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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 6 , P AG E S 9 4 6 – 9 5 9

A CLASS OF TESTS FOR EXPONENTIALITY
BASED ON A CONTINUUM OF MOMENT CONDITIONS

Simos G. Meintanis

The empirical moment process is utilized to construct a family of tests for the null
hypothesis that a random variable is exponentially distributed. The tests are consistent
against the ‘new better than used in expectation’ (NBUE) class of alternatives. Consistency
is shown and the limit null distribution of the test statistic is derived, while efficiency results
are also provided. The finite-sample properties of the proposed procedure in comparison
to more standard procedures are investigated via simulation.

Keywords: goodness-of-fit test, empirical moments, ageing distributions, Bahadur effi-
ciency

AMS Subject Classification: 62G10, 62G20

1. INTRODUCTION

A desirable property of goodness-of-fit statistics, is that of being consistent against
all alternatives. Many such so-called omnibus tests for exponentiality exist. See for
instance Henze and Meintanis [13] for a review. However, there exist situations that
prior information may considerably reduce the spectrum of possible deviations from
the null hypothesis. In view of this possibility, several tests for exponentiality have
appeared lately that are not omnibus but consistent against a fairly wide class of
alternatives. See for instance Epps and Pulley [11], Chaudhuri [6], Klar [14], and
Henze and Klar [12]. Most of these classes of alternatives are defined by specifying a
certain mode of ageing. Positive ageing for instance, whereby a component wears out
with time has traditionally received a lot of attention, but negative ageing, whereby
time has a beneficiary effect on the residual life, has also been considered. If the
phenomenon of positive or negative ageing persists with time we talk about mono-
tonic ageing. (No ageing of course means that time is irrelevant to the component’s
residual life.)

One of the most popular ageing properties is captured by the ‘new better than
used in expectation’ (NBUE) class of life distributions. To fix notation, let X be
a non-negative random variable with distribution function denoted by F , and finite
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mean µ. Then F is NBUE if
∫ ∞

0

(1 − F (x + t)) dt ≤ µ(1 − F (x)), x ≥ 0.

Many authors have considered moment inequalities for NBUE distributions; see for
instance Mugdadi and Ahmad [17], Ahmad [1], and Mitra and Basu [16]. One such
inequality is that if F ∈ NBUE, then

D(t) ≥ 0, t ≥ 1, (1)

where D(t) = µt Γ(t+1)−M(t), and M(t) = E(Xt) is the moment process of F . In
the present paper we develop a class of test statistics for testing exponentiality which
is consistent within the class of NBUE distributions. Notice that the exponential
distribution is a member of the NBUE class, and that in this case,

D(t) = 0, t ≥ 1. (2)

In view of (1) and (2), it is reasonable to test

H0 : F ∈ EXP,

where EXP denotes the class of all exponential distributions, by constructing some
empirical version, say Dn(t), of D(t), and reject H0 in favor of

H1 : F ∈ NBUE, X /∈ EXP,

for large values of Dn(t), t ≥ 1. On the basis of independent observations X1, . . . , Xn,
on X, the obvious candidate for Dn(t) results by replacing M(t) by n−1

∑n
j=1 Xt

j ,

and µ by X̄n = n−1
∑n

j=1 Xj , in D(t). The moment process and its empirical
counterpart have been recently utilized as tools for statistical inference by Carrasco
and Florens [4, 5], Bening and Korolev [3] and Meintanis [15].

In order to obtain a scale-free test for H0 against H1 we propose to employ the
standardized data Yj = Xj/X̄n, j = 1, 2, . . . , n, and reject the null hypothesis for
large values of

Tn,w =
√

n

∫ ∞

1

Dn(t)w(t) dt, (3)

where Dn(t) = Γ(t + 1) − Mn(t), Mn(t) = n−1
∑n

j=1 Y t
j , is the empirical moment

of order t of Yj , j = 1, 2, . . . , n, and w(t) denotes a non-negative weight function.
Notice that in the proposed test, all moments of order t ≥ 1 are taken into consid-
eration. This is referred to in the econometric literature as ‘a continuum of moment
conditions’; see Carrasco and Florens [4, 5].

