > 0 satisfying Assumption 2 and
such that the Riccati equation (26) has a solution X > 0. Furthermore, the uncertain
system (24), (3), (19) is absolutely stabilizable with disturbance attenuation γ via the
state feedback controller

u(t) = Kx(t) (27)

where
K = −Ê−1

1 (B̂′
2X + D̂′

12Ĉ1). (28)

We now suppose that constants β1 > 0, . . . , βp > 0, τ1 > 0, . . . , τk̃ > 0 have
been found such that Assumption 2 is satisfied and the Riccati equation (26) has
a solution X > 0 and we will use the corresponding state feedback gain matrix K
defined in (28) to define a new uncertain system as follows

ẋ(t) = Ãx(t) + B1w(t) + B̃2u(t) +
k+1∑

s=1

Dsξs(t) +

p∑

i=1

B2Jiξ̃i(t);

z(t) = C̃1x(t) + Jξk+1 +

p∑

i=1

D12Jiξ̃i(t) + D̃12u(t);
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ζ1(t) = K̃1x(t) + F1ξk+1 +

p∑

i=1

G1Jiξ̃i(t) + G̃1u(t);

...

ζk(t) = K̃kx(t) + Fkξk+1 +

p∑

i=1

GkJiξ̃i(t) + G̃ku(t);

ζk+1(t) = K̃k+1x(t) + G̃k+1u(t);

ζ̃1(t) = C1,1x(t) + H1w;

ζ̃2(t) = C1,2x(t) + H2w;

...

ζ̃p(t) = C1,p−1x(t) + Hpw;

y(t) = C2x(t) + D21w(t) (29)

where

Ã = A +
1

2
B2K; B̃2 =

1

2
B2; Dk+1 = B2;

C̃1 = C1 +
1

2
D12K; J = D12; D̃12 =

1

2
D12;

K̃1 = K1 +
1

2
G1K; F1 = G1; G̃1 =

1

2
G1;

...

K̃k = Kk +
1

2
GkK; Fk = Gk; G̃k =

1

2
Gk;

K̃k+1 =
1

2
K; G̃k+1 = −1

2
Im×m. (30)

Also, we extend the IQC (3) to include the additional uncertainty input ξk+1:

∫ ti

0

‖ξs(t)‖2dt ≤
∫ ti

0

‖ζs(t)‖2 dt + ds ∀i ∀s = 1, . . . , k + 1. (31)

Here dk+1 is any positive constant. We consider two special cases of the uncertainty
input ξk+1.

Case 1. ξk+1(t) ≡ ζk+1(t) = 1
2Kx(t) − 1

2u(t). In this case, it is clear that this
uncertainty input satisfies the IQC (31). Also, it is straightforward to verify that
with this value of ξk+1(t) the system (29) becomes

ẋ(t) = (A + B2K)x(t) + B1w(t) +
k∑

s=1

Dsξs(t) +

p∑

i=1

B2Jiξ̃i(t);

z(t) = (C1 + D12K)x(t) +

p∑

i=1

D12Jiξ̃i(t);
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ζ1(t) = (K1 + G1K)x(t) +

p∑

i=1

G1Jiξ̃i(t);

...

ζk(t) = (Kk + GkK)x(t) +

p∑

i=1

GkJiξ̃i(t);

ζ̃1(t) = C1,1x(t) + H1w(t);

ζ̃2(t) = C1,2x(t) + H2w(t);

...

ζ̃p(t) = C1,px(t) + Hpw(t);

y(t) = C2x(t) + D21w(t) (32)

where the IQC (3) is satisfied. However, the uncertain system (32), (3), (19) is the
closed loop uncertain system obtained when the state feedback control law (27), (28)
is applied to the uncertain system (18), (15), (3), (19). Thus, according to the con-
struction of K and Lemma 1, this uncertain system will be absolutely stable with
disturbance attenuation γ. It should also be noted that for the system (32), the
control input u(t) (which is the output of the controller) does not affect the system.

Case 2. ξk+1(t) ≡ −ζk+1(t) = − 1
2Kx(t) + 1

2u(t). In this case, it is clear that this
uncertainty input satisfies the IQC (31). Also, it is straightforward to verify that
with this value of ξk+1(t) the system (29) reduces to the original system (18), (15).

In order to obtain our main result, we will follow the approach taken in [4] and ap-
ply the results of [7] to the uncertain system (29), (19), (31). Indeed, if the uncertain
system (29), (19), (31) is absolutely stabilizable with disturbance attenuation γ via
an output feedback controller of the form (7) (not necessarily stable) then it follows
from Case 1 above that for the corresponding value of the additional uncertainty,
this is equivalent to the open loop situation illustrated in Figure 1.

S
C

w z

y u2

PSfrag replacements

u
(Σcl)

C

Fig. 1. Block diagram corresponding to Case 1.

In this block diagram the block (Σcl) refers to the closed loop uncertain system
defined by (32), (19), (31) and the block C refers to the output feedback controller of
the form (7). Since definition of absolute stabilizability with disturbance attenuation
γ requires the stability of the entire closed loop system, it follows that the output
feedback controller must in fact be stable.
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It follows from Case 2 above that for the corresponding value of additional un-
certainty, when the controller (7) is applied to the uncertain system (29), (19), (31),
this is equivalent to the situation shown in Figure 2.

In this block diagram the block (Σ) refers to the uncertain system defined by
(18), (15), (3), (19) and the block C refers to the output feedback controller of the
form (7). From this, we can conclude that the output feedback controller (7) solves
the problem of absolute stabilizability with disturbance attenuation γ.

S

C

w z

u y

PSfrag replacements

u
y

(Σ)

C

Fig. 2. Block diagram corresponding to Case 2.

Combining the conclusions from both cases, we can conclude that the output
feedback controller of the form (7) obtained by applying results of [7] to the un-
certain system (29), (19), (31) is in fact a stable output feedback controller which
solves the problem absolute stabilizability with disturbance attenuation γ for the
uncertain system (18), (15), (3), (19). This leads us to the following result which is
stated in terms of a pair of algebraic Riccati equations. The Riccati equations under
consideration are defined as follows: Let τ̃1 > 0, . . ., τ̃k̄ > 0 be given constants where
k̄ = k̃ + 1. Consider the algebraic Riccati equations

(Ǎ − B̌2Ě
−1
1 Ď′

12Č1)
′X̌ + X̌(Ǎ − B̌2Ě

−1
1 Ď′

12Č1)

+X̌(B̌1B̌
′
1 − B̌2Ě

−1
1 B̌′

2)X̌

+Č ′
1(I − Ď12Ě

−1
1 Ď′

12)Č1 = 0; (33)

(Ǎ − B̌1Ď
′
21Ě

−1
2 Č2)Y̌ + Y̌ (Ǎ − B̌1Ď

′
21Ě

−1
2 Č2)

′

+Y̌ (Č ′
1Č1 − Č ′

2Ě
−1
2 Č2)Y̌

+B̌1(I − Ď′
21Ě

−1
2 Ď21)B̌

′
1 = 0 (34)
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where

Ǎ = Ã + B̆1D̆
′
11

(
Iq̃×q̃ − D̆11D̆

′
11

)−1

C̆1;

B̌2 = B̃2 + B̆1D̆
′
11

(
Iq̃×q̃ − D̆11D̆

′
11

)−1

D̆12;

Č2 = C2 + D̆21D̆
′
11

(
Iq̃×q̃ − D̆11D̆

′
11

)−1

C̆1;

Ď22 = D̆21D̆
′
11

(
Iq̃×q̃ − D̆11D̆

′
11

)−1

D̆12;

B̌1 = B̆1

(
Ip̃×p̃ − D̆′

11D̆11

)− 1
2

; Ď21 = D̆21

(
Ip̃×p̃ − D̆′

11D̆11

)− 1
2

;

Č1 =
(
Iq̃×q̃ − D̆11D̆

′
11

)− 1
2

C̆1; Ď12 =
(
Iq̃×q̃ − D̆11D̆

′
11

)− 1
2

D̆12;

Ě1 = Ď′
12Ď12; Ě2 = Ď21Ď

′
21; B̆1 =

[
γ−1B1 B̆1,1 B̆1,2

]
;

B̆1,1 =
[ √

τ̃1
−1

D1 . . .
√

τ̃k+1
−1

Dk+1

]
;

B̆1,2 =
[ √

τ̃k+2
−1

B2J1 . . .
√

τ̃k+p+1
−1

B2Jp

]
;