2. ASYMPTOTIC PROPERTIES OF THE TEST STATISTIC

2.1. Consistency and limit distribution

Assume that the law of X belongs to the NBUE class and has finite mean µ, and
write M(t) for the moment process of X. In this section the behavior of Tn,w is
studied within this class of distributions. We begin with the following lemma. The
proof is given in the Appendix.
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Lemma 2.1. Assume that the weight function w(·) is such that Iw(x) :=
∫ ∞
1

xtw(t) dt
can be differentiated w.r.t. x under the integral sign and that

∫ ∞

1

t2Γ(t)w(t) dt < ∞. (4)

Then

lim
δ→0

E

[
sup

h:|h|≤δ

|XI ′
w((X/µ) + h)) − XI ′

w(X/µ)|
]

= 0,

where I ′
w(u) denotes the first derivative of Iw(x) computed at x = u.

In the following theorem the consistency of the test that rejects the null hypothesis
for large values of Tn,w is shown.

Theorem 2.2. Let X1, X2, . . . , Xn be independent copies of the random variable
X. Then

Tn,w√
n

P→
∫ ∞

1

(
Γ(t + 1) − M(t)

µt

)
w(t) dt := ∆.

In particular ∆ > 0, under the alternative hypothesis H1, which implies that the
test is consistent against (non-exponential) NBUE alternatives.

P r o o f . Observe that,

Tn,w√
n

= Ew − 1

n

n∑

j=1

Iw(Yj),

where Ew =
∫ ∞
1

Γ(t+1)w(t) dt. Taking a linear Taylor expansion of Iw(u) at u = Yj

around u0 = Xj/µ we have

Tn,w√
n

=
1

n

n∑

j=1

{
Ew − Iw

(
Xj

µ

)}
−

(
1

X̄n
− 1

µ

)
1

n

n∑

j=1

XjI
′
w

(
Xj

µ∗

)
, (5)

where µ∗ is such that |µ∗ − µ| ≤ |X̄n − µ|.
Now let

En =
1

n

n∑

j=1

XjI
′
w

(
Xj

µ∗

)
− 1

n

n∑

j=1

XjI
′
w

(
Xj

µ

)
,

and choose d > 0 such that

Xj

µ∗ ∈
(

Xj

µ
− d,

Xj

µ
+ d

)
, j = 1, . . . , n.
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Also define

∆(x, d) = sup
{s:|s|≤d}

∣∣∣∣xI ′
w

(
x

µ
+ s

)
− xI ′

w

(
x

µ

)∣∣∣∣ .

Note that from Lemma 2.1 we have limd→0 E[∆(X, d)] = 0 and notice that

|En| ≤ 1

n

n∑

j=1

∆(Xj , d)
P→ E[∆(X, d)],

by the Law of Large Numbers. This shows that En = oP (1); for more details
the reader is referred to Prakasa Rao [19], Proposition 3.5.6. Hence the last sum
in equation (5) may be approximated by n−1

∑n
j=1 XjI

′
w (Xj/µ) and finally by

E[XI ′
w(X/µ)] (which is finite by assumption (4)), so that

Tn,w√
n

≈ 1

n

n∑

j=1

{
Ew − Iw

(
Xj

µ

)}
−

(
1

X̄n
− 1

µ

)
E[XI ′

w(X/µ)], (6)

where ≈ indicates two random variables sharing the same probability limit. The
last term however in (6) is a product of a oP (1) and a OP (1) term, and therefore
the Law of Large Numbers implies that,

Tn,w√
n

P→ Ew − E

[
Iw

(
X

µ

)]
, (7)

which coincides with ∆ in the statement of the theorem. In view of (1) and (2), ∆
is zero under the null hypothesis and positive under H1, which finishes the proof of
the theorem. ¤

To obtain the asymptotic null distribution of Tn,w write ≈ for random variables
sharing the same limit law, and notice that if X is standard exponential then from
expansion (6) one has

Tn,w ≈ 1√
n

n∑

j=1

Vw(Xj), (8)

where Vw(x) = Ew − Iw(x) − (1 − x)E[XI ′
w(X)]. Consequently an application of the

Central Limit Theorem yields that under H0,

Tn,w
D→ N(0, σ2

w), (9)

where

σ2
w = E[I2

w(X)] + (E[XI ′
w(X)])

2
+ 2E[XI ′

w(X)] (Ew − E[XIw(X)]) − E2
w

by straightforward computation.
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2.2. Computation of asymptotic efficiency

Let Tn,a denote the test statistic with w(t) = e−at2 . Note that with this weight
function, the assumptions imposed in Section 2.1 are satisfied. The efficiency of the
sequence {Tn,a} is addressed by using the simplest notion of approximate Bahadur
efficiency. This type of efficiency is often used for the asymptotic comparison of test
statistics when the limiting distribution is known. In contrast however to the ex-
act Bahadur efficiency, which is bounded, there is no upper bound for approximate
slopes. Nevertheless, it is well-known that for asymptotically normal statistics this
type of efficiency usually coincides with the Pitman efficiency, and that the compu-
tation of approximate Bahadur efficiency is easier and requires less assumptions on
the alternative. For details on the notion of test-efficiency the reader is referred to
Bahadur [2], Nikitin [18] and Rubĺık [20, 21].

We are testing the null hypothesis H0 according to which X follows an exponential
law with unknown mean which can be assumed without loss of generality to be equal
to unity. Consider an alternative with a distribution function F depending on a
parameter θ, such that θ = 0 corresponds to the null hypothesis. According to the
Law of Large Numbers we have from (8) under the alternative F ,

n−1/2 Tn,a

σa

P→ bF (θ)

σa
,

where in bF (θ) = EF [Va(X)], the expectation is taken with respect to F , and where

Va(·) and σa result from Vw(·) and σw, respectively, with w(t) replaced by e−at2 . It
follows that {Tn,a} is a so-called standard sequence of statistics (see Bahadur [2])
with the approximate slope

cF (θ) =
b2
F (θ)

σ2
a

.

As only close hypotheses are relevant, we can look for the asymptotics of cF (θ) as
θ → 0. However, there is no upper bound for the approximate slopes, and therefore
in most cases they are compared with the approximate Bahadur slopes of likelihood
ratio tests. These slopes coincide under very general conditions with the approxi-
mate slopes 2Q(F, θ), θ → 0, where Q(F, θ) is the corresponding Kullback–Leibler
‘distance’ between the alternative distribution and the set of all exponential dis-
tributions. If the quantity Q(F, θ) can be calculated (as θ → 0) for a concrete
distribution F , then the local relative approximate Bahadur efficiency eF can be
calculated according to the formula

eF = lim
θ→0

cF (θ)

2Q(F, θ)
. (10)

In the following result eF is calculated for Gamma, Weibull and Linear Failure rate,
alternatives.
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Theorem 2.3. The relative approximate Bahadur efficiency of the sequence {Tn,a}
for Gamma alternatives is given by

(i) eG =
6

(
Λ

(1)
a − Λ

(2)
a − γEa

)2

(π2 − 6)σ2
a

,

for Weibull alternatives by

(ii) eW =
6

[
(γ − 1)Λ

(1)
a + Λ

(3)
a − Λ

(2)
a − Ea

]2

π2σ2
a

,

and for Linear Failure rate alternatives by

(iii) eL =

(
Λ

(4)
a − Λ

(1)
a

)2

σ2
a

,

where

Λ(1)
a =

∫ ∞

1

tΓ(1 + t)e−at2 dt,

Λ(2)
a =

∫ ∞

1

Γ′(1 + t)e−at2 dt,

Λ(3)
a =

∫ ∞

1

Γ′(2 + t)e−at2 dt,

Λ(4)
a =

∫ ∞

1

[
1

2
Γ(3 + t) − Γ(2 + t)

]
e−at2 dt,

and γ = 0.57721 . . ., is Euler’s constant.

2 4 6 8 10
0.475

0.525

0.55

0.575

0.6

0.625

Fig. 1. Approximate Bahadur efficiency of Tn,a, a ∈ (1, 10), for Gamma alternatives.

P r o o f . (i) For a Gamma alternative with density f(x) = (xθ/Γ(1+θ))e−x, θ > −1,
we have

Q(F, θ) = θ2

(
π2

6
− 1

)
, θ → 0. (11)
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We use the approximation f(x) ≈ 1 + θ log(x), θ → 0. Then by straightforward
manipulation we have

bG(θ) = Ea

(
1 − 1

Γ(1 + θ)

)
+ θ

(
Λ(1)

a − Λ(2)
a

)
+ o(θ), (12)

as θ → 0. Use in (12) the approximation Γ(1 + θ) ≈ (1 + γθ)−1. Then (i) follows
from (11), (12), and by taking the limit in (10) as θ → 0.