D̆21 =
[

γ−1D21 0 0 0
]
; (35)

C̆1 =




C̃1√
τ̃1K̃1

...√
τ̃k+1K̃k+1√
τ̃k+2β1C1,1

...√
τ̃k+p+1βpC1,p




; D̆12 =




D̃12√
τ̃1G̃1

...√
τ̃k+1G̃k+1

0
...
0




;

(36)

D̆11 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 . . . 0 1√
τ̃k+1

J 1√
τ̃k+2

D12J1 . . . 1√
τ̃k+p+1

D12Jp

0 0 . . . 0
q

τ̃1
τ̃k+1

F1

q

τ̃1
τ̃k+2

G1J1 . . .
q

τ̃1
τ̃k+p+1

G1Jp

...
...

...
...

...
...

0 0 . . . 0
q

τ̃k
τ̃k+1

Fk

q

τ̃k
τ̃k+2

GkJ1 . . .
q

τ̃k
τ̃k+p+1

GkJp√
τ̃k+2

γ
H1 0 . . . 0 0 0 0

...
...

...
...

...√
τ̃k+p+1

γ
Hp 0 . . . 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

(37)
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Assumption 4. The constants τ̃1 > 0, . . ., τ̃k̄ > 0 are assumed to be chosen such
that

(i) Ě1 > 0.

(ii) Ě2 > 0.

(iii) D̆11D̆
′
11 < I.

Theorem 1. Let β1 > 0, . . . , βp > 0 be given constants and suppose that the
uncertain system (18), (15), (3), (19) satisfies Assumptions 1 and 3 and that there
exist constants τ1 > 0, . . . , τk̃ > 0 such that Assumption 2 is satisfied and the Riccati
equation (26) has a solution X > 0. Furthermore, suppose there exist constants
τ̃1 > 0, . . . , τ̃k̄ > 0 such that Assumption 4 is satisfied and the Riccati equations
(33) and (34) have solutions X̌ > 0 and Y̌ > 0 such that the spectral radius of
their product satisfies ρ(X̌Y̌ ) < 1. Then the uncertain system (18), (15), (3), (19) is
absolutely stabilizable with disturbance attenuation γ via a stable linear controller
of the form (7) where

Ac = Ǎc − BcĎ22Cc

Ǎc = Ǎ + B̌2Cc − BcČ2 + (B̌1 − BcĎ21)B̌
′
1X̌

Bc = (I − Y̌ X̌)−1(Y̌ Č ′
2 + B̌1Ď

′
21)Ě

−1
2

Cc = −Ě−1
1 (B̌′

2X̌ + Ď′
12Č1). (38)

P r o o f . It follows via a similar argument to the proof of Theorem 4.1 of [7] that
the uncertain system (29), (19), (31) is absolutely stabilizable with disturbance at-
tenuation γ via a controller of the form (7) if and only if there exist constants
τ̃1 > 0, . . . , τ̃k̄ > 0 such that the controller (7) solves the H∞ control problem de-
fined by the system

ẋ(t) = Ãx(t) + B̆1w̆(t) + B̃2u(t);

z̆(t) = C̆1x(t) + D̆11w̆(t) + D̆12u(t);

y(t) = C2x(t) + D̆21w̆(t) (39)

and the H∞ norm bound condition

J̆
∆
= sup

w̆(·)∈L2[0,∞),x(0)=0,xc(0)=0

‖z̆(·)‖2
2

‖w̆(·)‖2
2

< 1. (40)

Here,

w̆(·) =




γw(·)√
τ̃1ξ1(·)

...√
τ̃k+1ξk+1(·)√
τ̃k+2ξ̃1(·)

...√
τ̃k+p+1ξ̃p(·)




; z̆(·) =




z(·)√
τ̃1ζ1(·)

...√
τ̃k + 1ζk+1(·)√

τ̃k+2ζ̃1(·)
...√

τ̃k+p+1ζ̃p(·)



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and the matrix coefficients B̆1, C̆1, D̆11, D̆12, D̆21 are defined by (35), (36), (37).
Furthermore, it follows from standard loop shifting arguments in H∞ control theory
(e. g., see Sections 4.5.1 and 5.5.1 in [1] and Section 17.2 in [15]) that the H∞ control
problem (39), (40) has a solution if and only if the Riccati equations (33) and (34)
have solutions X̌ > 0 and Y̌ > 0 and such that the spectral radius of their product
satisfies ρ(X̌Y̌ ) < 1. Furthermore in this case, a controller of the form (7) which
solves the H∞ control problem (39), (40) is defined by the equations (38).