(ii) For a Weibull alternative with density f(x) = (θ + 1)xθe−xθ+1

, θ > −1, we have

Q(F, θ) =
θ2π2

6
, θ → 0. (13)

We use the approximation f(x) ≈ e−x(1+ θ(1−x) log(x)), θ → 0 Then by straight-
forward manipulation we have

bW(θ) =

(
Γ(1/(1 + θ))

1 + θ
− 1

)
Λ(1)

a − θ
(
Ea + Λ(2)

a − Λ(3)
a

)
+ o(θ), (14)

as θ → 0. Use in (14) the approximation Γ(1/(1 + θ)) ≈ 1 + γθ, θ → 0. Then (ii)
follows from (13), (14), and by taking the limit in (10) as θ → 0.

(iii) For a Linear Failure rate alternative with density f(x) = (1 + θx)e−x−(1/2)θx2

,
θ > 0, we have

Q(F, θ) = θ2, θ → 0. (15)

We use the approximation f(x) ≈ e−x(1 + θ(x − (x2/2))), θ → 0 Then by straight-
forward manipulation we have

bL(θ) = θ
(
Λ(4)

a − Λ(1)
a

)
+ o(θ), (16)

as θ → 0. Then (iii) follows from (15), (16), and by taking the limit in (10) as θ → 0.
¤

In Figure 1, the approximate Bahadur efficiency of {Tn,a} is depicted as a function
of a, a ∈ (1, 10), for Gamma alternatives. Corresponding graphs for Weibull and
Linear Failure rate alternatives are shown in Figures 2 and 3, respectively. The
figures suggest that a satisfactory value of efficiency may be achieved for values of a
away from the origin.

3. SPECIFICATION OF THE TEST AND LIMIT STATISTIC

Although, consistency and asymptotic null distribution of Tn,w remain qualitatively
invariant with respect to the choice of the weight function, particular appeal lies
with those functions which render the test statistic in a nice formula suitable for
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2 4 6 8 10

0.725

0.75

0.775

0.8

0.825

0.85

Fig. 2. Approximate Bahadur efficiency of Tn,a, a ∈ (1, 10), for Weibull alternatives.

2 4 6 8 10

0.92

0.94

0.96

0.98

Fig. 3. Approximate Bahadur efficiency of Tn,a, a ∈ (1, 10), for Linear Failure rate

alternatives.

computer implementation. The choice, w(t) = exp(−at2), a > 0, for example, leads
to the test statistic,

Tn,a =
√

n Ea − 1√
n

n∑

j=1

Ia(Yj),

where

Ea =

∫ ∞

1

Γ(t + 1) exp(−at2) dt,

and

Ia(x) =
1

2

√
π

a
e

log2 x
4a

[
1 − Erf

(√
a − log x

2
√

a

)]
,

with Erf(z) = (2/
√

π)
∫ z

0
e−t2 dt being the error function. Other weight functions

could in principle be used, but it seems that their employment will lead to a non-
analytic expression for the resulting test statistic. An additional interesting feature
is that the class {Tn,a, a > 0}, when properly scaled, is closed at the boundary
a = ∞. To see this replace w(t) by exp(−at2) in (3), and make the transformation
t 7→ t2 − 1. Then the test statistic may be written as

Tn,a =
1

2
e−a

∫ ∞

0

g(t)e−at dt,
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Table 1. Asymptotic standard deviation of the test statistic.

a → 1.0 1.5 2.0 3.0 5.0

σa 0.055991 0.0138322 0.00457451 0.733811 × 10−3 0.354947 × 10−4

where g(t) =
√

nDn(
√

1 + t )(1 + t)−1/2. By straightforward algebra we have

g(t) =
√

n


Γ(

√
1 + t) − 1√

1 + t
− t

2
√

1 + t

1

n

n∑

j=1

Yj log Yj


 + o(t), (17)

as t → 0. Taking the limit in (17) yields, limt→0 g(t)/t = (1/2)
√

n((1 − γ) −
n−1

∑n
j=1 Yj log Yj). Then an Abelian theorem for Laplace transforms (see Zayed,

[22, § 5.11] yields,

lim
a→∞

4a2eaTn,a =
√

n


(1 − γ) − n−1

n∑

j=1

Yj log Yj


 := Tn,∞.