We can now conclude that if the conditions of the theorem are satisfied, then the
controller (7), (38) is absolutely stabilizing with disturbance attenuation γ for the
uncertain system (29), (19), (31). Then, using the arguments given above, it follows
that the controller (7), (38) is stable and is absolutely stabilizing with disturbance
attenuation γ for the uncertain system (18), (15), (3), (19). ¤

We now recall the construction of the uncertain system (18), (15), (3), (19) was
such that if a stable controller of the form (7) with transfer function matrix (8) is
absolutely stabilizing with disturbance attenuation γ and if this controller is such
that the transfer function matrices defined by (13) satisfy the bounds (19), then the
corresponding stable decentralized controller defined by (12) is absolutely stabilizing
with disturbance attenuation γ. This leads to the following theorem which is the
main result of this paper.

Theorem 2. Let β1 > 0, . . . , βp > 0 be given constants and suppose that the un-
certain system (1), (3), satisfies Assumptions 1 and 3 and that there exist constants
τ1 > 0, . . . , τk̃ > 0 such that Assumption 2 is satisfied and the Riccati equation (26)
has a solution X > 0. Furthermore, suppose there exist constants τ̃1 > 0, . . . , τ̃k̄ > 0
such that Assumption 4 is satisfied and the Riccati equations (33) and (34) have
solutions X̌ > 0 and Y̌ > 0 such that the spectral radius of their product satis-
fies ρ(X̌Y̌ ) < 1. Also, suppose that the stable linear controller defined by (7), (38)
with transfer function matrix (8) is such that the transfer function matrices defined
by (13) satisfy the bounds (19). Then the corresponding stable decentralized con-
troller defined by (12) is absolutely stabilizing with disturbance attenuation γ for
the uncertain system (1), (3).

P r o o f . If the conditions of the theorem are satisfied then it follows from Theo-
rem 1 that the uncertain system (18), (15), (3), (19) is absolutely stabilizable with
disturbance attenuation γ via the stable linear controller of the form (7), (38). Fur-
thermore, if the controller transfer function matrix H(s) (8) is such that the transfer
function matrices defined by (13) satisfy the bounds (19), then it follows that the
corresponding uncertainty inputs defined in (14) satisfy the IQCs (19). Furthermore,
as noted above in the construction of the uncertain system (18), (15), (3), (19), the
closed loop system obtained by applying the decentralized controller u(s) = H̃(s)y(s)
defined by (12) to the uncertain system (1), (3) is identical to the closed loop ob-
tained by applying the controller (7) to the uncertain system (18), (15), (3), (19)
when uncertainty inputs defined in (14) are applied. Hence, it follows that the
decentralized controller defined by (7), (38), (8), (12) is absolutely stabilizing with
disturbance attenuation γ for the uncertain system (1), (3). This completes the
proof of the theorem. ¤
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4. ILLUSTRATIVE EXAMPLE

To illustrate the results of this paper with a numerical example, we consider the
problem of controlling a pair of vehicles. This example is modified from the example
considered in [12]. As in [12], the dynamics of the ith vehicle can be described as

ḋi = vi−1 − vi;

v̇i = ai + w1i;

ȧi = hi(vi, ai) + ui;

zi =

[
di

ε1ui

]
;

ζi =

[
vi

ai

]
;

yi =

[
di + ε2w2i

vi + ε3w3i

]

for i = 1, 2. Here d2 represents the distance between the two vehicles and d1 repre-
sents the position of the first vehicle. Also, vi is the velocity of the ith vehicle, ai is
the acceleration of the ith vehicle, ui is the control input for the ith vehicle and yi

is the measured output for the ith vehicle. Furthermore, the w1i, w2i, w3i represent
disturbance inputs and the zi are controlled outputs in the H∞ control problem to
be considered. The parameters ε1, ε2, ε3 are treated as design parameters in H∞

control problem. Moreover, the functions hi(vi, ai) represent uncertain nonlineari-
ties which will be bounded as shown below. Note that in [12], the case of multiple
vehicles is considered whereas in our example we only consider two vehicles. How-
ever, [12] considers the state feedback case whereas we consider the output feedback
case.