Hence the test statistic when properly standardized and apart from irrelevant scaling
factors, possesses a limit value Tn,∞, as a → ∞. This limit statistic measures the
normalized (×√

n) distance between the sample mean of Yj log Yj , and 1 − γ, and
it is interesting to notice that as n → ∞, this distance vanishes under the null
hypothesis.

4. SIMULATIONS

This section presents the results of a Monte Carlo study conducted to assess the
finite-sample behavior of the new test in comparison with the Kolmogorov–Smirnov
(KS) and the Cramér–von Mises (CM) test that utilize the empirical distribution

function (EDF). Write Y(1) ≤ Y(2) ≤ . . . ≤ Y(n) for the order statistics of Y1, Y2, . . . , Yn.
Then the KS-statistic is

KS = max{D+, D−},

with

D+ = max
j=1,2,...,n

(
j/n − F (Y(j))

)
and D− = max

j=1,2,...,n

(
F (Y(j)) − (j − 1)/n

)
,

while the Cramér–von Mises statistic is given by

CM =
1

12n
+

n∑

j=1

(
F (Y(j)) − 2j − 1

2n

)2

,

where F (x) = 1 − e−x.
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The EDF-tests possess non-standard asymptotic behavior. Therefore they are
typically implemented by using approximate critical values. (See for instance D’Agostino
and Stephens [8] or Doksum and Yandell [10]). These values for the KS test are,

pα =
0.2

n
+

dα√
n + 0.26 + (0.5/

√
n)

,

with d0.05 = 1.094 and d0.10 = 0.990. The corresponding points for the CM test are,

pα =
dα

1 + (0.16/n)
,

with d0.05 = 0.222 and d0.10 = 0.175.
On the other hand the new test was implemented as an asymptotic test by using

figures for the asymptotic standard deviation σa, a = 1, 1.5, 2, 3, 5, given in Table 1.
Then according to (9), the (1−α)×100% large-sample rejection region is Tn,a/σa >
zα, where zα denotes the (1−α)×100% quantile of the standard normal distribution.
For simplicity we write Ta for the new test statistic.

The distributions considered are:

• the Gamma with density [Γ(1 + θ)]−1xθe−x, denoted by G(θ),

• the Weibull with density (1 + θ)xθe−xθ+1

, denoted by W(θ),

• the Log-Normal with density (xθ
√

2π)−1e− log2 x/(2θ2), denoted by LN (θ),

• the Inverse Gaussian with density (θ/2π)1/2x−3/2 exp[−θ(x−1)2/2x], denoted
by IG(θ),

• the Half-Normal with density (2/π)1/2 exp(−x2/2), denoted by HN ,

• the Linear Failure rate with density (1 + θx) exp(−x − θx2/2), denoted by
LF(θ)

• the Generalized Exponential with distribution function (1−e−x)ϑ, denoted by
GE(θ)

• Dhillon’s [9] model with distribution function 1−exp(− logθ+1(x+1)), denoted
by DL(θ).

The Gamma, the Weibull, and the Linear Failure rate, with θ > 0, as well as the
Half-Normal are NBUE, but we have also included in the simulation other families
which are not in the NBUE-class.

Each figure mentioned below corresponds to 10,000 replications and it is based
on the aforementioned critical points. Table 2 reports rejection rates for the new
test statistic (percentage of rejection rounded to the nearest integer), with sample
size n = 50 and n = 100. Corresponding results for the EDF tests are also shown.

The results of Table 2 indicate that the proposed procedure captures the nominal
size to a satisfactory degree, being a bit conservative though at nominal level 5%.



956 S.G. MEINTANIS

Table 2. Observed percentage of rejection at nominal level 5 % (left entry)

and 10 % (right entry), with sample size n = 50 (upper entry)

and n = 100 (lower entry).

↓Model Test → T1.0 T1.5 T2.0 T3.0 T5.0 KS CM

G(0.0) 3 8 3 9 4 10 4 10 4 10 5 10 5 10

3 9 4 10 4 10 4 10 4 10 5 10 5 10

G(0.5) 36 61 44 66 47 69 50 71 53 73 36 50 44 57

68 84 74 87 77 89 79 90 81 91 66 79 75 85

G(0.75) 62 82 70 86 73 88 76 89 78 91 63 76 72 82

92 97 95 98 96 99 97 99 98 99 92 97 96 99

W(0.25) 37 63 44 67 47 69 50 71 52 72 32 46 39 53

73 88 78 90 80 91 82 92 83 93 59 72 70 81

W(0.40) 73 91 80 93 82 94 84 94 86 95 63 76 74 84

98 100 99 100 99 100 99 100 99 100 93 97 97 99

LN (0.80) 28 44 35 50 38 54 42 57 46 61 70 84 76 87

40 53 48 60 52 63 57 68 61 72 97 99 98 100

LN (0.70) 63 78 71 83 75 85 78 87 81 89 96 99 97 99

82 89 88 93 91 94 93 96 94 97 100 100 100 100

DL(1.0) 27 47 33 52 37 55 40 58 44 60 45 59 52 66

45 60 52 66 56 69 60 72 63 75 79 89 85 92

DL(1.2) 56 76 64 80 68 82 72 85 75 86 73 84 80 90

82 90 87 93 89 95 92 96 93 97 97 99 99 100

HN 54 80 60 82 62 82 64 82 65 83 38 53 47 62

92 98 93 98 93 98 93 98 93 98 68 81 80 89

IG(1.0) 11 23 15 28 18 31 20 34 23 37 53 71 55 73

15 27 20 33 24 37 28 41 32 45 94 98 93 98

IG(1.5) 51 70 61 76 65 79 70 82 74 85 95 98 95 98

76 86 83 91 87 93 90 95 92 96 100 100 100 100

LF(1.0) 45 71 51 74 53 75 55 75 56 76 32 46 40 54

84 95 86 95 87 95 87 95 87 95 59 73 71 82

LF(0.8) 37 64 43 67 45 68 47 68 48 69 27 40 33 47

76 91 79 91 80 91 80 91 80 91 50 64 61 74

GE(1.5) 29 53 36 58 39 60 42 62 46 64 31 44 37 51

57 76 64 80 67 82 70 84 74 85 58 72 68 79

GE(2.0) 68 86 76 89 79 91 82 92 84 93 73 84 82 90

94 98 96 99 97 99 98 99 99 100 97 99 99 100
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Moreover, the new test has good power characteristics. Specifically it is more power-
ful than the EDF tests for Gamma, Weibull, Half-Normal, LF , and GE alternatives.
On the other hand for samples from the Log-Normal, the Inverse Gaussian and
Dhillon’s family, the classical tests prevail. Hence we suggest the new test Ta with
a away from the origin, say T3 or T5, as a procedure which performs competitively
when compared to more established omnibus tests for the exponential distribution,
having the extra advantage of a simple limit distribution.

APPENDIX

P r o o f o f L emma 2.1. By definition and under the first assumption we have for
sufficiently small h,

xI ′
w ((x/µ) + h) = x

(∫ ∞

1

utw(t) dt

)′

u=(x/µ)+h

= x

∫ ∞

1

t

(
x

µ
+ h

)t−1

w(t) dt

= x

∫ ∞

1

t

(
x

µ

)t−1 (
1 +

hµ

x

)t−1

w(t) dt

≈ x

∫ ∞

1

t

(
x

µ

)t−1 (
1 + (t − 1)

hµ

x

)
w(t) dt

=

∫ ∞

1

t

µt−1
xtw(t) dt + hµ

∫ ∞

1

t(t − 1)

(
x

µ

)t−1

w(t) dt, h → 0,

where we have used the approximation (1 + u)t ≈ 1 + tu, u → 0. Since the first
integral in the last equation coincides with xI ′

w(x/µ) we have

sup
h:|h|≤δ

|XI ′
w((X/µ) + h)) − XI ′

w(X/µ)| ≤ δµ

∫ ∞

1

t(t − 1)

(
x

µ

)t−1

w(t) dt,

and hence Fubini’s theorem yields

E

[
sup

h:|h|≤δ

|XI ′
w((X/µ) + h)) − XI ′

w(X/µ)|
]

≤ δµ

∫ ∞

1

t(t − 1)

µt−1

∫ ∞

0

xt−1 dF (x)w(t) dt

= δµ

∫ ∞

1

t(t − 1)

µt−1
M(t − 1)w(t) dt ≤ δµ

∫ ∞

1

t(t − 1)Γ(t)w(t) dt,

since X ∈ NBUE. The last term however goes to zero as δ → 0, because of (4) and
the proof is complete. ¤
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