In order to obtain an uncertain system of the form (1), we let

xi =




di

vi

ai


 ; wi =




w1i

w2i

w3i




and consider the state equations

[
ẋ1

ẋ2

]
=

[
A0 0
A1 A0

] [
x1

x2

]
+

[
B10 0
0 B10

] [
w1

w2

]
+

[
D0 0
0 D0

] [
ξ1

ξ2

]

+

[
B20 0
0 B20

] [
u1

u2

]
;

[
z1

z2

]
=

[
C10 0
0 C10

] [
x1

x2

]
+

[
D120 0
0 D120

] [
u1

u2

]
;

[
ζ1

ζ2

]
=

[
K0 0
0 K0

] [
x1

x2

]
;

[
y1

y2

]
=

[
C20 0
0 C20

] [
x1

x2

]
+

[
D210 0
0 D210

] [
w1

w2

]
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where

A0 =




0 −1 0
0 0 1
0 0 0


 ; A1 =




0 1 0
0 0 0
0 0 0


 ; B10 =




0 0 0
1 0 0
0 0 0


 ;

D0 =




0
0
1


 ; B20 =




0
0
1


 ; C10 =

[
1 0 0
0 0 0

]
; D120 =

[
0
ε1

]
;

K0 =

[
0 1 0
0 0 1

]
; C20 =

[
1 0 0
0 1 0

]
; D210 =

[
0 ε2 0
0 0 ε3

]
.

The uncertain nonlinearity is such that h(ξ) = [h1(v1, a1) h2(v2, a2)]
′ satisfies the

bound
h(ζ)′h(ζ) ≤ α2ζ ′ζ
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Fig. 3. Magnitude bode plots of the non-decentralized controller (8). The decentralized

controller (12) corresponds to the block diagonal part of this controller. In taking the

block diagonal part, we group inputs 1 and 2 as well as grouping inputs 3 and 4.

where α > 0 is a given constant. Letting ξ = h(ζ) and integrating, we obtain an IQC
of the form (3). Thus, we have defined an uncertain system of the form (1), (3). We
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then apply our approach to this uncertain system to obtain a decentralized output
feedback controller. Indeed, choosing the parameter values τ1 = τ2 = τ3 = τ4 = 1,
τ̃1 = τ̃2 = 4, τ̃3 = 0.5, τ̃4 = 3, τ̃5 = 2, β1 = 3.5, β2 = 2.1, ε1 = ε2 = ε3 = 0.2,
γ = 5, α = 0.1, it was found that the Riccati equations (26), (33), (34), had suitable
stabilizing solutions such that the conditions (19) are satisfied. Then, according
to Theorem 2, the corresponding stable decentralized controller defined by (12)
is absolutely stabilizing with disturbance attenuation γ for the uncertain system
(1), (3). Magnitude bode plots of the non-decentralized controller (8) are shown in
Figure 3. The decentralized controller (12) corresponds to the block diagonal part
of this controller.

5. CONCLUSIONS

In this paper we have presented a new approach to robust H∞ control via a stable
decentralized output feedback controller. The key idea of our approach is to treat
the off-diagonal blocks in the controller transfer function matrix as uncertainties so
that they can be neglected to yield a decentralized output feedback controller. One
advantage of this approach is that it enables the coupling between the subsystems
to be exploited by the controller.

In order for this approach to work, it is necessary that the controller be a stable
output feedback controller. This has been achieved by adding additional uncertain-
ties to the system to force the controller to be stable.

A number of possible areas for future research are motivated by the results of this
paper. These include an an investigation of the nonlinear constrained optimization
problem which needs to be solved in order to find values of the parameters scaling
parameters which are used in our solution. Also, it would be of interest to see if our
solution to the robust decentralized control problem could be reformulated in terms
of LMIs.

ACKNOWLEDGEMENT

The author would like to acknowledge discussions with Valeri Ugrinovskii and Hendra
Harno relating to this paper. This work was supported by the Australian Research Council.

(Received March 21, 2008.)

REFERENC ES

[1] T. Basar and P. Bernhard: H∞-Optimal Control and Related Minimax Design Prob-
lems: A Dynamic Game Approach. Birkhäuser, Boston 1991.
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